A primary goal in preclinical animal research is respectful and responsible care aimed toward minimizing stress and discomfort while enhancing collection of accurate and reproducible scientific data. Researchers use hands-on clinical observations and measurements as part of routine
husbandry procedures or study protocols to monitor animal welfare. Although frequent assessments ensure the timely identification of animals with declining health, increased handling can result in additional stress on the animal and increased study variability. We investigated whether automated
alerting regarding changes in behavior and physiology can complement existing welfare assessments to improve the identification of animals in pain or distress. Using historical data collected from a diverse range of therapeutic models, we developed algorithms that detect changes in motion
and breathing rate frequently associated with sick animals but rare in healthy controls. To avoid introducing selec- tion bias, we evaluated the performance of these algorithms by using retrospective analysis of all studies occurring over a 31-d period in our vivarium. Analyses revealed that
the majority of the automated alerts occurred prior to or simultaneously with technicians' observations of declining health in animals. Additional analyses performed across the entire duration of 2 studies (animal models of rapid aging and lung metastasis) demonstrated the sensitivity, accuracy,
and utility of automated alerting for detecting unhealthy subjects and those eligible for humane endpoints. The percentage of alerts per total subject days ranged between 0% and 24%, depending on the animal model. Automated alerting effectively complements standard clinical observations to
enhance animal welfare and promote responsible scientific advancement.
Corynebacterium bovis is the causative agent of Corynebacterium-associated hyperkeratosis in immunocompromised mice. The resulting skin pathology can be profound and can be associated with severe wasting, making the animals unsuitable for research. Although the administration
of antibiotics is effective in resolving clinical symptoms, antibiotics do not eradicate the offending bacterium. Furthermore, antibiotic use may be contraindicated as it can affect tumor growth and is associated with Clostridioides difficile enterotoxemia in highly immunocompromised
murine strains. Lysins, which are lytic enzymes obtained from bacteriophages, are novel antimicrobial agents for treating bacterial diseases. The advantage of lysins are its target specificity, with minimal off-target complications that could affect the host or the biology of the engrafted
tumor. The aim of this study was to identify lysins active against C. bovis. Chemical activation of latent prophages by using mitomycin C in 3 C. bovis isolates did not cause bacteriophage induction as determined through plaque assays and transmission electron microscopy. As
an alternative approach, 8 lysins associated with other bacterial species, including those from the closely related species C. falsenii, were tested for their lytic action against C. bovis but were unsuccessful. These findings were congruent with the previously reported genomic
analysis of 21 C. bovis isolates, which failed to reveal bacteriophage sequences by using the PHAST and PHASTER web server tools. From these results, we suggest C. bovis is among those rare bacterial species devoid of lysogenic bacteriophages, thus making the identification of
C. bovis-specific lysins more challenging. However, C. bovis may be a useful model organism for studying the effects of antiphage systems.
Detection methods for Demodex musculi were historically unreliable, and testing was rarely performed because its prevalence in laboratory mice was underestimated. Although infestations are unapparent in most mouse strains, D. musculi burdens are higher and clinical signs
detected in various immunodeficient strains. The parasite's influence on the immune system of immunocompetent mice is unknown. We characterized mite burden (immunocompetent and immunodeficient strains) and immunologic changes (immunocompetent strains only) in naïve Swiss Webster (SW;
outbred), C57BL/6NCrl (B6; Th1 responder), BALB/cAnNCrl (BALB/c; Th2 responder) and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG; immunodeficient) mice after exposure to Demodex-infested NSG mice. Infested and uninfested age-matched mice of each strain (n
= 5) were euthanized 14, 28, 56, and 112 d after exposure. Mite burden was determined through PCR analysis and skin histopathology; B-cell and CD4+ and CD8+ T-cell counts and activation states (CD25 and CD69) were evaluated by using flow cytometry; CBC counts were performed;
and serum IgE levels were measured by ELISA. Mite burden and PCR copy number correlated in NSG mice, which had the highest mite burden, but not in immunocompetent strains. Infested immunocompetent animals developed diffuse alopecia by day 112, and both BALB/c and C57BL/6 mice had significantly
increased IgE levels. These findings aligned with the skewed Th1 or Th2 immunophenotype of each strain. BALB/c mice mounted the most effective host response, resulting in the lowest mite burden of all immunocompetent strains at 112 d after infestation without treatment. Clinically significant
hematologic abnormalities were absent and immunophenotype was unaltered in immunocompetent animals. Topical treat- ment with imidacloprid–moxidectin (weekly for 8 wk) was effective at eradicating mites by early as 7 d after treatment. IgE levels decreased substantially in infested BALB/c
mice after treatment. These findings demonstrate a need for D. musculi surveillance in mouse colonies, because the infestation may influence the use of infested mice in select studies.
