Using Filter Media and Soiled Bedding in Disposable Individually Ventilated Cages as a Refinement to Specific Pathogen-free Mouse Health Monitoring Programs
Molecular-based methods have shown potential for improving pathogen detection and reducing animal use. While increasing evidence supports rodent-free environmental health PCR pathogen detection, limited information is available regarding efficacy for disposable individually ventilated
caging systems. In such systems, testing of plenum exhaust air dust is ineffective, and the use of collection media is optimal. We performed a series of studies to compare PCR infectious agent detection with dust collected on media placed in a mouse-free soiled bedding cage, the cage exhaust
filter of an occupied sentinel cage, and direct sampling from colony and sentinel mice with traditional soiled bedding mouse sentinels. We hypothesized that after a 3-mo period, testing of filter media agitated in a soiled bedding cage would be equal to or more sensitive than more traditional
methods. Agitated media detected Astrovirus-1, segmented filamentous bacteria and Helicobacter ganmani to a degree comparable to testing lid exhaust filter PCR from a sentinel mouse cage, but opportunists such as Staphylococcus aureus and Proteus mirabilis were not detected
consistently, and H. hepaticus was not detected at all. Direct sampling of pooled fecal pellets and body swabs from sentinel mice and testing using PCR also failed to reliably detect opportunists and Helicobacter spp. While further work is needed to refine use of filter
media in soiled bedding for detection of lower prevalence opportunists, this report provides evidence that a rodent-free method of reliably detecting murine agents in a disposable individually ventilated cage system with cage-level filtration outperforms direct sampling of soiled bedding sentinel
mice.