Polycystic kidney disease (PKD) is one of the leading causes of end-stage renal disease in humans and is characterized by progressive cyst formation, renal enlargement, and abnormal tubular development. Currently, there is no cure for PKD. Although a number of PKD genes have been identified,
their precise role in cystogenesis remains unclear. In the jcpk mouse model of PKD, mutations in the bicaudal C gene (Bicc1) are responsible for the cystic phenotype; however, the function of Bicc1 is unknown. In this study, we establish an alternative, nonmammalian zebrafish
model to study the role of Bicc1 in PKD pathogenesis. Antisense morpholinos were used to evaluate loss of Bicc1 function in zebrafish. The resulting morphants were examined histologically for kidney cysts and structural abnormalities. Immunostaining and fluorescent dye injection were
used to evaluate pronephric cilia and kidney morphogenesis. Knockdown of zebrafish Bicc1 expression resulted in the formation of kidney cysts; however, defects in kidney structure or pronephric cilia were not observed. Importantly, expression of mouse Bicc1 rescues the cystic
phenotype of the morphants. These results demonstrate that the function of Bicc1 in the kidney is evolutionarily conserved, thus supporting the use of zebrafish as an alternative in vivo model to study the role of mammalian Bicc1 in renal cyst formation.
Advances using Xenopus as a model permit valuable inquiries into cardiac development from embryo to adult. Noninvasive methods are needed to study cardiac function longitudinally. The objective of this study was to evaluate the feasibility of echocardiographic studies in Xenopus
and establish normative data of adult cardiac structure and function. Doppler and 2D echocardiograms and electrocardiograms were acquired from adult Xenopus laevis and X. tropicalis. Frogs were exposed to either isoflurane or tricaine to discern the effect of sedating agents
on cardiac function. Cardiac dimensions, morphology, flow velocities, and electrophysiologic intervals were measured and evaluated by using bivariate and regression analyses. Normal cardiac dimensions relative to body weight and species were established by echocardiography. Normal conduction
intervals were determined by electrocardiography and did not vary by body weight or species. Anesthetic agent did not affect ejection fraction or flow velocity but did alter the QRS duration and QT interval. Echocardiographic and electrocardiographic studies in Xenopus provide information
about cardiac anatomy and physiology and can readily be used for longitudinal analyses of developmental inquiries. Body weight, species, and anesthetic agent are factors that should be considered in experimental design and analyses.
Bacterial dermatosepticemia, a systemic infectious bacterial disease of frogs, can be caused by several opportunistic gram-negative bacterial species including Aeromonas hydrophila, Chryseobacterium indologenes, Chryseobacterium meningosepticum, Citrobacter freundii, Klebsiella pneumoniae,
Proteus mirabilis, Pseudomonas aeruginosa, and Serratia liquifaciens. Here we determined the pathogenicity of 3 bacterial species (Aeromonas hydrophila, Klebsiella pneumoniae, and Proteus mirabilis) associated with an outbreak of fatal dermatosepticemia in New Zealand
Litoria ewingii frogs. A bath challenge method was used to expose test frogs to individual bacterial species (2 × 107 cfu/mL in pond water); control frogs were exposed to uninfected pond water. None of the control frogs or those exposed to A. hydrophila or P.
mirabilis showed any morbidity or mortality. Morbidity and mortality was 40% among frogs exposed to K. pneumonia, and the organism was reisolated from the hearts, spleens, and livers of affected animals.
The mouse strain CBA/CaH-T(14;15)6Ca/J carries a homozygous balanced reciprocal translocation between mouse chromosomes 14 and 15, but the break points of this translocation have not previously been examined in detail. Using fluorescent in situ hybridization, we assigned the
break point in 14qE3 to a 200-kb region devoid of any known gene. We similarly defined the break point in 15qA1 to a 27-kb region containing involving ADAMTS12. The chromosomal break likely is between exons 2 and 3 of ADAMTS12. This gene encodes a disintegrin and metalloproteinase
with thrombospondin motifs, and this product plays crucial roles in both vascularization and cancer progression and has been implicated in the development of arthritis. The CBA/CaH-T(14;15)6Ca/J mouse strain likely is a suitable model for further examination of the influences of defective
ADAMTS12 in various pathologic processes.
