To best promote animal wellbeing and the efficacy of biomedical models, scientific, husbandry, and veterinary professionals must consider the mechanisms, influences, and outcomes of rodent thermoregulation in contemporary research environments. Over the last 2 decades, numerous studies
have shown that laboratory mice and rats prefer temperatures that are several degrees warmer than the environments in which they typically are housed within biomedical facilities. Physiologic changes to rodents that are cage-housed under standard temperatures (20 to 26 °C) are attributed
to 'cold stress' and include alterations in metabolism, cardiovascular parameters, respiration, and immunologic function. This review article describes common behavioral and physiologic adaptations of laboratory mice and rats to cold stress within modern vivaria, with emphasis on environmental
enrichment and effects of anesthesia and procedural support efforts. In addition, potential interventions and outcomes for rodents are presented, relative to the importance of repeating and reproducing experiments involving laboratory rodent research models of human disease.
The types of changes in physical appearance and behavior that occur in elderly people similarly develop in elderly animals. Signs and symptoms that might cause concern in younger people or mice may be normal in their elderly but generally healthy counterparts. Although numerous scoring
methods have been developed to assess rodent health, these systems were often designed for young adults used in specific types of research, such as cancer or neurologic studies, and therefore may be suboptimal for assessing aging rodents. Approaches known as frailty assessments provide a global
evaluation of the health of aged mice, rats, and people, and mouse frailty scores correlate well with the likelihood of death. Complementing frailty assessment, prediction of imminent death in aged mice can often be accomplished by focusing on 2 objective parameters—body weight and temperature.
Before they die, many (but not all) mice develop marked reductions in body weight and temperature, thus providing signs that close monitoring, intervention, or preemptive euthanasia may be necessary. Timely preemptive euthanasia allows antemortem collection of data and samples that would be
lost if spontaneous death occurred; preemptive euthanasia also limits terminal suffering. These approaches to monitoring declining health and predicting death in elderly research mice can aid in establishing and implementing timely interventions that both benefit the research and reduce antemortem suffering.
The gastrointestinal microbiota (GM) plays a fundamental role in health and disease and contributes to the bidirectional signaling between the gastrointestinal system and brain. The direct line of communication between these organ systems is through the vagus nerve. Therefore, vagal
nerve stimulation (VNS), a commonly used technique for multiple disorders, has potential to modulate the enteric microbiota, enabling investigation and possibly treatment of numerous neurologic disorders in which the microbiota has been linked with disease. Here we investigate the effect of
VNS in a mouse model of amyotrophic lateral sclerosis (ALS). B6SJL-Tg(SOD1*G93A)dl1Gur (SOD1dl) and wildtype mice underwent ventral neck surgery to access the vagus nerve. During surgery, the experimental group received 1 h of VNS, whereas the sham group
underwent 1 h of sham treatment. The third (control) group did not undergo any surgical manipulation. Fecal samples were collected before surgery and at 8 d after the initial collection. Microbial DNA was sequenced to determine the GM profiles at both time points. GM profiles did not differ
between genotypes at either the initial or end point. In addition, VNS did not alter GM populations, according to the parameters chosen in this study, indicating that this short intraoperative treatment is safe and has no lasting effects on the GM. Future studies are warranted to determine
whether different stimulation parameters or chronic use of VNS affect GM profiles.
Pulmonary arterial hypertension (PAH) is a life-threatening disease with higher incidence in HIV-infected compared with noninfected patients. SIV-infected NHP develop clinical manifestations of HIV infection, including PAH. To understand the pathogenesis of PAH and determine the relationship
between hemodynamic changes and clinical characteristics associated with SIV infection, we performed right heart catheterization and echocardiographic imaging of 21 rhesus macaques before and after SIV infection. Between 6 and 12 mo after infection, 11 of the 21 animals had elevated mean pulmonary
arterial pressure (mPAP; greater than 25 mm Hg). RV involvement was evident as increased RV glucose uptake in PAH+ macaques on positron emission tomography–coupled CT compared with uninfected animals. RV and pulmonary vascular collagen deposition were elevated in PAH+
animals. At 12 mo after infection, 6 of the 21 macaques (28.6%) exhibited continued increase in mPAP (progressive PAH), whereas 5 animals (23.8%) had reduced pressure (transient PAH). SIV infection of rhesus macaques led to 3 distinct outcomes with regard to hemodynamic function. Hemodynamic
alterations correlated with specific inflammatory profiles and increased RV and pulmonary arterial fibrosis but not with viral load, sex, or CD4+ T-cell levels. This model of a natural cause of PAH provides insight into disease pathways that are important for the development of novel therapeutic targets.
