Macaque models have contributed to key advances in our basic knowledge of behavior, anatomy, and physiology as well as to our understanding of a wide variety of human diseases. This issue of Comparative Medicine focuses on several of the viral agents (members of Retroviridae,
Herpesviridae and 2 small DNA viruses) that can infect both nonhuman primates and humans as well as confound research studies. Featured articles also address the challenges of developing colonies of macaques and other nonhuman primates that are truly specific pathogen-free for these and
other adventitious infectious agents.
Macaques are a particularly valuable nonhuman primate model for a wide variety of biomedical research endeavors. B virus (Cercopithecine herpesvirus 1; BV) is an α-herpesvirus that naturally infects conventional populations of macaques. Serious disease due to BV is rare
in macaques, but when transmitted to humans, BV has a propensity to invade the central nervous system and has a fatality rate greater than 70% if not treated promptly. The severe consequences of human BV infections led to the inclusion of BV in the original NIH list of target viruses for elimination
by development of specific pathogen-free rhesus colonies. In macaques and especially in humans, diagnosis of BV infection is not straightforward. Furthermore, development and maintenance of true BV specific pathogen-free macaque colonies has proven dif cult. In this overview we review the
natural history of BV in macaques, summarize what is known about the virus at the molecular level, and relate this information to problems associated with diagnosis of BV infections and development of BV-free macaque colonies.
Simian varicella virus (SVV) causes a natural erythematous disease in Old World monkeys and is responsible for simian varicella epizootics that occur sporadically in facilities housing nonhuman primates. This review summarizes the biology of SVV and simian varicella as a veterinary
disease of nonhuman primates. SVV is closely related to varicella–zoster virus, the causative agent of human varicella and herpes zoster. Clinical signs of simian varicella include fever, vesicular skin rash, and hepatitis. Simian varicella may range from a mild infection to a severe
and life-threatening disease, and epizootics may have high morbidity and mortality rates. SVV establishes a lifelong latent infection in neural ganglia of animals in which the primary disease resolves, and the virus may reactivate later in life to cause a secondary disease corresponding to
herpes zoster. Prompt diagnosis is important for control and prevention of epizootics. Antiviral treatment for simian varicella may be effective if administered early in the course of infection.
Comparative Pathobiology of Kaposi Sarcoma-associated Herpesvirus and Related Primate Rhadinoviruses
With the emergence of the AIDS epidemic over the last 2 decades and the more recent identification of Kaposi sarcoma-associated herpesvirus (KSHV, Human herpesvirus 8), the genera of rhadinoviruses have gained importance as a family of viruses with oncogenic potential. First
recognized in New World primates more than 30 y ago, the rhadinoviruses Saimiriine herpesvirus 2 and Ateline herpesvirus 2 have well-described transforming capabilities. Recently several new species-specific rhadinoviruses of Old World primates have been described, including
retroperitoneal fibromatosis herpesvirus and rhesus rhadinovirus (Cercopithecine herpesvirus 17). Molecular analysis of these viruses has elucidated several functionally conserved genes and properties shared with KSHV involved in cellular proliferation, transformation, and immune evasion
that facilitate the oncogenic potential of these viruses. This review examines the comparative pathobiology of KSHV, discusses the role of macaque rhadinoviruses as models of human disease, and outlines the derivation of specific pathogen-free animals.
Development of breeding colonies of rhesus macaques (Macaca mulatta) that are specific pathogen-free (SPF) for rhesus cytomegalovirus (RhCMV) is relatively straightforward and requires few modifications from current SPF programs. Infants separated from the dam at or within a
few days of birth and cohoused with similarly treated animals remain RhCMV seronegative indefinitely, provided they are never directly or indirectly exposed to a RhCMV-infected monkey. By systematically cohousing seronegative animals into larger social cohorts, breeding populations of animals
SPF for RhCMV can be established. The additional costs involved in expanding the current definition of SPF status to include RhCMV are incremental compared with the money already being spent on existing SPF efforts. Moreover, the large increase in research opportunities available for RhCMV-free
animals arguably would far exceed the development costs. Potential new areas of research and further expansion of existing research efforts involving these newly defined SPF animals would have direct implications for improvements in human health.
