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Deep Learning for Face Detection and 
Pain Assessment in Japanese macaques 

(Macaca fuscata)

Vanessa N Gris, MV, DSc,1,2,† Thomás R Crespo, MSc,3,† Akihisa Kaneko, DVM,1,2 Munehiro Okamoto, DVM, PhD,1,2  
Juri Suzuki, DVM, PhD,1 Jun-nosuke Teramae, PhD,3,* and Takako Miyabe-Nishiwaki, DVM, PhD1,2,*

Facial expressions have increasingly been used to assess emotional states in mammals. The recognition of pain in research 
animals is essential for their well-being and leads to more reliable research outcomes. Automating this process could contrib-
ute to early pain diagnosis and treatment. Artificial neural networks have become a popular option for image classification 
tasks in recent years due to the development of deep learning. In this study, we investigated the ability of a deep learning 
model to detect pain in Japanese macaques based on their facial expression. Thirty to 60 min of video footage from Japanese 
macaques undergoing laparotomy was used in the study. Macaques were recorded undisturbed in their cages before surgery 
(No Pain) and one day after the surgery before scheduled analgesia (Pain). Videos were processed for facial detection and im-
age extraction with the algorithms RetinaFace (adding a bounding box around the face for image extraction) or Mask R-CNN 
(contouring the face for extraction). ResNet50 used 75% of the images to train systems; the other 25% were used for testing. 
Test accuracy varied from 48 to 54% after box extraction. The low accuracy of classification after box extraction was likely due 
to the incorporation of features that were not relevant for pain (for example, background, illumination, skin color, or objects 
in the enclosure). However, using contour extraction, preprocessing the images, and fine-tuning, the network resulted in 64% 
appropriate generalization. These results suggest that Mask R-CNN can be used for facial feature extractions and that the 
performance of the classifying model is relatively accurate for nonannotated single-frame images.

Abbreviations and Acronyms: ANN, artificial neural network; BID, twice daily; DL, deep learning; IM, intramuscularly; NP, No 
Pain; P, Pain; SC, subcutaneously; ReLU, rectified linear unit; SID, once daily
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Introduction
Facial expressions provide cues to emotions being expe-

rienced by mammals and can yield valuable information 
about their internal states.17 Macaques are used extensively 
for research worldwide,10,18 and negative experiences can sig-
nificantly affect their physiologic, psychologic, and behavioral 
responses during or after an experimental procedure.42 Ac-
cording to the Association of Primate Veterinarians, pain is a 
debilitating condition that affects an animal’s quality of life and, 
as a consequence, may negatively impact scientific results and 
increase the variability of animal-based research data.5 While 
legislation to enforce the ethical treatment of research animals 
has improved over the years, it still varies by country and relies 
heavily on self-regulation.37 The ethical debate on animal experi-
mentation and the 3Rs (Reduction, Refinement, Replacement) 
principle emphasizes the importance of assessing and treating 
pain to minimize the suffering of research animals. Recognizing 
pain and evaluating its severity are critical components of this 
ethical framework as they guide the treatment and assessment 

frequency for pain. However, the assessment of pain in nonhu-
man primates is greatly derived from anecdotal evidence due to 
a lack of comprehensive assessment tools.11,35,40 Other reasons 
include the lack of time and resources for intensive monitor-
ing and inherent difficulties in recognizing pain in nonverbal 
beings. Therefore, an evaluation method that does not require 
complete human management and does not increase workload 
is desirable.

Macaques live in societies with frequent competition among 
group members and may hide behaviors associated with weak-
ness from conspecifics and potential predators. Among captive 
nonhuman primates, the presence of an observer has been 
shown to influence the spontaneous behaviors of the animals, 
making the animal appear to be healthier than its actual status.21 
This suggests that direct human observation may alter an ani-
mal’s spontaneous actions, thereby influencing the observer’s 
assessment of their condition. Pain evaluation may include 
facial expressions, as it has been reported that they can be an 
important indicator of pain in several species.16,20,27,33 Methods 
such as grimace scales13 or geometric morphometrics20,22 are 
used to evaluate facial expressions in mammals, but they de-
pend on a human coder. The disadvantages of having people 
performing this task include the need to extensively evaluate 
video records, the time-consuming and labor-intensive image 
observation or annotation,3 the need to train observers to use the 
system correctly, and the inherent human bias in the evaluation 
process. For example, proficiency in the human facial action 
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system (FACS) requires approximately 50 to 100 h of training, 
and experts require about 2 h to code each minute of video.29 
Although reports of facial expressions as indicators of pain in 
macaques are scarce, they are helpful resources and complement 
other existing indicators.16,17,22,39

