Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus
maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RCAN1 (Tg-RCAN1TG). We found no difference
in fecal corticosterone levels of RCAN1-knockout mice and their wildtype littermates. As expected, we found differences between sexes in fecal corticosterone levels. In addition, we found higher levels of excreted corticosterone in Tg-RCAN1TG female mice as compared
with female wildtype mice. Our data indicate normal diurnal corticosterone production in RCAN1 mutant mice and do not suggest a causal role in either the cognitive or anxiety phenotypes exhibited by RCAN1-knockout mice.
The Perdido Key beach mouse (Peromyscus poliontus trissyllepsis) is an endangered mammal indigenous to the panhandle beaches of Northwest Florida. A captive 3.5-y-old female mouse was evaluated because of severe pruritus, diffuse alopecia, skin reddening, and ulcerations over
the dorsum of her body. Initial skin biopsy of the affected area suggested bacterial dermatitis but was inconclusive. Despite empiric antibiotic, anthelmintic, and antihistamine treatments, she continued to decline and developed severe ulcerations over the majority of her body. Postmortem
histopathologic evaluation led to a tentative diagnosis of epitheliotropic lymphoma, suggestive of a mycosis fungoides T-cell–type cutaneous lymphoma. However, immunohistochemistry results challenged this diagnosis, indicating that the lesion was actually an epidermotropic B-cell lymphoma.
Spontaneous cutaneous B-cell lymphomas are rare in rodents and had not previously been reported to occur in Perdido Key beach mice. This case report provides initial evidence that the Perdido Key beach mouse is susceptible to cutaneous B-cell lymphoma.
We present a new perfusion system and surgical technique for simultaneous perfusion of 2 tissue-isolated human cancer xenografts in nude rats by using donor blood that preserves a continuous flow. Adult, athymic nude rats (Hsd:RH-Foxn1rnu) were implanted with HeLa
human cervical or HT29 colon adenocarcinomas and grown as tissue-isolated xenografts. When tumors reached an estimated weight of 5 to 6 g, rats were prepared for perfusion with donor blood and arteriovenous measurements. The surgical procedure required approximately 20 min to complete for
each tumor, and tumors were perfused for a period of 150 min. Results showed that tumor venous blood flow, glucose uptake, lactic acid release, O2 uptake and CO2 production, uptake of total fatty acid and linoleic acid and conversion to the mitogen 13-HODE, cAMP levels,
and activation of several marker kinases were all well within the normal physiologic, metabolic, and signaling parameters characteristic of individually perfused xenografts. This new perfusion system and technique reduced procedure time by more than 50%. These findings demonstrate that 2 human
tumors can be perfused simultaneously in situ or ex vivo by using either rodent or human blood and suggest that the system may also be adapted for use in the dual perfusion of other organs. Advantages of this dual perfusion technique include decreased anesthesia time, decreased surgical manipulation,
and increased efficiency, thereby potentially reducing the numbers of laboratory animals required for scientific investigations.
Excessive lipid accumulation within hepatocytes, or hepatic steatosis, is the pathognominic feature of nonalcoholic fatty liver disease (NAFLD), a disease associated with insulin resistance and obesity. Low-carbohydrate diets (LCD) improve these conditions and were implemented in this
study to potentially attenuate hepatic steatosis in hypercholesterolemic guinea pigs. Male guinea pigs (n = 10 per group) were randomly assigned to consume high cholesterol (0.25 g/100 g) in either a LCD or a high-carbohydrate diet (HCD) for 12 wk. As compared with HCD, plasma LDL cholesterol
was lower and plasma triglycerides were higher in animals fed the LCD diet, with no differences in plasma free fatty acids or glucose. The most prominent finding was a 40% increase in liver weight in guinea pigs fed the LCD diet despite no differences in hepatic cholesterol or triglycerides
between the LCD and the HCD groups. Regardless of diet, all livers had severe hepatic steatosis on histologic examination. Regression analysis suggested that liver weight was independent of body weight and liver mass was independent of hepatic lipid content. LCD livers had more proliferating
hepatocytes than did HCD livers, suggesting that in the context of cholesterol-induced hepatic steatosis, dietary car- bohydrate restriction enhances liver cell proliferation.
To understand the structure–function relationship in the postinfarcted myocardium in rabbits, we induced cardiac ischemia by ligating the left circumflex coronary artery. Sham controls underwent thoracotomy only. At 7 and 30 d after ligation, cardiac MRI was conducted by using
pulse-oxymetry–gated cine acquisition to provide complete phases of the heartbeat. The rabbits were anesthetized under 1.5% isoflurane ventilation, and ultrafast techniques made breath-hold 3D coverage in different cardiac axes feasible. Viability imaging was performed after intravenous
injection of 0.15 mmol/kg gadolinium to assess the extent of infarction. Data (n ≥ 6) are presented as mean ± SEM and analyzed by ANOVA and ANCOVA. In postligation rabbits, end-systolic (mean ± SEM, 2.3 ± 0.3 mL) and end-diastolic (4.2 ± 0.4 mL) volumes
were increased compared with preligation values (end-systolic, 1.1 ± 0.1 mL; end-diastolic, 2.98 ± 0.2 mL). Ejection fraction was influenced adversely by the presence of scar tissue at both 7 and 30 d after ligation and apparently nonlinear with the heart rate. Cardiac force
was increased in the basal region in both end-systole and end-diastole in postligation hearts but progressively decreased toward the apex. Late gadolinium enhancement delineated 15.2 ± 5.8% myocardial infarction at 7 d after ligation and 14.5 ± 5.8% at 30 d, with limited wall
motion and wall thinness. Compensatory wall thickening was present in the basal region when compared with that in preligation hearts. MRI offers detailed spatial resolution and tissue characterization after myocardial infarction.
