Ulcerative dermatitis (UD) is a genetically linked syndrome that affects the neck, torso, and facial regions of C57BL/6 mice and strains with C57BL/6 background. In this study, 96 mice with skin ulcerations in 3 different regions of the body and 40 control animals without ulcerated
lesions were evaluated histologically for the presence of hair-induced inflammation in the oronasal cavity. We found that 73.5% (100 of 136) of the mice had hair-induced periodontitis, glossitis, or rhinitis regardless of the presence or absence of UD. Of those mice with UD, 93.9% had hair-induced
oronasal inflammation. The mandibular incisors were the most commonly affected site (64.6%), followed by the maxillary molars (20.8%), maxillary incisors (16.7%), tongue (16.7%), nasal cavity (10.4%), and mandibular molars (7.3%). In addition, oronasal hair-induced inflammation occurred in
25% (10 of 40) of the control mice. Here we show a significant association between UD and hair-induced inflammatory lesions of the oronasal cavities.
Paternal behavior greatly affects the survival, social development, and cognitive development of infants. Nevertheless, little research has been done to assess how paternal experience modifies the behavioral characteristics of fathers, including fear and stress responses to a novel
environment. We investigated long-term behavioral and physiologic effects of parental experience in mice (Peromyscus californicus) and how this response activates the hypothalamic–pituitary–adrenal axis (as measured by corticosterone and dehydroepiandrosterone [DHEA] levels)
and interacts with anxiety-related behaviors. Three groups of adult males were tested—fathers exposed to pups, virgins exposed to pups, and virgins never exposed to pups—in 2 environments designed to elicit anxiety response: an open field with a novel object placed in the center
and a closed cage containing a sample of a component of fox feces. Behavioral responses were measured by using traditional methods (duration and frequency) and behavioral-chain sequences. Results indicated that paternal experience significantly modifies a male mouse's behavioral and physiologic
responses to stress-provoking stimuli. Compared with inexperienced male mice, experienced male mice had a significant decrease in the occurrence of incomplete behavioral chains during the exposure to the novel object, an index of reduced stress. Further, even moderate pup exposure induced
behavioral modifications in virgin male mice. These behavioral responses were correlated with changes in corticosterone and DHEA levels. Together, these data provide evidence that interactions between male mice and offspring may have mutually beneficial long-term behavioral and physiologic
effects.
The objective of this research was to determine body composition, total fat content, fat distribution, and serum leptin concentration in hyperlipidemic (high responder, HR) and normolipidemic (low responder, LR) California mice (Peromyscus californicus). In our initial experiments,
we sought to determine whether differences in regional fat storage were associated with hyperlipidemia in this species. To further characterize the hepatic steatosis in the mice, we performed 2 additional experiments by using a diet containing 45% of energy as fat. The body fat content of
mice fed a low fat-diet (12.3% energy as fat) was higher than that of mice fed a moderate-fat diet (25.8% energy as fat). Total body fat did not differ between HR and LR mice. There was no significant difference between intraabdominal, gonadal, or inguinal fat pad weights. Liver weights of
HR mice fed the moderate-fat diet were higher than those of LR mice fed the same diet, and the moderate-fat diet was associated with nonalcoholic fatty liver (NAFL). Mice fed the 45% diet had higher histologic score for steatosis but very little inflammatory response. Chemical analysis indicated
increased lipid in the livers of mice fed the high-fat diet compared with those fed the low-fat diet. HR and LR mice had similar serum leptin concentrations. California mice develop NAFL without excess fat accumulation elsewhere. NAFL was influenced by genetic and dietary factors. These mice
may be a naturally occuring model of partial lipodystrophy.