The simian parvoviruses (SPVs) are in the genus Erythrovirus in the family Parvoviridae and are most closely related to the human virus B19. SPV has been identified in cynomolgus, rhesus, and pigtailed macaques. All of the primate erythroviruses have a predilection for
erythroid precursors. Infection, which is common in macaques, is usually clinically silent. Disease from SPV is associated with immunosuppression due to infection with various retroviruses (SIV, simian retrovirus, and simian–human immunodeficiency virus), surgery, drug toxicity studies,
and posttransplantation immunosuppressive treatment and therefore is of concern in studies that use parvovirus-positive macaques.
Polyomaviruses are a family of small nonenveloped DNA viruses that infect birds and mammals. At least 7 nonhuman primate polyomaviruses that occur in macaques, African green monkeys, marmosets baboons, and chimpanzees have been described, as well as 4 polyomaviruses that occur in humans.
Simian virus 40 (SV40), which infects macaques, was the first nonhuman primate polyomavirus identified as a contaminant of early polio vaccines. Primate polyomaviruses cause inapparent primary infections but persist in the host and can cause severe disease in situations of immunocompromise.
This review describes the primate polyomaviruses, and the diseases associated with the viruses of macaques. In macaques, the greatest current concerns are the potential confounding of study results by polyomavirus infections and the zoonotic potential of SV40.
Lymphocryptoviruses (LCVs) have been identified as naturally occurring infections of both Old and New World nonhuman primates. These viruses are closely related to Epstein–Barr virus (EBV, Human herpesvirus 4) and share similar genomic organization and biological properties.
Nonhuman primate LCVs have the ability to immortalize host cells and express a similar complement of viral lytic and latent genes as those found in EBV. Recent evidence indicates that nonhuman primate LCVs can immortalize B cells from genetically related species, suggesting a close evolutionary
relationship between these viruses and their respective hosts. Early work with EBV in tamarins and owl monkeys revealed that cross species transmission of lymphocryptoviruses from the natural to inadvertent host may be associated with oncogenesis and the development of malignant lymphoma.
Moreover, simian LCVs have the ability to induce malignant lymphomas in immunodeficient hosts and have been associated with posttransplantation lymphoproliferative disease in cynomolgus macaques undergoing solid organ transplantation. This review will focus on the comparative pathobiology
of lymphocryptoviral infection and discuss the derivation of specific pathogen-free animals.
Since the anthrax attacks of 2001, the emphasis on developing animal models of aerosolized select agent pathogens has increased. Many scientists believe that nonhuman primate models are the most appropriate to evaluate pulmonary response to, vaccines for, and treatments for select agents
such as Yersinia pestis (Y. pestis), the causative agent of plague. A recent symposium concluded that the cynomolgus macaque (Macaca fascicularis) plague model should be characterized more fully. To date, a well-characterized cynomolgus macaque model of pneumonic plague
using reproducible bioaerosols of viable Y. pestis has not been published. In the current study, methods for creating reproducible bioaerosols of viable Y. pestis strain CO92 (YpCO92) and pneumonic plague models were evaluated in 22 Indonesian-origin cynomolgus macaques. Five
macaques exposed to doses lower than 250 CFU remained free of any indication of plague infection. Fifteen macaques developed fever, lethargy, and anorexia indicative of clinical plague. The 2 remaining macaques died without overt clinical signs but were plague-positive on culture and demonstrated
pathology consistent with plague. The lethal dose of plague in humans is reputedly less than 100 organisms; in this study, 66 CFU was the dose at which half of the macaques developed fever and clinical signs (ED50), The Indonesian cynomolgus macaque reproduces many aspects of human
pneumonic plague and likely will provide an excellent model for studies that require a macaque model.