PKM2 is a pyruvate kinase isoform that is the final and rate-limiting step in aerobic glycolysis in tumor cells. Increased expression of PKM2 has been detected in human cancers. The present study examined the expression of PKM2 in canine mammary tumors and assessed its prognostic significance.
Paraffin sections of 5 adenomas, 67 carcinomas, and 5 samples of nonneoplastic hyperplasia from 77 dogs, aged 8 to 18 y, were evaluated. Significantly higher levels of PKM2 were detected among the carcinomas compared with all other tissues examined. The level of PKM2 expression in carcinoma
tissue correlated positively with the tumor grade. These findings suggest that PKM2 may have a similar role in canine mammary tumors to its role in human breast cancer. As such, canine mammary tumors may be useful models for studies focused on the progression of human neoplastic disease.
To determine the incidence of ex vivo incompatibility between ovine maternal RBCs and fetal plasma, we performed cross-matching of blood samples from ewes and from lambs delivered by cesarean section. Twenty-one date-mated singleton pregnant Merino ewes were anesthetized for cesarean
delivery of the fetus. At the time of delivery, paired maternal and fetal blood samples were collected and subsequently separated for storage as packed red blood cells and fresh frozen plasma. Gel column major cross matching was performed within 2 wk. All fetus-dam crossmatches were major
crossmatches, combining fetal (recipient) plasma with dam (donor) RBCs. 172 individual dam-dam cross matches were performed. Two of these tests were incompatible (1.2%). In addition, 19 fetal blood samples collected immediately after cesarean delivery were crossmatched with 21 maternal samples
to generate 174 maternal-fetal individual cross matches. No maternal-fetal incompatibility reactions were observed. The results of this study demonstrate that all maternal donors and fetal recipients were compatible. In addition, the incidence of an incompatible crossmatch between adult ewes
was 1.2%. These data suggest that lambs may not be born with antibodies against other blood types, but rather may acquire such antibodies at some time during early life. In addition, these data suggest the risk of incompatibility reactions between ewes of a similar breed and from a single
farm of origin is very low.
The unexpected seroconversion of sentinel mice in our facility to murine T lymphotrophic virus (MTLV) positivity led to our identification of a novel murine astrovirus that we designated murine astrovirus 2 (MuAstV-2). During our investigation, MuAstV-2 was found to be a contaminant
of the T helper cell line (D10. G4.1) that was used to generate the MTLV antigen that we included in the multiplex fluorometric immunoassay (MFIA) that we used for sentinel screening. We eventually determined that cross-reactivity with the astrovirus generated a positive result in the MTLV
assay. A confirmatory immunofluorometric assay (IFA) using the same MTLV-infected cell line yielded a similar result. However, the use of antigen prepared from MTLV-infected neonatal mouse thymus did not reproduce a positive result, leading us to suspect that the seroreactivity we had observed
was not due to infection with MTLV. A mouse antibody production test showed that mice inoculated with naïve D10. G4.1 cells and their contact sentinels tested positive for MTLV using cell-line generated antigen, but tested negative in assays using MTLV antigen produced in mice. Metagenomic
analysis was subsequently used to identify MuAstV-2 in feces from 2 sentinel mice that had recently seroconverted to MTLV. Two closely related astrovirus sequences (99.6% capsid identity) were obtained and shared 95% capsid amino acid identity with the MuAstV-2 virus sequenced from the D10.
G4.1 cell line. These viruses are highly divergent from previously identified murine astroviruses, displaying <30% capsid identity, yet were closely related to murine astrovirus 2 (85% capsid identity), which had recently been isolated from feral mice in New York City. A MuAstV-2 specific
PCR assay was developed and used to eradicate MuAstV-2 from the infected colony using a test and cull strategy. The newly identified MuAstV2 readily transmits to immunocompetent mouse strains by fecal-oral exposure, but fails to infect NOD-Prkdcem26Cd52Il2rgem26Cd22/NjuCrl
(NCG) mice, which have significantly impaired adaptive and innate immune systems. Neither immunocompetent nor immunodeficient mice showed any astrovirus-associated pathology. MuAstV-2 may provide a valuable model for the study of specific aspects of astrovirus pathogenesis and virus-host interactions.