Hamster parvovirus (HaPV) was isolated 2 decades ago from hamsters with clinical signs similar to those induced in hamsters experimentally infected with other rodent parvoviruses. Genetically, HaPV is most closely related to mouse parvovirus (MPV), which induces subclinical infection
in mice. A novel MPV strain, MPV3, was detected recently in naturally infected mice, and genomic sequence analysis indicates that MPV3 is almost identical to HaPV. The goal of the present studies was to examine the infectivity of HaPV in mice. Neonatal and weanling mice of several mouse strains
were inoculated with HaPV. Tissues, excretions, and sera were harvested at 1, 2, 4, and 8 wk after inoculation and evaluated by quantitative PCR and serologic assays specific for HaPV. Quantitative PCR detected viral DNA quantities that greatly exceeded the quantity of virus in inocula in
multiple tissues of infected mice. Seroconversion to both nonstructural and structural viral proteins was detected in most immunocompetent mice 2 or more weeks after inoculation with HaPV. In neonatal SCID mice, viral transcripts were detected in lymphoid tissues by RT-PCR and viral DNA was
detected in feces by quantitative PCR at 8 wk after inoculation. No clinical signs, gross, or histologic lesions were observed. These findings are similar to those observed in mice infected with MPV. These data support the hypothesis that HaPV and MPV3 are likely variants of the same viral
species, for which the mouse is the natural rodent host with rare interspecies transmission to the hamster.
Routine surveillance of guinea pigs maintained within a barrier facility detected guinea pig adenovirus (GPAdV) in sentinel animals. These guinea pigs served as models of induced hearing loss followed by regeneration of cochlear sensory (hair) cells through transdifferentiation of nonsensory
cells by using human adenoviral (hAV) gene therapy. To determine whether natural GPAdV infection affected the ability of hAV vectors to transfect inner ear cells, adult male pigmented guinea pigs (n = 7) were enrolled in this study because of their prolonged exposure to GPAdV-seropositive
conspecifics. Animals were deafened chemically (n = 2), received an hAV vector carrying the gene for green fluorescent protein (hAV-GFP) surgically without prior deafening (n = 2), or were deafened chemically with subsequent surgical inoculation of hAV-GFP (n = 3). Cochleae
were evaluated by using fluorescence microscopy, and GFP expression in supporting cells indicated that the hAV-GFP vector was able to transfect inner ears in GPAdV-seropositive guinea pigs that had been chemically deafened. Animals had histologic evidence of interstitial pneumonia, attributable
to prior infection with GPAdV. These findings confirmed that the described guinea pigs were less robust animal models with diminished utility for the overall studies. Serology tests confirmed that 5 of 7 animals (71%) were positive for antibodies against GPAdV at necropsy, approximately 7
mo after initial detection of sentinel infection. Control animals (n = 5) were confirmed to be seronegative for GPAdV with clinically normal pulmonary tissue. This study is the first to demonstrate that natural GPAdV infection does not negatively affect transfection with hAV vectors
into guinea pig inner ear cells, despite the presence of other health complications attributed to the viral infection.
The Göttingen minipig is an excellent model for studying effects of dietary high-fat intake on obesity. In this study, we analyzed the expression level of microRNA-122 (miRNA-122) and its target mRNA, CAT1, in intact young male minipigs fed either high-cholesterol or standard
diet for 11 wk. MiRNA-122 and CAT1 are known to be important regulators of lipid metabolism. The weight of the young minipigs was monitored once a week during the feeding period; measurements of total cholesterol, triglycerides, high-density lipoproteins, and low-density lipoproteins
were recorded at 4 time points (8, 14, 16, and 19 wk of age) in fasting animals during the feeding scheme. Body weight, total cholesterol, and high-density lipoproteins were higher in pigs fed the high-cholesterol compared with the standard diet. In contrast, the level of triglycerides was
lower in pigs on the high-cholesterol diet than those receiving the standard diet. Pigs fed high-cholesterol also had lower miRNA-122 levels than did those fed the standard diet. These results suggest that in our minipigs, the increase in weight and cholesterol levels resulting from subchronic
(11 wk) feeding of a high-cholesterol diet is correlated with a decrease in the expression of miRNA-122, confirming the implication of this microRNA in obesity. Gene expression levels of CAT1 did not differ between groups.
