We showed previously that inflammatory mediators, including IL8, in intervertebral disc tissues from patients with discogenic back pain may play a key role in back pain. To investigate the molecular mechanism of IL8 signaling in back pain, we generated a mouse model that conditionally
expresses human (h) IL8. We hypothesized that hIL8 levels affect mouse activity and function. Briefly, hIL8 cDNA was inserted into the pCALL2 plasmid, linearized, and injected into mouse embryos. Resulting pCALL2–hIL8 mice were then bred with GDF5–Cre mice to express the transgene
in cartilage and intervertebral disc (IVD) tissues. Functional capacities including nest-making and other natural behaviors were measured. Both male and female mice expressing hIL8 showed lower nesting scores than did littermates that did not express hIL8 (n = 14 to 16 per group). At
28 wk of age, mice expressing hIL8 (n = 35) spent more time immobile and eating during each night than littermate controls (n = 33). Furthermore, hIL8-expressing mice traveled shorter distances and at a lower average speed than littermate controls. Thus, in an initial effort
to investigate the relationship between this chemokine and mouse behavior, we have documented changes in normal activities in mice conditionally expressing hIL8.
Helicobacter bilis (Hb) causes hepatitis in some strains of inbred mice. The current study confirmed that Hb directly causes portal hepatitis in outbred gnotobiotic Swiss Webster (SW) mice, as we previously reported for conventional SW mice. Hbmonoassociated SW mice also developed
mild enterocolitis, expanded gut-associated lymphoid tissue (GALT), and tertiary lymphoid tissue in the lower bowel. At 1 and 10 mo after infection, Hb-induced GALT hyperplasia exhibited well-organized, ectopic germinal centers with increased mononuclear cell apoptosis, MHC class II antigen
presentation, and pronounced endothelial venule formation, consistent with features of tertiary lymphoid tissue. In the lower bowel, Hb induced mainly B220+ cells as well as CD4+ IL17+, CD4+ IFNγ+, and CD4+ FoxP3+
regulatory T cells and significantly increased IL10 mRNA expression. This gnotobiotic model confirmed that Hb causes portal hepatitis in outbred SW mice but stimulated GALT with an antiinflammatory bias. Because Hb had both anti- and proinflammatory effects on GALT, it should be considered
a 'pathosymbiont provocateur' and merits further evaluation in mouse models of human disease.
Cell therapy has shown potential in the field of peripheral nerve repair, and research using rodents is a critical and essential step toward clinical development of this approach. Traditionally, most experimental peripheral nerve injuries are conducted in inbred Lewis or outbred Sprague–Dawley
strains. However, transplantation of xenogeneic cells such as human-derived cells typically triggers rejection in these animals. An alternative approach is to use immunodeficient animals, such as athymic nude rats. The lack of functional T cells in these animals renders them more accommodating
to foreign cells from a different host. Currently, no literature exists regarding sensorimotor behavioral assessment of nude rats after peripheral nerve injury. To this end, we compared the functional recovery during a 6-wk period of behavioral testing of Lewis and nude rats after unilateral
sciatic nerve crushing injury. Three sensorimotor behavioral assessments were performed weekly: a ladder rungwalking task to assess slip ratio and cross duration, von Frey nociception testing to determine the paw withdrawal threshold thus monitoring the regaining of sensory function, and sciatic
functional index evaluation to monitor the recovery of integrated motor function. Both strains demonstrated significant sensory and motor deficits in the first week after injury, with a slight regain of sensory function, reduced slip ratio, and increased sciatic functional index starting at
2 wk. No significance difference existed between nude and Lewis rats in their recovery courses. We conclude that nude rats are a suitable model for behavioral training and assessment for cell transplantation studies in peripheral nerve injury and repair.