An osteosarcoma developed in the tarsal joint region involving the distal tibia of a domestic rabbit (Oryctolagus cuniculus). Micrometastases were present in the lungs. Histologically the tumor was composed of ovoid to short-spindle cells with abundant giant cells, producing
irregular islands of osteoids. The tumor cells were immunopositive with antiosteocalcin monoclonal antibody, consistent with their derivation from osteoblasts. According to review of 10 published cases, productive osteoblasic osteosarcoma is the most common bone tumor in rabbits, with half
of all cases developing in the skull or facial bones.
A 39.2-kg, castrated male Yucatan minipig (Sus scrofa domestica) was presented for enrollment in a coronary artery study. Angiography revealed an anomalous right coronary artery originating from the left sinus of Valsalva. The left anterior descending, left circumflex, and anomalous
right coronary arteries were implanted with metallic stents without complications. The minipig remained on the study for 3 mo until it reached its predetermined study endpoint, during which time it showed no clinical signs of disease. Histologic examination of the implanted coronary arteries
revealed no differences between the normal (left anterior descending and left circumflex arteries) and the anomalous right coronary artery. Swine are important models for coronary research. Although several cases of anomalous human coronary arteries have been documented, the current case is
the first report of a coronary artery anomaly in a minipig.
The current aging population of captive chimpanzees is expected to develop age-related diseases and present new challenges to providing their veterinary care. Spontaneous heart disease and sudden cardiac death are the main causes of death in chimpanzees (especially of male animals),
but little is known about the relative frequency of other chronic diseases. Furthermore, female chimpanzees appear to outlive the males and scant literature addresses clinical conditions that affect female chimpanzees. Here we characterize the types and prevalence of chronic disease seen in
geriatric (older than 35 y) female chimpanzees in the colony at Alamogordo Primate Facility. Of the 16 female chimpanzees that fit the age category, 87.5% had some form of chronic age-related disease. Cardiovascular-related disease was the most common (81.25%) followed by metabolic syndrome
(43.75%) and renal disease (31.25%). These data show the incidence of disease in geriatric female chimpanzees and predict likely medical management chal- lenges associated with maintaining an aging chimpanzee population.
A cohort of rhesus macaques used in neuroscience research was found at routine examinations to have chronic anemia (spun Hct less than 30%). Four anemic (Hct, 24.8% ± 3.4%) and 10 control (39.6% ± 2.9%) macaques were assessed to characterize the anemia and determine probable
cause(s); some animals in both groups had cephalic implants. Diagnostic tests included CBC, bone marrow evaluations, iron panels, and serum erythropoietin and hepcidin concentrations. Serum iron and ferritin were 15.8 ± 11.1 μg/dL and 103.8 ± 53.1 ng/mL, respectively, for
the anemic group compared with 109.8 ± 23.8 μL/dL and 88.5 ± 41.9 ng/mL, respectively, for the control group. Erythropoietin levels were 16.2 to over 100 mU/mL for the anemic macaques compared with 0 to 1.3 mU/mL for the control group. Hepcidin results were similar in both
groups. Because the findings of low iron, high erythropoietin, and normal hepcidin in the anemic macaques supported iron-deficiency anemia or anemia of chronic disease combined with iron-deficiency anemia, a regimen of 4 doses of iron dextran was provided. In treated macaques, Hct rose to
36.3% ± 6.8%, serum iron levels increased to 94.0 ± 41.9 μg/dL, and erythropoietin levels fell to 0.15 to 0.55 mU/mL. Maintenance of normal Hct was variable between macaques and reflected individual ongoing clinical events.
A 2.3-y-old female cynomolgus macaque (Macaca fascicularis) presented with a broken right tibia and fibula. Radiographs showed multiple cyst-like defects in all long bones. We suspected that both fractures were pathologic because they occurred through these defects. Ultrasonography,
MRI, and dual X-ray absorptiometry revealed that the defects were filled with soft tissue. Grossly, the bones were abnormal in shape, and a gelatinous material filled the defects and the surrounding marrow cavity. Histologically, the gelatinous material was composed of fibrin and cartilage;
few normal bone cells were seen. Genetic testing revealed extra material on the short arm of chromosome 8 in all tissues examined, but no copy number alterations of likely clinical significance were observed, and no abnormalities were found that were unique to the lesions. In light of the
clinical signs and radiographic and pathologic findings, polyostotic fibrous dysplasia was diagnosed. This report represents the first documented case of fibrous dysplasia in a cynomolgus macaque.
A 5-y-old, male, rhesus macaque (Macaca mulatta) presented with a prominent mass slightly anteriomedial to the right stifle. On exam, multiple radiopaque masses were identified protruding from the mid- and distal femur. Lateral and anteroposterior radiographs of the right stifle
region revealed multiple exophytic masses arising from the femur, with mild bony reaction of the proximal tibia. Histologic examination of biopsy tissue revealed woven and lamellar bone with granulation tissue and skeletal muscle. Because the macaque was exhibiting no lameness or signs of
pain, we decided to monitor the progression of the masses. Minimal change was noted during the time prior to study termination at 6.5 y of age. Necropsy revealed that the bony masses were cartilage-capped lesions arising near the growth plate of the distal femur and midshaft of the femur and
tibia. Histologic examination revealed chondro-osseous exophytic growths that blended imperceptibly with the cortex and spongiosa of the femur, consistent with a final diagnosis of multiple osteochondromas.