Prompted by the cage cleanliness of Mongolian gerbils (Meriones unguiculatus), we evaluated a prolonged cage-change interval. We compared the effects of a 2-wk and 6-wk cage-change schedule on ammonia levels, temperature, humidity, and reproductive performance in breeding pairs
housed in IVC. We hypothesized that ammonia levels would remain below our threshold for cage changing and that reproductive performance would not be affected. Although ammonia levels increased over time, they remained low (less than 5 ppm) over the 6-wk period. In addition, the 6-wk cage-change
interval did not significantly influence reproductive parameters, such as average pup weaning weight, number of litters, and number of pups per litter. We conclude that an extended cage-change interval (6-wk) can be used for gerbils without significant increases in intracage ammonia levels
or effects on reproduction.
Interactions between adult males and immature members of the same species are rare in most mammals; in contrast, an estimated 40% of primate species are characterized by an involvement of males in the social life of infants and juveniles. The proximate mechanisms of male–infant
interactions are largely unstudied, and very few direct benefits for males have been proposed, especially in uniparental species in which the identity of the male parent is uncertain. In this study, we aimed to assess the relationship among behavioral and physiologic stress, health, and various
affiliative behaviors initiated by adult males toward infants and juveniles in long-tailed macaques. We hypothesized that males that spent more time with infants and juveniles would have lower physiologic and social stress and better health than males with less interaction. We observed 2 troops
of macaques with established social hierarchies (n = 18 in troop 1 and n = 8 in troop 2), each occupying a stable area within the enclosure, for more than 200 h. Fecal samples were used to assess cortisol levels as a measure of physiologic stress, and blood samples were collected to
measure oxytocin levels as an index of social responsiveness. Our results indicated that male affiliative behavior directed toward immature animals was significantly higher in the troop characterized by more social conflicts; midranking males interacted more with infants than high- and low-ranking
males in both troops. Furthermore, the DHEA:cortisol ratio, a physiologic index of resilience and coping, was positively correlated with males' affiliative responses, suggesting a neuroprotective role of male–infant interactions. In summary, our data support a proximate mechanism of
alloparenting or paternal behavior in uniparental species. Interacting with infants and juveniles could provide an immediate neurobiologic benefit to adult males by facilitating adaptive coping responses to social tensions.
Literature-based recommendations regarding how to separate pairs of laboratory-housed NHP when required for research, veterinary, or management needs are unavailable. This study assessed 2 separation techniques—rapid and stepwise—to determine whether a period of limited
social access mitigates the behavioral stress response after complete separation. Researchers observed 12 pairs of mother-reared, adolescent male rhesus macaques before and after separation with a solid divider; 6 of the pairs experienced a transitional week of limited social access through
a perforated panel. Observers collected 30-min focal animal scans during study phase, totaling 144 h of behavioral data. Target behaviors included those classified as protest, agitation, tension, and withdrawn or self-directed. Social separation resulted in a significant change in behavior.
Separated monkeys displayed more withdrawn or self-directed behaviors (for example, huddling, self-directed stereotypies) than when pair-housed. Stepwise separation resulted in increased agitation behaviors in the limited contact phase and did not mitigate separation effects. Adverse behavioral
changes during the limited contact phase support continuous pair housing until required individual housing.
Environmental enrichment is the enhancement of the physical or social environment in which an animal lives with the goal to improve its quality of life. Our objective was to investigate the effect of providing environmental enrichment in the home pen on responsiveness to novelty in
laboratory-housed pigs. Pigs were housed (4 pigs per pen) in enriched (n = 32) or barren (control; n = 32) pens for 3 wk total and tested in 2 anxiety behavioral tests, the novel object (NOT) and human interaction (HIT) tests. Pigs were placed in a novel arena for a 5-min familiarization
period, after which either a novel object (NOT) or an unfamiliar human (HIT) was introduced for a 5-min interaction period. Behavior in the home pen and during NOT and HIT was monitored through direct observations and videorecording. In the home pen, enriched pigs spent more time active and
interacting with the environment, whereas control pigs spent more time inactive and in social interactions. In addition, enriched pigs crossed more squares during the familiarization period, tended to freeze more, and interacted less with the novel object or person than control pigs. In conclusion,
enrichment may improve welfare by stimulating activity and decreasing aggressive behaviors in the home pen. However, enriched pigs may experience increased anxiety when exposed to novelty, whereas pigs housed without environmental enrichment—due to lack of stimulation in the home pen—may
be more motivated to interact with sources of novelty or enrichment during testing than their enriched counterparts.
