The acute phase response is a complex systemic early-defense system activated by trauma, infection, stress, neoplasia, and inflammation. Although nonspecific, it serves as a core of the innate immune response involving physical and molecular barriers and responses that serve to prevent
infection, clear potential pathogens, initiate inflammatory processes, and contribute to resolution and the healing process. Acute phase proteins, an integral part of the acute phase response, have been a focus of many applications in human diagnostic medicine and recently have been identified
in common animal species. Potential applications to diagnosis, prognosis, assessment of animal health, and laboratory animal welfare are readily apparent.
Ultrasound scanning is a noninvasive, accurate, and cost-effective method to create images of the female reproductive tract clinically and in research. Ultrasonography is particularly valuable for studying the dynamic relationships among mother, placenta, and fetus during pregnancy
because this modality does not disturb the ongoing course of gestation. Importantly, the complex vascular changes in the mother induced by pregnancy and the vascular system generated to support placental function can be assessed quantitatively and functionally by ultrasonography. Many mouse
models are available that address aspects of human placental function and dysfunction, but high-quality microultrasound technology suitable for use in pregnant mice has become widely available only recently. This technical advance now enables real-time recording of maternal–fetal interactions
in pregnant rodents. The ability to perform microultrasonic analyses of parameters such as uterine arterial remodeling, hemodynamic changes, placental development, and fetal growth in mice now permits research that uses the same imaging platform as that for human patients. This capability
will enhance the translation of information derived from rodent studies to the clinic.
Infection of mice with Helicobacter hepaticus is common in research colonies, yet little is known about how this persistent infection affects immunologic research. The goal of this study was to determine whether H. hepaticus infection status can modulate immune responses
specific to herpes simplex virus type 1 (HSV1) and the phenotypic and functional characteristics of dendritic cells (DC) of mice. We compared virus-specific antibody and T cell-mediated responses in H. hepaticus-infected and noninfected mice that were inoculated intranasally with HSV1.
The effect of H. hepaticus on the HSV1-specific antibody and T cell-mediated immune responses in superficial cervical and tracheobronchal lymph nodes (LN) did not reach statistical significance. Surface expression of the maturation-associated markers CD40, CD80, CD86, and MHC II and
percentages of IL12p40- and TNFα-producing DC from spleen and colic LN in H. hepaticus-infected mice and noninfected mice were measured in separate experiments. Expression of CD40, CD86, and MHC II and percentages of IL12p40- and TNFα-producing DC from colic LN were decreased
in H. hepaticus-infected mice. In contrast, H. hepaticus infection did not reduce the expression of these molecules by splenic DC. Expression of CD40, CD80, CD86, and MHC II on splenic DC from H. hepaticus-infected mice was increased after in vitro lipopolysaccharide stimulation.
These results indicate that H. hepaticus infection can influence the results of immunologic assays in mice and support the use of H. hepaticus-free mice in immunologic research.
Pronuclear injection has been a successful strategy for generating genetically engineered mouse models to better understand the functionality of genes. A characteristic of pronuclear injection is that random integration of the transgene into the genome can disturb a functional gene
and result in a phenotype unrelated to the transgene itself. In this study, we have characterized a mouse model containing an insertional mutation that, in the homozygous state, severely affects spermatogenesis as characterized by lack of sperm motility and acrosomal aplasia. Whereas homozygous
female mice had normal fertility, male mice homozygous for the insertional mutation were unable to produce pups by natural mating with either homozygous or wild-type female mice. No fertilized embryos were produced by matings to homozygous male mice, and no sperm were present in the reproductive
tract of mated female mice. Spermatozoa isolated from homozygous male mice exhibited head and midpiece defects, but no major defects in the principal piece of these sperm. Histologic examination and immunohistochemical staining of the testes revealed vacuolar degeneration of Sertoli cells
and loss of structural seminiferous tubule integrity and organization, indicating that spermatogenesis is severely affected in this mouse model. Although the males are always infertile, the severity of the histologic and sperm morphologic defects appeared to be age-related.
