CT (computerized tomography) is a necessary imaging modality for cancer staging and disease monitoring. Rodent models of cancer are commonly studied prior to human clinical trials, but CT in rodents can be difficult due to their small size and constant movement, which necessitates general
anesthesia. Because microCT equipment is not always available, clinical CT may be a viable alternative. Limitations of microCT and clinical CT include biosecurity, anesthesia to limit image distortion due to motion, and cost. To address several of these constraints, we created a 3D-printed
apparatus that accommodated simultaneous imaging of as many as 9 rats under gas anesthesia. Rats were anesthetized in series and placed in a 3 × 3 arrangement. To assess differences in attenuation between individual chambers and rows or columns in the device, we first imaged a standardized
phantom plug as a control. We hypothesized that attenuation of specific rat organs would not be affected regardless of the location or position in the 3D-printed device. Four organs—liver, kidney, femur, and brain—were evaluated in 9 rats. For both the phantom and kidneys, statistically
significant, but clinically negligible, effects on attenuation were noted between rows but not between columns. We attribute this finding to the absence of a top layer of the apparatus, which thus created asymmetric attenuation and beam hardening through the device. This apparatus allowed
us to successfully image 9 rats simultaneously in a clinical CT machine, with negligible effects on attenuation. Planned improvements in this apparatus include completely enclosed versions for biosecure imaging.
Alpha-1 acid glycoprotein (AGP) is a significant drug binding acute phase protein that is present in rats. AGP levels are known to increase during tissue injury, cancer and infection. Accordingly, when determining effective drug ranges and toxicity limits, consideration of drug binding
to AGP is essential. However, AGP levels have not been well established during subclinical infections. The goal of this study was to establish a subclinical infection model in rats using AGP as a biomarker. This information could enhance health surveillance, aid in outlier identification,
and provide more informed characterization of drug candidates. An initial study (n = 57) was conducted to evaluate AGP in response to various concentrations of Staphylococcus aureus (S. aureus) in Sprague–Dawley rats with or without implants of catheter material. A model
validation study (n = 16) was then conducted using propranolol. Rats received vehicle control or S. aureus and when indicated, received oral propranolol (10 mg/kg). Health assessment and blood collection for measurement of plasma AGP or propranolol were performed over time (days).
A dose response study showed that plasma AGP was elevated on day 2 in rats inoculated with S. aureus at 106, 107 or, 108 CFU regardless of implant status. Furthermore, AGP levels remained elevated on day 4 in rats inoculated with 107 or 108
CFUs of S. aureus. In contrast, significant increases in AGP were not detected in rats treated with vehicle or 103 CFU S. aureus. In the validation study, robust elevations in plasma AGP were detected on days 2 and 4 in S. aureus infected rats with or without
propranolol. The AUC levels for propranolol on days 2 and 4 were 493 ± 44 h × ng/mL and 334 ± 54 h × ng/mL, respectively), whereas in noninfected rats that received only propranolol, levels were 38 ± 11 h × ng/mL and 76 ± 16. h × ng/mL, respectively.
The high correlation between plasma propranolol and AGP demonstrated a direct impact of AGP on drug pharmacokinetics and pharmacodynamics. The results indicate that AGP is a reliable biomarker in this model of subclinical infection and should be considered for accurate data interpretation.
Successful implementation of automated blood sampling (ABS) into a telemetry instrumented canine cardiovascular model provides simultaneous cardiovascular assessment of novel compounds while collecting multiple blood samples for analysis of drug level, cytokines, and biomarkers. Purpose-bred
male Beagle dogs (n = 36) were instrumented with a dual-pressure telemetry transmitter and vascular access port. Modifications to acclimation practices, surgical procedures, and housing were required for implementation of ABS in our established cardiovascular canine telemetry colony.
These modifications have increased the use and reproducibility of the model by combining early pharmacokinetic and cardiovascular studies, thus achieving both refinement and reduction from a 3R perspective. In addition, the modified model can shorten timelines and reduce the compound requirement
in early stages of drug development. This telemetry–ABS model provides an efficient means to quickly identify potential effects on key cardiovascular parameters in a large animal species and to obtain a more complete pharmacokinetic–pharmacodynamic profile for discovery compounds.
Models of transient synovitis that can be controlled with antiinflammatory and analgesic drugs have been used to study pain amelioration. To this end, we aimed to determine the dose of intraarticularly administered E. coli LPS that induced signs of synovitis without systemic
signs in clinically healthy male castrated sheep (n = 14). In phase 1, a single dose of LPS (0.5, 1.0, 1.5, or 2.0 ng in a total volume of 0.5 mL) was administered into the right stifle joint. In phase 2, a dose of LPS (1.0 or 2.0 μg) in 0.3 mL was administered to 4 naïve sheep.
In phase 3, 4 sheep from phase 1 were inoculated after a 60 d washout period with either 0.5 or 1.0 μg of LPS. During the first 48 h after LPS administration, the following were performed: assessment of clinical parameters; scoring for lameness, pain on limb flexion, and local swelling;
and ultrasonography of the joints were performed. The doses tested during phase 1 produced subtle signs. During phase 2, mild to moderate lameness with no evidence of systemic signs occurred at both doses. In phase 3, clinical responses were similar between the 0.5- and 1-μg doses. Signs
of swelling were not observed at any time. Therefore, we consider the 0.5-μg to be the most appropriate for this model, because it was the lowest dose tested capable of causing lameness without signs of systemic inflammation in all animals.
