Using the Evans Blue procedure, we previously found strain-related differences in plasma volumes in 5 inbred rat strains. Because albumin binds strongly with Evans blue, this protein is important in the Evans blue method of plasma volume determination. Therefore, we speculated that
interstrain differences in plasma albumin concentration (PAC) could distort calculated plasma volumes. To address this concern, we used ELISA techniques to measure PAC in these inbred rat strains. In study A, the blood volume was measured by using Evans blue dye, and albumin was measured at
the start of hemorrhage. In study B, blood volume was not measured, and albumin was measured twice, near the start and end of hemorrhage (approximately 14 min apart). Neither study revealed any interstrain differences in PAC, which decreased after hemorrhage in all 5 strains. No correlation
was found between PAC and plasma volume, survival time, blood lactate, or blood base excess. Percentage changes in PAC during hemorrhage were greater in salt-sensitive compared with Lewis rats. Moreover, these percentage changes were associated with survival time in Fawn hooded hypertensive
rats. Our data show that the plasma volumes we measured previously were not misrepresented due to variations in PAC.
Xenopus laevis, the African clawed frog, is commonly used in developmental and toxicology research studies. Little information is available on aged X. laevis; however, with the complete mapping of the genome and the availability of transgenic animal models, the number
of aged animals in research colonies is increasing. The goals of this study were to obtain biochemical and hematologic parameters to establish reference intervals for aged X. laevis and to compare results with those from young adult X. laevis. Blood samples were collected from
laboratory reared, female frogs (n = 52) between the ages of 10 and 14 y. Reference intervals were generated for 30 biochemistry analytes and full hematologic analysis; these data were compared with prior results for young X. laevis from the same vendor. Parameters that were
significantly higher in aged compared with young frogs included calcium, calcium:phosphorus ratio, total protein, albumin, HDL, amylase, potassium, CO2, and uric acid. Parameters found to be significantly lower in aged frogs included glucose, AST, ALT, cholesterol, BUN, BUN:creatinine
ratio, phosphorus, triglycerides, LDL, lipase, sodium, chloride, sodium:potassium ratio, and anion gap. Hematology data did not differ between young and old frogs. These findings indicate that chemistry reference intervals for young X. laevis may be inappropriate for use with aged frogs.
Spermatozoa for in vitro fertilization of mouse oocytes and other methods of assisted reproduction typically are collected from the cauda epididymis of euthanized male mice. As an alternative to this terminal protocol, we developed and examined 2 methods for collecting sperm from anesthetized
male mice without decreasing subsequent fertility: microsurgical epididymal sperm aspiration and, as a refinement, percutaneous epididymal sperm aspiration. Collected sperm was evaluated in terms of motility, concentration and in vitro fertilization ability. After recovery, both treated and
untreated control male mice underwent in vivo fertility testing and subsequent histologic analysis of the treated male reproductive tract (epididymis and testis). In vitro fertilization using sperm recovered by the 2 collection methods was successfully achieved in all cases. The in vivo fertility
test and the histologic analysis revealed no impairment of fertility and no permanent histologic alteration in the treated mice. Therefore, we recommend both techniques as simple and effective methods for recovering high-quality epididymal mouse sperm without having to euthanize fertile male
mice.
Many factors influence ammonia levels in rodent cages, and high intracage ammonia has been associated with specific types of abnormal nasal pathology in mice. The use of autoclaved corncob bedding and the maintenance of low room humidity reduce the accumulation of ammonia in mouse cages.
However, there are no engineering standards that define the limits of ammonia exposure for mice housed in static isolation cages. Regulatory guidance indicates that solid bottom cages must be sanitized at least weekly and that cage components in direct contact with animals must be sanitized
at least every 2 wk. Common practice is to replace the bottoms and bedding of static isolation cages once weekly. To determine whether changing static isolation cages once weekly is an appropriate performance standard for mice, we prospectively evaluated the relationship between ammonia levels,
nasal histopathology, and housing densities in various grouping strategies of mice housed in static isolation cages. Here, we report that the average nasal pathology score per cage and intracage ammonia levels were correlated, but nasal pathology scores did not differ among mice housed in
breeding pairs, breeding trios, or female groups. In light of ammonia levels and histopathology scores as performance standards, these results suggest that a weekly cage-change frequency for static isolation cages does not result in adverse effects. Our results provide evidence to support
current practices in the use of static isolation cages for housing laboratory mice in modern vivaria.