Pathologic Lesions of the Budgett Frog (Lepidobatrachus laevis), an Emerging Laboratory Animal Model
Lepidobatrachus laevis, commonly called the Budgett frog, is a member of the horned frog family (Ceratophryidae), which has become increasingly popular among amphibian hobbyists. L. laevis is also used in biologic research on embryonic development, providing a novel model
species for the study of organogenesis, regeneration, evolution, and biologic scaling. However, little scientific literature details disease processes or histologic lesions in this species. Our objective was to describe spontaneous pathologic lesions in L. laevis to identify disease
phenotypes. We performed a retrospective analysis of 14 captive L. laevis frogs (wild-caught and captive-bred), necropsied at the NC State University College of Veterinary Medicine between 2008 and 2018. The majority of frogs exhibited renal changes, including varying combinations of
tubular epithelial binucleation, karyomegaly, and cytoplasmic vacuolation; polycystic kidney disease; and renal carcinoma. Many of the renal changes are reminiscent of a condition described in Japanese (Bufo japonicus) and Chinese (Bufo raddei) toad hybrids that progresses from
tubular epithelial atypia and tubular dilation to polycystic kidney disease to renal carcinoma. A second common finding was variably sized, randomly distributed bile duct clusters (biliary proliferation). Other noteworthy findings included regional or generalized edema, intestinal adenocarcinoma,
aspiration pneumonia, and parasitism. This retrospective analysis is the first description of histologic lesions identified in captive L. laevis populations, providing new insight into spontaneous disease processes occurring in this species for use in disease diagnosis and clinical
management.
Knee osteoarthritis is one of the most common causes of chronic pain worldwide, and several animal models have been developed to investigate disease mechanisms and treatments to combat associated morbidities. Here we describe a novel method for assessment of locomotor pain behavior
in Yucatan swine. We used monosodium iodoacetate (MIA) to induce osteoarthritis in the hindlimb knee, and then conducted live observation, quantitative gait analysis, and quantitative weight-bearing stance analysis. We used these methods to test the hypothesis that locomotor pain behaviors
after osteoarthritis induction would be detected by multiparameter quantitation for at least 12 wk in a novel large animal model of osteoarthritis. MIA-induced knee osteoarthritis produced lameness quantifiable by all measurement techniques, with onset at 2 to 4 wk and persistence until the
conclusion of the study at 12 wk. Both live observation and gait analysis of kinetic parameters identified mild and moderate osteoarthritis phenotypes corresponding to a binary dose relationship. Quantitative stance analysis demonstrated the greatest sensitivity, discriminating between mild
osteoarthritis states induced by 1.2 and 4.0 mg MIA, with stability of expression for as long as 12 wk. The multiparameter quantitation used in our study allowed rejection of the null hypothesis. This large animal model of quantitative locomotor pain resulting from MIA-induced osteoarthritis
may support the assessment of new analgesic strategies for human knee osteoarthritis.
Computed tomographic myocardial perfusion (CTP) imaging is a tool that shows promise in emergent settings for defining the hemodynamic significance of coronary artery disease. In this study, we examined the accuracy with which the transmural perfusion ratio (TPR) derived through semiautomated
CTP analysis reflected segmental perfusion defects associated with intermediate coronary artery lesions in swine. Lesions (diameter stenosis, 65% ± 11%) of the left anterior descending coronary artery (LAD) were created in 10 anesthetized female swine (weight, 47.5 ± 1.9 kg)
by using a pneumatic occlusion device implanted on the LAD. Occluder inflation pressures were adjusted to maintain fractional flow reserve (FFR, 74.3 ± 1.7) during adenosine infusion (140ug/kg/min). Static CTP imaging using a stress-rest protocol and segmental TPR derived from semiautomated
CT perfusion software was compared with microsphere-derived TPR (mTPR) by using a 16-segment model and polar mapping. Intermediate LAD stenosis was verified through multiplanar coronary CT angiography. Receiver operating characteristic analysis identified an optimal threshold for segmental
perfusion defects for intermediate lesions (TPR threshold, ≤0.80); however, the area under the receiver operating characteristic curve was 0.58, and the overall accuracy was 63%. At this threshold, the sensitivity and specificity were 65% and 61%, and the positive and negative predictive
values were 61% and 65%, respectively. Although CTP–TPR illustrated segmental perfusion defects with intermediate lesions, the disparity between CTP–TPR and mTPR measures of segmental perfusion suggests that further advances in analysis software may be necessary to improve the
localization of segmental defects for intermediated lesions.