Vaporized hydrogen peroxide (VHP) is used to decontaminate clinical, biocontainment, and research animal rooms and equipment. To assist with its implementation in a murine facility, we developed a safe and effective method of VHP sterilization of IVC racks and air handling units (AHU).
Safety of VHP decontamination was assessed by ensuring VHP levels dissipated to less than 1 ppm in the room prior to personnel reentry and inside the primary enclosure prior to the return of mice; this condition occurred at least 18 h after the VHP cycle. Efficacy of VHP sterilization was
assessed by using chemical indicators, biologic indicators, and PCR testing for Staphylococcus xylosus, a commensal organism of murine skin and an opportunistic pathogen, which was present in 160 of 172 (93%) of specimens from occupied IVC racks and the interior surfaces of in-use AHU.
Neither mechanized washing nor hand-sanitizing eradicated S. xylosus from equipment airway interiors, with 17% to 24% of specimens remaining PCR-positive for S. xylosus. 'Static–open' VHP exposure of sanitized equipment did not ensure its sterilization. In contrast, 'active–closed'
VHP exposure, in which IVC racks were assembled, sealed, and connected to AHU set to the VHP cycle, increased the proportion of chemical indicators that detected sterilizing levels of VHP inside the assembled equipment, and significantly decreased PCR-detectable S. xylosus inside the
equipment. Supplementing bulk steam sterilization of the primary enclosure with VHP sterilization of the secondary housing equipment during room change-outs may help to mitigate opportunistic agents that jeopardize studies involving immunodeficient strains.
We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated
aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus
(MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR
testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur
mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively
detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.
In this study, we compared the plasma concentrations of meloxicam in pediatric rat pups (ages: 7, 14, 21, and 28 d) with those of young adult rats. Adult rats received 1.34 mg/kg SC meloxicam to determine the target peak plasma concentration (Cmax) for comparison with the
pediatric animals. Pediatric rats received 1.34 mg/kg SC meloxicam, and in all age groups, Cmax met or exceeded that in adults (11.5 ±2.7 μg/mL). Plasma concentrations were similar between male and female pups within age groups, and peak plasma concentration was achieved more rapidly in rat pups than adults. The analgesic efficacy of this dose was not evaluated in this study.
In guinea pigs, studies addressing the efficacy, safety, and pharmacokinetic profiles of different sustained-release buprenorphine (SRB) formulations are still in their infancy. Here we assessed the pharmacokinetic profiles of 3 SRB dosages (SR-LAB, ZooPharm; SRBLow, 0.15
mg/kg; SRBMedium, 0.3 mg/kg; and SRBHigh, 0.6 mg/kg) for 72 h after a single subcutaneous administration to 8 (4 male and 4 female) healthy guinea pigs. Body weight, fecal output, and cortisol levels were also monitored and the results compared with those of the sham
group. Within the first h after administration, the maximal plasma concentration (Cmax) of the drug was 64.3 ± 9.2 ng/mL (males) and 71.3 ± 3.7 ng/mL (females) in the SRBHigh group; 11.5 ± 3.2 ng/mL (males) and 6.9 ± 0.9 ng/mL (females) in
the SRBMedium group; and 2.3 ± 0.8 ng/mL (males) and 2.0 ± 0.5 ng/mL (females) in the SRBLow group. After 72 h, therapeutic levels of the drug (>1 ng/mL) were observed only in guinea pigs treated with SRBHigh (both sexes) and males treated
with SRBMediu cm. Fecal output (quantity and distribution) and body weight were significantly lower in the SRB groups as compared with the sham group, and with the SRBHigh group showing larger reductions. Baseline levels of serum cortisol in healthy females (1440 ±
106 ng/mL) were significantly greater than in males (550 ± 66 ng/mL). But, independent of the sex, SRB administration significantly reduced those levels. In conclusion, the data indicate that all 3 SRB dosages can be safely used in guinea pigs. However, therapeutic levels of the drug
were observed for at least 48 h only guinea pigs treated with SRBHigh and SRBMedium. Further investigation is needed to determine if these dosages can alleviate pain in guinea pigs.
Due to potential adverse effects on animal wellbeing, the use of nonpharmaceutical-grade substances in animal research must be scientifically justified in cases where a pharmaceutical-grade version of the substance exists. This requirement applies to all substances, including vehicles
used to solubilize experimental drugs. To date, no studies have evaluated the direct effect of the pharmaceutical classification of a compound on animal wellbeing. In this study, we evaluated intraperitoneal administration of pharmaceutical-grade corn oil, nonpharmaceutical-grade corn oil,
and saline in female C57BL/6J mice. Compounds were administered every 48 h for a total of 4 injections. Mice were evaluated clinically by using body weight, body condition score, visual assessment score, CBC, and serum chemistries. Animals were euthanized at 24 h and 14 d after the final injection.