UVB radiation damages keratinocytes, potentially inducing chronic skin damage, cutaneous malignancy, and suppression of the immune system. Naturally occurring agents have been considered for prevention and treatment of various kinds of cancer, including skin cancer. Inositol hexaphosphate
(IP6), an antioxidant, is a naturally occurring polyphosphorylated carbohydrate that has shown a strong anticancer activity in several experimental models. We assessed the protective effects of IP6 against UVB irradiationinduced injury and photocarcinogenesis by using HaCaT cells (human immortalized
keratinocytes) and SKH1 hairless mice. We found that IP6 counteracts the harmful effects of UVB irradiation and increases the viability and survival of UVB-exposed cells. Treatment with IP6 after UVB irradiation (30 mJ/cm2) arrested cells in the G1 and G2 M
phases while decreasing the S phase of the cell cycle. Treatment with IP6 also decreased UVB-induced apoptosis and caspase 3 activation. Topical application of IP6 followed by exposure to UVB irradiation in SKH1 hairless mice decreased tumor incidence and multiplicity as compared with control
mice. Our results suggest that IP6 protects HaCaT cells from UVB-induced apoptosis and mice from UVB-induced tumors.
Idiopathic lung lesions characterized by dense perivascular cuffs of lymphocytes and a lymphohistiocytic interstitial pneumonia have been noted in research rats since the 1990s. Although the etiology of this disease has remained elusive, a putative viral etiology was suspected and the
term 'rat respiratory virus' (RRV) has been used in reference to this disease agent. The purpose of this study was to determine whether Pneumocystis carinii infection in immunocompetent rats can cause idiopathic lung lesions previously attributed to RRV. In archived paraffin-embedded
lungs (n = 43), a significant association was seen between idiopathic lung lesions and Pneumocystis DNA detected by PCR. In experimental studies, lung lesions of RRV developed in 9 of 10 CD rats 5 wk after intratracheal inoculation with P. carinii. No lung lesions developed
in CD rats (n = 10) dosed with a 0.22-μm filtrate of the P. carinii inoculum, thus ruling out viral etiologies, or in sham-inoculated rats (n = 6). Moreover, 13 of 16 CD rats cohoused with immunosuppressed rats inoculated with P. carinii developed characteristic
lung lesions from 3 to 7 wk after cohousing, whereas no lesions developed in rats cohoused with immunosuppressed sham-inoculated rats (n = 7). Both experimental infection studies revealed a statistically significant association between lung lesion development and exposure to P. carinii.
These data strongly support the conclusion that P. carinii infection in rats causes lung lesions that previously have been attributed to RRV.
Many epidemiologic studies have suggested that diabetes may be an important risk factor for periodontal disease. To determine whether diabetes induces or enhances periodontal disease or dental caries, dental tissue from diabetic male and nondiabetic female WBN/KobSlc rats and male and
female age-matched nondiabetic F344 rats was analyzed morphologically and morphometrically for these 2 types of lesions. Soft X-ray examination revealed that the incidence and severity of both molar caries and alveolar bone resorption were much higher in male WBN/KobSlc rats with chronic diabetes
than in nondiabetic female rats of the same strain. Histopathologic examination showed that dental caries progressed from acute to subacute inflammation due to bacterial infections and necrosis in the pulp when the caries penetrated the dentin. In the most advanced stage of dental caries,
inflammatory changes caused root abscess and subsequent apical periodontitis, with the formation of granulation tissue around the dental root. Inflammatory changes resulted in resorption of alveolar bone and correlated well with the severity of molar caries. Our results suggest that diabetic
conditions enhance dental caries in WBN/KobSlc rats and that periodontal lesions may result from the apical periodontitis that is secondary to dental caries.