System for Scoring Severity of Acute Radiation Syndrome Response in Rhesus Macaques (Macaca mulatta)
We developed a clinical assessment tool for use in an NHP radiation model to 1) quantify severity responses for subsyndromes of the acute radiation syndrome (ARS; that is, hematopoietic and others) and 2) identify animals that required enhanced monitoring. Our assessment tool was based
primarily on the MEdical TREatment ProtocOLs for Radiation Accident Victims (METREPOL) scoring system but was adapted for NHP to include additional indices (for example, behaviors) for use in NHP studies involving limited medical intervention. Male (n = 16) and female (n = 12)
rhesus macaques (Macaca mulatta; 5 groups: sham and 1.0, 3.5, 6.5, and 8.5 Gy; n = 6 per group) received sham- or bilateral 60Co γ-irradiation at approximately 0.6 Gy/mn. Clinical signs of ARS and blood analysis were obtained before and serially for clinical
assessment during the period of 6 h to 60 d after sham or 60Co irradiation. Minimal supportive care (that is, supplemental nutrition, subcutaneous fluid, loperamide, acetaminophen, and topical antibiotic ointment) was prescribed based on clinical observations. Results from
clinical signs and assays for assessment of relevant organ systems in individual animals were stratified into ARS severity scores of normal (0), mild (1), moderate (2), and severe (3 or 4). Individual NHP were scored for maximal subsyndrome ARS severity in multiple organ systems by using the
proposed ARS scoring system to obtain an overall ARS response category. One NHP died unexpectedly. The multiple-parameter ARS severity scoring tool aided in the identification of animals in the high-dose (6.5 and 8.5 Gy) groups that required enhanced monitoring.
Here we report a case of severe growth retardation and neurologic abnormalities in a female gray mouse lemur (Microcebus murinus), a small NHP species for which the genomic sequence recently became available. The female lemur we present here died on postnatal day 125. This lemur
had impaired development of motor skills and showed severe ataxia and tremors. In addition, hearing seemed normal whereas ophthalmic examination revealed incipient bilateral cataracts, abnormal pigmentation in the lens of the left eye, and a missing optokinetic nystagmus, which indicated impaired
vision. Most prominently, the lemur showed severe growth retardation. Necropsy revealed maldevelopment of the left reproductive organs and unilateral dilation of the right lateral ventricle, which was confirmed on brain MRI. Brain histology further revealed large, bilateral areas of vacuolation
within the brainstem, but immunohistochemistry indicated no sign of pathologic prion protein deposition. Full genomic sequencing of the lemur revealed a probably pathologic mutation in LARGE2 of the LARGE gene family, which has been associated with congenital muscular dystrophies. However,
potentially functional mutations in other genes were also present. The observed behavioral and motor signs in the presented animal might have been linked to spongiform degeneration and resulting brainstem dysfunction and progressive muscle weakness. The macroscopic developmental abnormalities and ophthalmic findings might be genetic in origin and linked to the mutation in LARGE2.
An adult rhesus macaque developed seizures after the induction of ischemic stroke. Initially, on the day of surgery, a focal ischemic lesion was present exclusively in the right caudate nucleus. By 48 h after stroke induction, the lesion had extended into the putamen, when a seizure
was observed. Our report highlights the temporal changes in infarction of unilateral basal ganglia after acute stroke and the accompanying clinical symptoms. This unusual case may provide additional information regarding the involvement of the basal ganglia in seizures, given that prior case
reports and studies usually have not described the temporal and spatial evolution of the lesion before clinical symptoms emerge.