Ulcerative dermatitis (UD) is a spontaneous idiopathic disease that often affects C57BL/6 mice or mice on a C57BL/6 background. UD is characterized by intense pruritus and lesion formation, most commonly on the head or dorsal thorax. Self-trauma likely contributes to wound severity
and delayed wound healing. Histologically, changes are nonspecific, consisting of ulceration with neutrophilic and mastocytic infiltration and epithelial hyperplasia and hyperkeratosis. Diet appears to have a profound effect on the development and progression of UD lesions. We investigated
the incidence and severity of UD in C57BL/6NCrl mice on a high-fat western-style diet (HFWD) compared with a standard rodent chow. In addition, we examined the protective effects of dietary supplementation with a multimineral-rich product derived from marine red algae on UD in these 2 diet
groups. HFWD-fed mice had an increased incidence of UD. In addition, mice on a HFWD had significantly more severe clinical and histologic lesions. Dietary mineral supplementation in mice on a HFWD decreased the histologic severity of lesions and reduced the incidence of UD in female mice in
both diets. In conclusion, a high-fat western-style diet may potentiate UD in C57BL/6NCrl mice. Insufficient mineral supply and mineral imbalance may contribute to disease development. Mineral supplementation may be beneficial in the treatment of UD.
The 2011 Guide for the Care and Use of Laboratory Animals contains recommendations regarding the amount of cage space for mothers with litters. Literature on cage-space use in breeding rats is sparse. We hypothesized that, if present, differences in behavior and reproduction
would be detected between the smallest and largest cages tested. BN/Crl and Crl:CD(SD) rats were assigned to a cage treatment (580 cm2, 758 cm2, 903 cm2, or 1355 cm2) and breeding configuration (single: male removed after
birth of pups; pair: 1 male, 1 female) in a factorial design for 12 wk. All cages received 20 to 25 g of nesting material, and nests were scored weekly. Pups were weaned, sexed, and weighed between postnatal days 18 and 26. Adult behavior and location in the cage were videorecorded by scan-sampling
on the litter's postnatal days 0 through 8 and 14 through 21. Press posture in adults and play behavior in pups were recorded according to a 1–0 sampling method. Differences in reproductive parameters were limited to expected differences related to rat genetic background and weaning
weight in pups, which was lowest in the pair-bred CD rats in the smallest cages. Press posture in adults in the smaller cages increased as the pups became mobile. Pair-housed outbred rats in the smallest commercially available cage we tested showed behavioral changes and a lower pup weaning
weight. Both laboratory animal scientists and caging manufacturers should address the challenge of providing more biologically relevant cage complexity rather than merely increasing floor space.
Autoclaving diminishes the nutritional value of rat diets, depending on the duration and temperature of the process and the type of dietary protein. We evaluated in vivo and in vitro the effects of autoclaving on the protein and energy values of soy-free and soy-containing rat diets.
The true digestibility and biological value of the dietary protein were determined in a 10-d experiment involving 28-d-old Wistar Crl:WI(Han) male rats fed casein- or soy-containing diet that was autoclaved for 20 min at 121 °C (T1), 10 min at 134 °C (T2), or not autoclaved (T0). The
apparent protein digestibility and metabolizable energy concentration of experimental diets were assayed during an 18-d trial involving 6-wk-old Wistar-Crl:WI(Han) male rats and compared with a commercial diet. The neutral detergent fiber (NDF) content, amount of protein bound to NDF, protein
solubility, and in vitro ileal protein digestibility were determined. Autoclaving decreased protein solubility, with the T2 condition having a greater effect than that of T1, and decreased the protein parameters determined in vivo, except for the apparent digestibility of the standard rat
diet. Autoclaving decreased metabolizable energy slightly. The Atwater formula yielded higher values than those determined in rats, in vitro, and calculated according to the pig equation. We conclude that autoclaving diets according to the T1 program was less detrimental to dietary protein
than was T2 and that the NDF content and protein solubility may be helpful in assessing the effect of autoclaving. The pig formula and in vitro method appear to be valid for estimating the metabolizable energy of rat diets.