An increased incidence of dilated cardiomyopathy and atrial thrombosis was noted in a breeding colony of BALB/c mice deficient in IL4 receptor α. The condition affected mice of both sexes and of various ages, and extensive testing (microbiology, serology, histopathology) failed
to ascertain the cause. Transmission electron microscopy of heart samples showed structural defects in the myocardial intercalated disks, characterized by unorganized and heavily convoluted arrangement with lower density and less prominent desmosomes and adherens junctions, widening of the
intercellular space, myofibrillar lysis adjacent to intercalated disks, occasional sarcomere lysis with marked myofiber degeneration, vacuolation, accumulation of cell debris, and myelin figures. The intercalated disk contains cell adhesion molecules that form cell junctions, allowing contraction
coupling of cardiomyocytes and the electrical and mechanical connection between cardiac fibers. Thus, defects at this level result in poor myocardial contraction, intracardiac blood stagnation, and consequently cardiac dilation with clinical signs of heart failure. The background strain or,
potentially, the Cre–loxP-mediated recombination system used to create these mice may have contributed to the elevated incidence of cardiomyopathy and atrial thrombosis in this colony. Due to the backcrossing breeding scheme used, we cannot discount the emergence and colonywide dissemination
of a spontaneous mutation that affects the intercalated disk. This report underscores the importance of carefully monitoring genetically modified mice colonies for unexpected phenotypes that may result from spontaneous or unintended mutations or enhanced strain background pathology.
Clostridioides difficile is an enteric pathogen that can cause significant clinical disease in both humans and animals. However, clinical disease arises most commonly after treatment with broad-spectrum antibiotics. The organism's ability to cause naturally occurring disease
in mice is rare, and little is known about its clinical significance in highly immunocompromised mice. We report on 2 outbreaks of diarrhea associated with C. difficile in mice. In outbreak 1, 182 of approximately 2, 400 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
(NSG) and related strains of mice became clinically ill after cessation of a 14-d course of 0.12% amoxicillin feed to control an increase in clinical signs associated with Corynebacterium bovis infection. Most mice had been engrafted with human tumors; the remainder were experimentally
naïve. Affected animals exhibited 1 of 3 clinical syndromes: 1) peracute death; 2) severe diarrhea leading to euthanasia or death; or 3) mild to moderate diarrhea followed by recovery. A given cage could contain both affected and unaffected mice. Outbreak 2 involved a small breeding colony
(approximately 50 mice) of NOD. CB17-Prkdcscid/NCrCrl (NOD-scid) mice that had not received antibiotics or experimental manipulations. In both outbreaks, C. difficile was isolated, and toxins A and B were detected in intestinal content or feces. Histopathologic
lesions highly suggestive of C. difficile enterotoxemia included fibrinonecrotizing and neutrophilic typhlocolitis with characteristic 'volcano' erosions or pseudomembrane formation. Genomic analysis of 4 isolates (3 from outbreak 1 and 1 from outbreak 2) revealed that these isolates
were closely related to a pathogenic human isolate, CD 196. To our knowledge, this report is the first to describe naturally occurring outbreaks of C. difficile-associated typhlocolitis with significant morbidity and mortality in highly immunocompromised strains of mice.
Aged cotton rats (Sigmodon hispidus) from an established breeding colony displayed signs of spontaneous exophthalmos. Of a total of 118 colony animals that were older than 6 mo of age, 37 (31%) displayed signs of exophthalmos. These rats were clinically healthy and had no other
signs of disease. Ophthalmic exams, molecular and microbiologic testing, and histopa- thology were performed to determine the cause of the exophthalmos and to provide appropriate treatment. Environmental monitoring records were also reviewed for vivarium rooms in which the cotton rats were
housed. Histopathology findings supported that the exophthalmos in these cotton rats was secondary to retro-orbital thrombosis associated with cardiomyopathy. The exophthalmic eyes were treated by either removal of the affected eye (enucleation) or surgical closure of the eyelids (temporary
tarsorraphy). Enucleation of the exophthalmic eye was the best intervention for these aged cotton rats. These findings demonstrate the potential for a high incidence of ocular problems occurring secondary to cardiomyopathy in aged cotton rats. Enucleation as a therapeutic intervention for
exophthalmic eyes in aged cotton rats prolongs the morbidity-free time span during which these aged animals can be used experimentally.
Sarcocystosis, presumably caused by Sarcocystis cuniculi, was diagnosed in 2 purpose-bred, SPF Dutch belted laboratory rabbits from a class A breeder. The rabbits were purchased by a research facility and conventionally housed individually in stainless-steel suspended caging.
At necropsy and tissue harvest, gross lesions were not observed in the muscles. Upon histologic examination, sarcocysts were found in the eyelid of one rabbit and the tongue of the other. To our knowledge, this report is the first description of infection by Sarcocystis spp. in laboratory
rabbits.