Inflammation of the peritoneal wall and mesenteric fat was assessed microscopically by using a semiquantitative scoring system. Saline-dosed groups had lower pathology scores at both time points. At day 21, pharmaceutical-grade corn oil had a significantly higher pathology score compared with
nonpharmaceutical-grade corn oil. No other significant differences between the corn oil groups were observed. The use of nonpharmaceutical grade corn oil did not result in adverse clinical consequences and is presumed safe to use for intraperitoneal injection in mice. Differences in inflammation
between the 2 groups suggest that the use of either pharmaceutical-grade or nonpharmaceutical-grade corn oil should be consistent within a study.
Anesthetic agents depress thermoregulatory mechanisms, causing hypothermia within minutes of induction of general anesthesia. The consequences of hypothermia include delayed recovery and increased experimental variability. Even when normothermia is maintained during anesthesia, hypothermia
may occur during recovery. The primary aim of this study was to identify an effective warming period for maintaining normothermia during recovery. Adult male (n = 8) and female (n = 9) Sprague–Dawley rats were randomized to 30 min (post30) or 60 min (post60) of warming
after recovery from anesthesia. During a 40-min anesthetic period, normothermia (target, 37.5 ± 1.1 °C) was maintained by manual adjustment of an electric heating pad in response to measured rectal temperatures (corrected to estimate core body temperature). Warming was continued
in a recovery cage according to treatment group. Rectal temperature was measured for a total of 120 min after anesthesia. Heating pad performance was assessed by measuring temperatures at various sites over its surface. One female rat in the post30 group was excluded from analysis. Normothermia
was effectively maintained during and after anesthesia without significant differences between groups. In the post60 group, core temperature was slightly but significantly increased at 90 and 100 min compared with baseline. One rat in each treatment group became hyperthermic (>38.6 °C)
during recovery. During recovery, the cage floor temperature required approximately 30 min to stabilize. The heating pad produced heat unevenly over its surface, and measured temperatures frequently exceeded the programmed temperature. Providing 30 min of warming immediately after anesthesia
effectively prevented hypothermia in rats. Shorter warming periods may be useful when recovery cages are preheated.
We used a continuous-monitoring digital telemetry system to investigate temperature response in New Zealand White rabbits after inhalation or subcutaneous challenge with Bacillus anthracis. Two spore preparations of B. anthracis Ames A2084 were evaluated by using a nose-only
inhalation model, and 2 strains, B. anthracis Ames A2084 and B. anthracis UT500, were evaluated in a subcutaneous model. Animal body temperature greater than 3 SD above the mean baseline temperature was considered a significant increase in body temperature (SIBT). All rabbits
that exhibited SIBT after challenge by either route of infection or bacterial strain eventually died or were euthanized due to infection, and all rabbits that died or were euthanized due to infection exhibited SIBT during the course of disease. The time at onset of SIBT preceded clinical signs
of disease in 94% of the rabbits tested by as long as 2 days. In addition, continuous temperature monitoring facilitated discrimination between the 2 B. anthracis strains with regard to the time interval between SIBT and death. These data suggest that for the New Zealand White rabbit
anthrax model, SIBT is a reliable indicator of infection, is predictive of experimental outcome in the absence of treatment, and is measurable prior to the appearance of more severe signs of disease. The use of digital telemetry to monitor infectious disease course in animal models of anthrax can potentially be used in conjunction with other clinical score metrics to refine endpoint euthanasia criteria.
Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia: sodium pentobarbital (NaP) given intracoelomically
with physical restraint but no anesthesia; isoflurane anesthesia followed by intracoelomic injection of NaP; and CO2 asphyxiation at 20%, 40%, and 80% chamber displacement rates (percentage of chamber volume per minute). Birds undergoing euthanasia were videorecorded and scored
by 2 observers for behaviors potentially related to discomfort or distress. Time to recumbency and time until respiratory arrest (RA) were also assessed. RA was achieved faster by using NaP in a conscious bird compared to using isoflurane anesthesia followed by NaP; however, neither method
caused behaviors that might affect animal welfare, such as open-mouth breathing, to any appreciable extent. Among the CO2 treatment groups, there was an inverse correlation between the chamber displacement rate used and the duration of open-mouth breathing, onset of head retroflexion,
and time to RA. The results demonstrate that the intracoelomic administration of NaP in an awake, restrained zebra finch is a rapid and effective method of euthanasia. If CO2 is used to euthanize these birds, a high displacement rate (for example, 80%) will minimize the duration
of the procedure and associated behaviors.