Rhesus rhadinovirus (RRV) and retroperitoneal fibromatosis herpesvirus (RFHV), 2 closely related γ2 herpesviruses, are endemic in breeding populations of rhesus macaques at our institution. We previously reported significantly different prevalence levels, suggesting the transmission
dynamics of RRV and RFHV differ with regard to viral shedding and infectivity. We designed a longitudinal study to further examine the previously observed differences between RRV and RFHV prevalence and the potential influence of age, season, and housing location on the same 90 rhesus macaques
previously studied. Virus- and host-genome–specific real-time PCR assays were used to determine viral loads for both RRV and RFHV in blood and saliva samples collected at 6 time points over an 18-mo period. Proportions of positive animals and viral load in blood and saliva were compared
between and within viruses by age group, location, and season by using 2-part longitudinal modeling with Bayesian inferences. Our results demonstrate that age and season are significant determinants, with age as the most significant factor analyzed, of viremia and oral shedding for both RRV
and RFHV, and these pathogens exhibit distinctly different patterns of viremia and oral shedding over time within a single population.
Cardiovascular disease in general, and cardiac arrhythmias specifically, is common in great apes. However, the clinical significance of arrhythmias detected on short-duration electrocardiograms is often unclear. Here we describe the use of an implantable loop recorder to evaluate cardiac
rhythms in 4 unanesthetized adult chimpanzees (Pan troglodytes), 1 with a history of possible syncope and 3 with the diagnosis of multiform ventricular ectopy (ventricular premature complexes) and cardiomyopathy. The clinical significance of ventricular ectopy was defined further by
using the implantable loop recorder. Arrhythmia was ruled out as a cause of collapse in the chimpanzee that presented with possible syncope because the implantable loop recorder demonstrated normal sinus rhythm during a so-called syncopal event. This description is the first report of the
use of an implantable loop recorder to diagnose cardiac arrhythmias in an unanesthetized great ape species.
To accommodate functional demands, the composition and organization of the skeleton differ among species. Microcomputed tomography has improved our ability markedly to assess structural parameters of cortical and cancellous bone. The current study describes differences in cortical and
cancellous bone structure, bone mineral density, and morphology (geometry) at the proximal femur, proximal femoral diaphysis, lumbar vertebrae, and mandible in mice, rats, rabbits, dogs, and nonhuman primates. This work enhances our understanding of bone gross and microanatomy across lab animal
species and likely will enable scientists to select the most appropriate species and relevant bone sites for research involving skeleton. We evaluated the gross and microanatomy of the femora head and neck, lumbar spine, and mandible and parameters of cancellous bone, including trabecular
number, thickness, plate separation, and connectivity among species. The skeletal characteristics of rabbits, including a very short femoral neck and small amounts of cancellous bone at the femoral neck, vertebral body, and mandible, seem to make this species the least desirable for preclinical
research of human bone physiology; in comparison, nonhuman primates seem the most applicable for extrapolation of data to humans. However, rodent (particularly rat) models are extremely useful for conducting basic research involving the skeleton and represent reliable and affordable alternatives
to dogs and nonhuman primates. Radiology and microcomputed tomography allow for reliable evaluation of bone morphology, microarchitecture, and bone mineral density in preclinical and clinical environments.
Fat embolization (FE), the introduction of bone marrow elements into circulation, is a known complication of bone fractures. Although FE has been described in other animal models, this study represents the first reported cases of FE and bone marrow embolism in nonhuman primates. Histopathologic
findings from cynomolgus macaques (Macaca fascicularis) indicated that in all 5 cases, fat and bone marrow embolization occurred subsequent to multiple bone marrow biopsies. In the most severe case, extensive embolization was associated pulmonary damage consistent with acute respiratory
distress syndrome. Fat embolism syndrome (FES) is an infrequent clinical outcome of FE and is triggered by systemic biochemical and mechanical responses to fat in circulation. Although clinical criteria diagnostic of FES were not investigated at the time of death, this severe case may represent
the fulminant form of FES, which occurs within 12 h after trauma. Bone marrow biopsy as an etiology of FES has been reported only once in humans. In addition, the association of embolization with bone marrow biopsies suggests that nonhuman primates may be a useful animal model of FE. FE and
FES represent important research confounders and FES should be considered as a differential diagnosis for clinical complications subsequent to skeletal trauma.