During a 6-mo period, two 5-6 mo old female chinchillas (Chinchilla lanigera) were examined at the University of Colorado Anschutz Medical Campus after the discovery of firm, nonmobile masses in the left ventral cervical and left axillary region. Other than these findings and
mild weight loss, both chinchillas' physical exams were normal. Bloodwork revealed an inflammatory leukogram characterized by leukocytosis, toxic neutrophils, lymphopenia, and monocytosis with mild, nonregenerative anemia. At necropsy, both masses were identified as abscesses. Streptococcus
equi, subspecies zooepidemicus (S. zooepidemicus) was isolated in pure culture. Histology of the lungs, liver, spleen, and kidneys showed a marked increase in the numbers of both polymorphonuclear leukocytes and lymphocytes. Both animals were deemed unsuitable for research
and were euthanized under isoflurane anesthesia by an intracardiac injection of pentobarbital sodium solution. S. zooepidemicus is an opportunistic, commensal organism found in the upper respiratory tract of horses. This organism has been documented to cause disease in other species
and is zoonotic. Infections in humans have been reported, resulting in glomerulonephritis, endocarditis, septic arthritis, osteomyelitis, meningitis, and death. To aid in diagnosis and prospective surveillance of this bacteria, oral and nasal swabs were collected from the remaining cohort
of chinchillas, and a qPCR screening assay was implemented. Within 12 mo, 4 of 41 additional females tested positive by culture or qPCR, resulting in a disease prevalence of 14% (6 of 43). However, only 2 of the additional 4 S. zooepidemicus positive animals developed clinical signs.
The potential for the spread of infection, zoonosis, and adverse effects on research demonstrate that surveillance for S. zooepidemicus should be considered in a biomedical research environment.
Perioperative complications and deaths occurred while developing a novel surgical model of pediatric kyphosis in 10 to 12 kg male farm-raised Yorkshire piglets. All piglets appeared clinically normal preoperatively. Intraoperative complications included tachycardia, respiratory acidosis,
and death. Postoperatively, clinical signs included posterior paresis, head pressing, prolonged anesthetic recovery, difficulty rising, and sudden death. Necropsies were performed on all piglets. Some morbidity and mortality were accurately attributed to the spinal surgery. However, the index
piglet for this report died suddenly approximately 16 to 18 h after surgery. Necropsy of this animal revealed clear, serosanguineous pleural and pericardial effusions along with myocardial hemorrhage and hepatic lesions, consistent with mulberry heart disease and hepatosis dietetica, respectively.
Serum vitamin E and selenium levels from this animal were below age-specific lab reference ranges. Clinical signs of vitamin E and selenium deficiency are most common in fast-growing weaner piglets. The added stress of major surgery may exacerbate the condition in young piglets. Resolution
of morbidity and mortality in both juvenile and adult pigs occurred upon the use of an alternate vendor able to provide feed analyses meeting industry standards, although serum levels of vitamin E and selenium in similar ages and breed of swine were still occasionally slightly below reference
ranges.
For many years, the University of Chicago administered sulfamethoxazole-trimethoprim sulfate (SMZ-TMP) oral suspension to select immunocompromised mouse colonies via the drinking water. In 2014, SMZ-TMP oral suspension was placed on back-order and medicated diet with a different sulfonamide,
sulfadiazine-trimethoprim (SDZ-TMP) was used as a replacement. Months after this transition, sentinel mice from the same room as one of the remaining immunocompromised colonies on this diet were found dead or appeared sick. Necropsies revealed cardiomegaly, and histology confirmed myocardial
fibrosis in the first 4 sentinel mice examined, consistent with cardiomyopathy. Subsequent sequential monitoring of 2 sentinel mice via echocardiography showed their progression toward decreased cardiac function. Investigation of the housing room revealed that the sentinel mice had been accidently
placed on SDZ-TMP diet upon entering the colony housing room. This case report describes cardiomyopathy in 6 ICR mice after long term consumption of SDZ-TMP medicated feed.
Immunodeficient rats are valuable in transplantation studies, but are vulnerable to infection from opportunistic organisms such as fungi. Immunodeficient Rag1- and Il2rg-deficient (RRG) rats housed at our institution presented with dark, proliferative, keratinized dermal growths. Histologic
and PCR results indicated that the predominant organism associated with these lesions was fungus from the family Mucoraceae, mostly of the genus Rhizopus. The Mucoraceae family of fungi are environmental saprophytes and are often found in rodent bedding. These fungi can
cause invasive opportunistic infections in immunosuppressed humans and animals. We discuss husbandry practices for immunosuppressed rodents with a focus on controlling fungal contaminants.