We recently described a genetically engineered mouse model that develops ovarian granulosa cell tumors (GCTs) that mimic many aspects of the advanced human disease, including distant dissemination. However, because the primary tumors killed their hosts before metastases were able to
form, the use of these mice to study metastatic disease required the development of a simple, reliable, and humane surgical protocol for the excision of large GCTs from debilitated mice. Here we describe a protocol involving multimodal anesthesia, tumor removal through ventral midline celiotomy
and perioperative fluid therapy, and analgesia that led to the postoperative survival of more than 90% of mice, despite the removal of tumors representing as much as 10% of the animal's body weight. Intraabdominal recurrence of the GCT did not occur in surviving animals, but most developed
pulmonary or adrenal metastases (or both) by 12 wk after surgery. We propose that this mouse model of metastatic GCT will serve as a useful preclinical model for the development of novel treatment modalities and diagnostic techniques. Furthermore, our results delineate anesthetic and surgical
principles for the removal of large abdominal tumors from mice that will be applicable to other models of human cancers.
The aim of this study was to test the hypothesis that paeoniflorin prevents the progression of diabetic nephropathy by modulating the inflammatory process. Sprague–Dawley rats were divided into 5 groups: nondiabetic control rats; untreated diabetic model (DM) rats; and DM rats
treated with 5, 10, or 20 mg/kg paeoniflorin in drinking water once daily. Rats received a single intravenous injection of streptozotocin to induce diabetes; 9 wk after injection, rats began the 8-wk daily paeoniflorin treatment regimen. Compared with that of nonDM controls, the urinary albumin:creatinine
ratio was increased significantly in untreated DM rats; this ratio was decreased in DM rats treated with 5, 10, or 20 mg/kg paeoniflorin compared with that of untreated DM rats. In addition, paeoniflorin treatment effectively suppressed glomerular hypertrophy; blood glucose; the expression
of transforming growth factor β, type IV collagen, and intercellular adhesion molecule 1; and renal infiltration of macrophages compared with levels in untreated DM rats. Furthermore, renal nuclear factor κB activity was increased in untreated but not paeoniflorin-treated DM rats.
In conclusion, our data suggest that the preventive effects of paeoniflorin may be mediated by its antiinflammatory actions.
Atheroproliferative disorders such as atherosclerosis are an important health problem and one of the leading causes of morbidity and mortality in the United States. Minimally invasive therapeutic procedures, including angioplasty with stent deployment, are used frequently for obstructive
coronary artery disease. However, restenosis, a proliferative vascular response, is a common sequela to this procedure. The current study investigated the effect of inhibiting ribonucleotide reductase (RR), an enzyme necessary for cellular proliferation, in an attempt to ameliorate the proliferative
response. Two RR inhibitors, didox and hydroxyurea, were chosen for their potent antiproliferative properties. Studies were carried out by using a double-injury rabbit model, in which endothelial denudation was followed by the administration of a high-fat diet. At 4 wk after initial endothelial
denudation, the developing atherosclerotic lesion was subjected to transluminal balloon dilation to simulate clinical intervention with percutaneous transluminal angioplasty. The degree of restenosis and atheroproliferation was assessed at 8 wk. Histologic evaluation of the lesion demonstrated
that treatment with didox and hydroxyurea significantly decreased lesion area and lumen loss. These results suggest that RR inhibition may be an effective new tool for the treatment of atheroproliferative disorders.