Common marmosets (Callithrix jacchus) are a valuable research model for the study of neuroscience and the biologic impact of aging due to their adaptivity, physiologic characteristics, and ease of handling for experimental manipulations. Quantification of cortisol in hair provides
a noninvasive, retrospective biomarker of hypothalamics-pituitary-adrenal (HPA) axis activity and information on animal wellbeing, including responses to environmental and social stimuli. To obtain valid and reliable measurements of long-term HPA activity, we investigated the variability of
cortisol concentration in the hair depending on the body region of marmosets. Hair was collected from the back and tail of 9 adult common marmosets during annual health screenings (male n = 3; female n = 6) and these samples were analyzed for cortisol via methanol extraction
and enzyme immunoassay. We found that hair cortisol concentration differed between the tail and back regions, with the tail samples having a significantly higher cortisol concentration. These results indicate intraindividual and interindividual comparisons of hair cortisol concentration should
use hair obtained from the same body region in marmosets.
A clinical challenge to nearly every primate facility in North America is chronic idiopathic diarrhea (CID), the pathogenesis of which has yet to be fully elucidated. However, wild macaques appear resistant to CID, a trend that we observed in the free-ranging population of the Caribbean
Primate Research Center. The gastrointestinal microbiota has been shown to have a significant role in the pathogenesis of disease and in maintaining normal health and development of the gut. In humans, chronic diarrhea is associated with alteration of the gut microbiota, which has lower bacterial
diversity than does the microbiota of healthy humans. The current study was designed to describe and compare the fecal bacterial microbiota of healthy corralled, CID corralled, and healthy, free-ranging macaques. Fresh fecal samples were collected from healthy corralled (HC; n = 30)
and CID (n = 27) rhesus macaques and from healthy macaques from our free-ranging colony (HF; n = 43). We excluded macaques that had received antibiotics during the preceding 60 d (90 d for healthy animals). Bacterial DNA was extracted, and the V4 region of the 16S rRNA gene was
sequenced and compared with known databases. The relative abundance of Proteobacteria was higher in CID animals than HC animals, but otherwise few differences were found between these 2 groups. HF macaques were differentially enriched with Christensenellaceae and Helicobacter, which
are highly associated with a 'healthy' gut in humans, as compared to corralled animals, whereas CID animals were enriched with Proteobacteria, which are associated with dysbiosis in other species. These results indicate that environment has a greater influence than health status on the gut
microbiota. Furthermore, the current data provided targets for future studies on potential clinical interventions, such as probiotics and fecal transplants.
The use of percutaneous cranial implants in rhesus macaques (Macaca mulatta) has long been a valuable tool for neuroscience research. However, when treating and assessing these animals, veterinarians are required to make assumptions about diagnostic results due to a lack of research
into how these implants affect physiology. Microbial cultures of cranial implant sites show an abundance of colonizing bacteria, but whether these microbes affect animal health and wellbeing is poorly understood. In addition, microbial antibiotic resistance can present significant health concerns
for both the animals and the researchers. To help elucidate the relationship between percutaneous cranial implants and blood parameters, complete blood cell counts and serum chemistry results were assessed on 57 nonhuman primates at our institution from September 2001 to March 2017. Generalized
estimating equations were used to compare the results before and after an animal's first implant surgery. This modelling showed that cranial implants were a significant predictor of alterations in the number of neutrophils, lymphocytes, and red blood cells, and in the concentration of hemoglobin,
alkaline phosphatase, creatinine, calcium, phos- phorus, total protein, albumin, and globulin. Anaerobic and aerobic bacterial cultures were performed to identify bacteria associated with cranial implants. Staphylococcus spp., Streptococcus spp., and Corynebacterium spp. comprised
the majority of the aerobic bacterial isolates, while Fusobacterium spp., Peptostreptococcus spp. and Bacterioides fragilis comprised the majority of anaerobic bacterial isolates. Using a Pearson r correlation for statistical analysis, we assessed whether any of
these bacterial isolates developed antibiotic resistances over time. Cefazolin, the most frequently used antibiotic in monkeys in this study, was the only antimicrobial out of 41 agents tested to which bacteria developed resistance over time. These results indicate that percutaneous implants
are associated with a generalized inflammatory state, multiple bacterial species are present at the implant site, and these bacteria may contribute to the inflammatory response.
Aging of the immune system is characterized by the loss of naïve T-cells, increased inflammation, and immune function impairment. Chronic infection with cytomegalovirus is thought to play a role in age-related changes in immunity. Therefore, to assess the effect of pathogens such
as cytomegalovirus on the immune system, we determined lymphocyte populations and inflammatory markers over a 3-y period in captive, middle-age baboons, with various exposure to pathogens and shedding pressure. Groups included SPF (i.e., pathogen-negative; n = 14); large-group, conventionally
housed (CONV LG; pathogen- positive; n = 14), and small-group, conventionally housed (CONV SM; pathogen-positive; n = 7). All baboon groups showed a decrease in CD45RA+ CD28+ (i.e., naive) cells over time during middle age, but the rate of decline appeared faster in CONV LG baboons
than in the other groups. In addition, the reduction in CD45RA+ CD28+ cells in the CONV LG baboons coincided with higher IgG levels against baboon cytomegalovirus, increased serum cortisol concentration, and a greater inflammatory phenotype. The results of this project support a role for cytomegalovirus
infection in immune system alterations in middle-aged baboons.