Bartonellosis, caused by Bartonella bacilliformis, is a clinically significant disease in parts of South America, where it is characterized by fever and hemolytic anemia during the often-fatal acute stage and warty skin eruptions during chronic disease. In this study, we evaluated
owl monkeys (Aotus nancymaae) as a potential model for studying the immunogenicity and pathology of bartonellosis. Two groups of animals (n = 3 per group) received either 9.5 × 107 CFU B. bacilliformis by the ID route or 1.1 × 106 CFU by the
IV route and were followed for 140 d. Animals were evaluated by physical exam, complete blood count or hematocrit (or both); infection was confirmed by Giemsa staining of blood smears, PCR amplification, and blood culture. On days 7 and 21, Giemsa-stained blood smears from both groups contained
organisms (1% to 4% of erythrocytes). All blood cultures and PCR tests were negative. Complete blood counts and chemistry panels showed no difference from baseline. Serology revealed a greater than 4-fold increase in the IgM titer (compared with baseline levels) in the 3 animals from the ID
group and 1 animal from the IV group. On day 35, a dermal lesion was excised from the inguinal region of 1 monkey from each group, with a second lesion excised on day 84 from the same monkey in the IV group. However the histopathology and immunostaining of these samples were not consistent
with B. bacilliformis. The present study shows that owl monkeys can be infected with B. bacilliformis, but additional dosage studies are necessary to evaluate the usefulness of this species as a disease model for human bartonellosis.
Diarrhea is the gastrointestinal disease most frequently encountered in captive rhesus macaques. The precise pathogenic mechanisms underlying chronic diarrhea in nonhuman primates are not well understood, but a persistent inflammatory component has been implicated strongly. This study
evaluated the inflammatory changes in the colon of macaques with diarrhea and assessed the efficacy of a 10-d course of tylosin in a cohort of 21 animals with chronic diarrhea. Stool quality was evaluated daily, and fecal consistency was scored. Colonoscopies were performed; biopsy samples
were characterized histologically and assayed for expression of TNFα mRNA. Blood samples collected pre-, mid-, and post-treatment were assayed for C-reactive protein (CRP). The results indicated that 63% of the animals receiving tylosin showed improvement in stool quality, compared with
10% in the sham-treated group. Histologically, 82% of animals in the tylosin-treated group had a reduction in the severity of colonic lesions post-treatment, compared with 40% of animals in the sham group. The amount of TNFα mRNA before treatment did not differ from that afterward in
either tylosin- or sham-treated animals. CRP levels serially decreased in tylosin-treated monkeys; the average post-treatment CRP value for tylosin-treated animals was 11.96 ± 3.86 μg/ml compared with 26.48 ± 4.86 μg/ml for sham-treated controls. In conclusion, tylosin
significantly improved the fecal consistency score, significantly decreased colonic inflammation, and significantly decreased serum CRP levels post-treatment in rhesus macaques with chronic diarrhea.
Shigella are gram-negative bacterium that cause bacillary dysentery (shigellosis). Symptoms include diarrhea and discharge of bloody mucoid stools, accompanied by severe abdominal pain, nausea, vomiting, malaise, and fever. Persons traveling to regions with poor sanitation and
crowded conditions become particularly susceptible to shigellosis. Currently a vaccine for Shigella has not been licensed in the United States, and the organism quickly becomes resistant to medications. During the past 10 y, several live attenuated oral Shigella vaccines, including
the strain WRSS1, have been tested in humans with considerable success. These Phase I vaccines lack the gene for the protein VirG also known as IcsA, which enables the organism to disseminate in the host target tissue. However, 5% to 20% of the vaccinated volunteers developed mild fever and
brief diarrhea, and the removal of additional virulence-associated genes from the vaccine strain may reduce or eliminate these side effects. We administered 2 Shigella sonnei vaccines, WRSs2 and WRSs3, along with WRSS1 to compare their rates of colonization and clinical safety in groups
of 5 rhesus macaques. The primate model provides the most physiologically relevant animal system to test the validity and efficacy of vaccine candidates. In this pilot study using a gastrointestinal model of infection, the vaccine candidates WRSs2 and WRSs3, which have additional deletions
in the enterotoxin and LPS modification genes, provided better safety and comparable immunogenicity to those of WRSS1.