Self-injurious behavior (SIB) occurs within laboratory-housed NHP at low frequency but can have a devastating effect on animal research and wellbeing. One barrier to the study and clinical management of these cases is the cost of equipment and personnel time to quantify the behavior
according to the current standard of observation and to score remotely obtained video recordings. In studies of human SIB, in which direct observation is difficult or prohibited, researchers have demonstrated that quantifying the tissue damage resulting from SIB can be a useful proxy to represent
the underlying behavior. We hypothesized that the nature of wounds resulting from SIB in NHP could be used in a similar manner to measure the abnormal behavior. Using a cohort of rhesus macaques with high-incidence SIB, we examined severity, distribution, and number of wounds and compared
them with observed incidences of SIB during a 12-wk experiment. We found that the number, severity, and distribution of physical wounds were associated with the incidences of biting behavior observed during the 2 wk prior to measurement. We also found that an increased number of wounds was
associated with increased severity. Animals with wounds of moderate severity were more likely to also have severe wounds than were macaques with wounds that were lower than moderate in severity. This work is the first representative study in NHP to find that behavioral SIB correlates with
physical wounding and that increases in the frequency and number of the body regions affected correlates with the severity of wounding.
When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using
direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO2 concentrations, higher
dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within
cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However,
ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.
Adequate indoor-air quality (IAQ)—defined by the temperature, relative humidity, and the levels of carbon dioxide, small particles, and total volatile organic compounds (TVOC)—is crucial in laboratory animal facilities. The ventilation standards for controlling these parameters
are not well defined. This study assessed the effect of 2 ventilation strategies on IAQ in 2 rooms housing rhesus macaques (Macaca mulatta). We hypothesized that using a demand-controlled ventilation (DCV) system with a baseline ventilation rate of less than 3 fresh-air changes per
hour (ACH) would maintain IAQ comparable to or better than the traditional constant flow rate (CFR) system at 12 fresh ACH. During a 60-d study period, each of the 2 rooms operated 30 d on DCV and 30 d on CFR ventilation. In both rooms, temperatures remained more consistently within the established
setpoint during the DCV phase than during the CFR phase. Relative humidity did not differ significantly between rooms or strategies. CO2 was lower during the CFR phase than DCV phase. Small-particle and TVOC levels were lower during CFR in the larger (3060 ft3) room but
not the smaller (2340 ft3) room. During the DCV phase, the larger room was at the baseline airflow rate over 99% of the time and the smaller room over 96% of the time. The DCV strategy resulted in a baseline airflow rate of less than 3 ACH, which in turn provided acceptable IAQ
over 96% of the time; higher ventilation rates were warranted only during sanitation periods.
Determining depth of anesthesia (DOA) is a clinical challenge in veterinary medicine, yet it is critical for the appropriate oversight of animals involved in potentially painful experimental procedures. Here, we investigated various parameters used to monitor conscious awareness during
surgical procedures and refined the application of noxious stimuli to anesthetized animals. Specifically we used a common stimulus, a compressive toe pinch (TP), to determine physiologic changes that accompanied a positive or negative motion response in isoflurane-anesthetized piglets. A positive
response was defined as any reflexive withdrawal, whereas a negative response was defined as the absence of motion after stimulation. We also assessed the utility of the bispectral index (BIS) for its ability to predict a motion response to TP. The average of BIS values over 1 min (BISmean)
was recorded before and after TP. In piglets with a positive response to TP, heart rate (HR), but not blood pressure (BP), increased significantly, but receiver operating characteristic (ROC) analysis revealed that HR was not a sensitive, specific predictor of TP motion response. Both before
and after TP, BISmean was a strong predictor of a positive motion response. We conclude that HR and noninvasive BP changes are not clinically reliable indicators of anesthetic depth when assessed immediately after a peripherally applied compressive force as an indicator stimulus;
however, BISmean and response TP are acceptable for assessing DOA in piglets maintained under isoflurane anesthesia.
We have designed a method for immobilizing the subjects of small-animal studies using a study group–specific 3D-printed immobilizer that significantly reduces interfraction rotational variation. A cone-beam CT scan acquired from a single specimen in a study group was used to create
a 3D-printed immobilizer that can be used for all specimens in the same study group. 3D printing allows for the incorporation of study-specific features into the immobilizer design, including geometries suitable for use in MR and CT scanners, holders for fiducial markers, and anesthesia nose
cones of various sizes. Using metrics of rotational setup variations, we compared the current setup in our small-animal irradiation system, a half-pipe bed, with the 3D-printed device. We also assessed translational displacement within the immobilizer. The printed design significantly reduced
setup variation, with average reductions in rotational displacement of 76% ± 3% (1.57 to 0.37°) in pitch, 78% ± 3% (1.85 to 0.41°) in yaw, and 87% ± 3% (5.39 to 0.70°) in roll. Translational displacement within the printed immobilizer was less than 1.5 ±
0.3 mm. This method of immobilization allows for repeatable setup when using MR or CT scans for the purpose of radiotherapy, streamlines the workflow, and places little burden on the study subjects.