Here we sought to evaluate the possibility of using Chinese Bama miniature pig skin as a suitable animal model for human skin. Morphologic features of the skin of Bama miniature pigs resemble those of human skin, including skin layer thickness, development of a superficial vascular
system, structure of the dermal–epidermal interface, and extracellular matrix. The characteristics and densities of Langerhans cells, fibroblasts, vascular endothelial cells, and mast cells were similar between Bama pig and human skin. Immunohistochemistry showed that miniature pigs
and humans have the same antigenic determinants of human laminin, fibronectin, filaggrin, collagen I, collagen III, collagen IV, and keratin but not CD34, ICAM1, or S100. In addition, collagen type I from Bama miniature pig skin exhibited physicochemical characteristics resembling those of
human skin, in regard to HPLC chromatography, UV spectroscopy, amino-acid composition, and SDS-PAGE analysis. Given these results, we concluded that Bama miniature pigs have great potential as a human skin model and for developing dermal substitute materials in wound repair. However, we also
observed some disparities between the skin of Bama miniature pigs and humans, including pigment cell distribution, sweat gland types, and others. Therefore, further studies are needed to completely evaluate the effects of these interspecies differences on the actual application of the model.
Numerous cases of urate nephrolithiasis in managed collections of common bottlenose dolphins (Tursiops truncatus) have been reported, but nephrolithiasis is believed to be uncommon in wild dolphins. Risk factors for urate nephrolithiasis in humans include low urinary pH and hypocitraturia.
Urine samples from 94 dolphins were collected during April 2006 through June 2009 from 4 wild populations (n = 62) and 4 managed collections (n = 32). In addition, urine uric acid and pH were tested in a subset of these animals. Our null hypothesis was that wild and managed collection
dolphins would have no significant differences in urinary creatinine, citrate, and uric acid concentrations and pH. Among urine samples from all 94 dolphins, the urinary levels (mean ± SEM) for creatinine, citrate, uric acid, and pH were 139 ± 7.6 mg/dL, 100 ± 20 mg citrate/g
creatinine, 305 ± 32 mg uric acid/g creatinine, and 6.2 ± 0.05, respectively. Of the 4 urinary variables, only citrate concentration varied significantly between the 2 primary study groups; compared with wild dolphins, managed collection dolphins were more likely to have undetectable
levels of citrate in the urine (21.0% and 81.3%, respectively). Mean urinary citrate concentrations for managed collection and wild dolphin populations were 2 and 150 mg citrate/g creatinine, respectively. We conclude that some managed collections of dolphins, like humans, may be predisposed
to urate nephrolithiasis due to the presence of hypocitraturia. Subsequent investigations can include associations between metabolic syndrome, hypocitraturia, and urate nephrolithiasis in humans and dolphins; and the impact of varying levels of seawater ingestion on citrate excretion.
Cardiovascular disease is the leading cause of morbidity and mortality among captive chimpanzees. The most prevalent form of cardiovascular disease among chimpanzees is sudden cardiac death. Myocardial fibrosis was the only significant pathologic lesion observed in affected animals
at necropsy. We previously showed an association between myocardial fibrosis and sudden cardiac death. The presumed pathogenesis was interstitial myocardial fibrosis that led to decreased myocardial contractility and interrupted signal propagation in the heart, leading to fibrillation and
resulting in sudden cardiac death. In this pilot study, we assayed 5 biomarkers of collagen types I and III metabolism and fibrogenesis and studied their association with CVD in chimpanzees. The biomarker MMP1 did not crossreact in chimpanzee sera and could not be studied further. Two biomarkers
(TIMP1 and PINP) and their difference showed no significant association with CVD in chimpanzees. The biomarkers ICTP and PIIINP were significantly increased in cases of CVD with concurrent renal disease. Furthermore, both biomarkers showed a significant trend to increase with disease severity.
We conclude that ICTP and PIIINP warrant further study for antemortem detection of renal and myocardial fibrosis in chimpanzees.