This study examines the effects of intravenous infusion of adenosine and sublingual nitroglycerin on coronary angiograms obtained by current-generation multidetector computed tomography. We assessed coronary vasodilation at baseline and after intravenous adenosine (140 μg/kg/min)
or sublingual nitroglycerin spray (800 μg) in 7 female swine (weight, 40.9 ± 1.4 kg) by using electrocardiogram-gated coronary angiography with a 64-detector scanner (rotation time, 400 ms; 120kV; 400 mA) and intravenous contrast (300 mg/mL iohexol, 4.5 mL/s, 2 mL/kg). Cross-sectional
areas of segments in the left anterior descending, circumflex, and right coronary arteries were evaluated in oblique orthogonal views. Images were acquired at an average heart rate of 73 ± 11 beats per minute. Changes in aortic pressure were not significant with nitroglycerin but decreased
(approximately 10%) with adenosine. Of the 76 segments analyzed (baseline range, 2 to 39 mm2), 1 distal segment could not be assessed after adenosine. Segment cross-sectional area increased by 11.3% with nitroglycerin but decreased by 9.6% during adenosine infusion. The results
of the present study are consistent with the practice of using sublingual nitroglycerin to enhance visualization of epicardial vessels and suggest that intravenous adenosine may hinder coronary artery visualization. This study is the first repeated-measures electrocardiogram-gated CT evaluation
to use the same imaging technology to assess changes in coronary cross-sectional area before and after treatment with a vasodilator. The nitroglycerin-associated changes in our swine model were modest in comparison with previously reported human studies.
Tumor necrosis factor is a cytokine that plays critical roles in inflammation, the innate immune response, and a variety of other physiologic and pathophysiologic processes. In addition, TNF has recently been shown to mediate an intersection of chronic, low-grade inflammation and concurrent
metabolic dysregulation associated with obesity and its comorbidities. As part of an ongoing initiative to further characterize vervet monkeys originating from St Kitts as an animal model of obesity and inflammation, we sequenced and genotyped the human ortholog vervet TNF gene and
approximately 1 kb of the flanking 3′ and 5′ regions from 265 monkeys in a closed, pedigreed colony. This process revealed a total of 11 single-nucleotide polymorphisms (SNPs) and a single 4-bp insertion–deletion, with minor allele frequencies of 0.08 to 0.39. Many of these
polymorphisms were in strong or complete linkage disequilibrium with each other, and all but 1 were contained within a single haplotype block, comprising 5 haplotypes with frequencies of 0.075 to 0.298. Using sequences from humans, chimpanzees, vervets, baboons, and rhesus macaques, phylogenetic
shadowing of the TNF promoter region revealed that vervet SNPs, like the SNPs in related species, were clustered nonrandomly and nonuniformly around conserved transcription factor binding sites. These data, combined with previously defined heritable phenotypes, permit future association
analyses in this nonhuman primate model and have great potential to help dissect the genetic and nongenetic contributions to complex diseases like obesity. More broadly, the sequence data and comparative analyses reported herein facilitates study of the evolution of regulatory sequences of
inflammatory and immune-related genes.
Invasive Klebsiella pneumoniae with hypermucoviscosity phenotype (HMV K. pneumoniae) is an emerging human pathogen that, over the past 20 y, has resulted in a distinct clinical syndrome characterized by pyogenic liver abscesses sometimes complicated by bacteremia, meningitis,
and endophthalmitis. Infections occur predominantly in Taiwan and other Asian countries, but HMV K. pneumoniae is considered an emerging infectious disease in the United States and other Western countries. In 2005, fatal multisystemic disease was attributed to HMV K. pneumoniae
in African green monkeys (AGM) at our institution. After identification of a cluster of subclinically infected macaques in March and April 2008, screening of all colony nonhuman primates by oropharyngeal and rectal culture revealed 19 subclinically infected rhesus and cynomolgus macaques.
PCR testing for 2 genes associated with HMV K. pneumoniae, rmpA and magA, suggested genetic variability in the samples. Random amplified polymorphic DNA analysis on a subset of clinical isolates confirmed a high degree of genetic diversity between the samples. Environmental
testing did not reveal evidence of aerosol or droplet transmission of the organism in housing areas. Further research is needed to characterize HMV K. pneumoniae, particularly with regard to genetic differences among bacterial strains and their relationship to human disease and to the
apparent susceptibility of AGM to this organism.