Gavage is a widely performed technique for daily dosing in laboratory rodents. Although effective, gavage comprises a sequence of potentially stressful procedures for laboratory animals that may introduce bias into experimental results, especially when the drugs to be tested interfere
with stress-dependent parameters. We aimed to test vehicles suitable for drug delivery by voluntary ingestion in rats. Specifically, Male Wistar rats (age, 2 to 3 mo) were used to test nut paste (NUT), peanut butter (PB), and sugar paste (SUG) as vehicles for long-term voluntary oral administration
of losartan, an angiotensin II receptor blocker. Vehicles were administered for 28 d without drug to assess effects on the glucose level and serum lipid profile. Losartan was mixed with vehicles and either offered to the rats or administered by gavage (14 d) for subsequent quantification of
losartan plasma levels by HPLC. After a 2-d acclimation period, all rats voluntarily ate the vehicles, either alone or mixed with losartan. NUT administration reduced blood glucose levels. The SUG group had higher concentrations of losartan than did the gavage group, without changes in lipid
and glucose profiles. Our results showed that NUT, PB, and SUG all are viable for daily single-dose voluntary ingestion of losartan and that SUG was the best alternative overall. Drug bioavailability was not reduced after voluntary ingestion, suggesting that this method is highly effective
for chronic oral administration of losartan to laboratory rodents.
Trauma is a common sequela to agonistic social encounters in rhesus macaques (Macaca mulatta), and veterinarians often prescribe antibiotics as part of a balanced treatment plan. Long-acting, single-dose, injectable antibiotics for use in rhesus macaques are unavailable currently.
Ceftiofur crystalline free acid (CCFA) is a long-acting, single-dose, injectable third-generation cephalosporin that provides at least 7 d of ceftiofur therapeutic plasma concentrations in swine (Sus scrofa domesticus). We hypothesized that CCFA would achieve similar therapeutic concentrations
(≥ 0.2 μg/mL) in rhesus macaques. We describe the pharmacokinetic profile of CCFA in healthy, adult male rhesus macaques ( n = 6) in this 2-period, 2-treatment crossover study of 5 and 20 mg/kg SC administered once. Plasma ceftiofur metabolite concentrations were determined prior
to and for a maximum of 21 d after administration. Noncompartmental pharmacokinetic analysis was performed. The 5-mg dose achieved a maximal plasma concentration of 2.24 ± 0.525 μg/mL at 2.59 ± 1.63 h, an AUC of 46.9 ± 17.6 h/μg/mL, and a terminal elimination half-life
of 56.5 ± 21.7 h; for the 20-mg/kg dose, these parameters were 9.18 ± 4.90 μg/mL at 1.82 ± 1.30 h, 331 ± 84.4 h/μg/mL, and 69.7 ± 8.86 h, respectively. No adverse effects were noted after either dose. Macaques maintained plasma ceftiofur concentrations
of 0.2 μg/mL or greater for at least 2 d after 5 mg/kg SC and at least 7 d after 20 mg/kg SC.
Zebrafish are an important laboratory animal model for biomedical research and are increasingly being used for behavioral neuroscience. Tricaine methanesulfonate (MS222) is the standard agent used for euthanasia of zebrafish. However, recent studies of zebrafish behavior suggest that
MS222 may be aversive, and clove oil might be a possible alternative. In this study, we compared the effects of MS222 or clove oil as a euthanasia agent in zebrafish on the volume of blood collected and on serum levels of cortisol. Greater amounts of serum could be collected and lower serum
levels of cortisol were present in fish euthanized with clove oil compared with equipotent dose of MS222. Euthanasia with clove oil did not blunt the expected elevation of serum cortisol levels elicited by an acute premortem stress. According to our findings, clove oil is a fast-acting agent
that minimizes the cortisol response to euthanasia in zebrafish and allows the collection of large volumes of blood postmortem. These results represent a significant refinement in euthanasia methods for zebrafish.