Automated recognition systems have the potential to objec-
tively assess pain in nonverbal humans6,7 and other animals.8 
These systems have been particularly useful for identifying 
pain in horses undergoing castration, allowing for efficient 
treatment.2,28 Artificial neural networks (ANNs) are a branch 
of machine learning loosely inspired by the brain, consisting of 
thousands of interconnected nodes, organized into layers, that 
conduct information. ANNs are particularly useful in computer 
vision tasks, speech recognition, and medical image analysis.1 
To perform a task, ANNs typically use training examples (that 
is, previously identified data), such as images. In the case of 
object recognition, the system can be trained with thousands of 
labeled images (for example, house, truck, tree). By adjusting 
its parameters, the network can learn to match input images 
with corresponding output labels. Similarly, the system can be 
trained to recognize and classify images for the assessment of 
pain states in animals. However, recognizing pain from animal 
facial expressions, especially from macaques, is complicated 
by their subtle signals and potential masking behavior in the 
presence of observers.21,22,39 To automate the classification of 
pain from facial images in macaques, videos must be recorded 
in the absence of observers; the macaque face must be located in 
the video frames and then used to train the system to perform 
the classification task.

The use of deep learning for image analysis provides several 
advantages, such as significantly reducing the need for manual 
image capture and annotation while also minimizing evaluation 
bias. This study aims to evaluate 2 models for facial recognition 
and frame extraction, as well as a training model for classifying 
pain in Japanese macaques using deep learning techniques.

Materials and Methods
Animals.  A portion of the same videos described in our 

previous study22 was used for the dataset. This research was 
approved by the Animal Welfare and Care Committee of the 
Primate Research Institute, Kyoto University (nos. 2016-109, 
2017-096, 2018-178, 2019-156, and 2020-050), and institutional 
guidelines for the care and use of nonhuman primates were 
followed. Animals did not undergo surgery solely for this 
study, and video recordings were opportunistic. The study 
group consisted of 22 female Japanese macaques (Macaca 
fuscata), aged 9 ± 4 y and weighing 8.3 ± 1.9 kg. The macaques 
were captive bred at the Primate Research Institute (currently 
partially succeeded to the Center for the Evolutionary Origins of 
Human Behavior, Kyoto University) and were housed indoors 
at the time of the study. They were housed in singly (n = 12) 
or in pairs (n = 10) (650 × 1,560 × 800 mm [diameter × width ×  
height]) in rooms with controlled temperature (20 to 27 °C) and 
a 12:12-h light:dark cycle (lights on at 0700). Their diet consisted 
of monkey chow twice daily, sweet potatoes 3 times a week, and 
occasional fresh apples and bananas; water was freely available. 
Sixteen of the macaques underwent laparotomy for reproduc-
tive biology studies. Six did not undergo surgery, and videos 
were collected to increase the number of images extracted for 
training (videos showing the absence of pain).

Macaques underwent experimental laparotomy between 
2016 and 2020. Laparotomy was performed between 0900 and 
1100 for egg collection or implantation. The surgical procedure 
involved a midline abdominal incision through the skin, fascia, 

and musculature, with manipulation of the uterus and ovaries 
based on the specific surgery. According to the survey of primate 
veterinarians, the degree of pain experienced by macaques after 
laparotomy ranges from moderate to severe.35 Subjects were 
anesthetized with an IM combination of ketamine (5 mg/kg;  
Daiichi Sankyo Propharma, Tokyo, Japan), medetomidine  
(0.025 mg/kg medetomidine injection; Meiji Seika Pharma, 
Tokyo, Japan), and midazolam (0.125 mg/kg midazolam injec-
tion; Sandoz K.K., Tokyo, Japan). Anesthesia was maintained 
with sevoflurane in 100% oxygen using a face mask. The 
macaques also received amoxicillin (15 mg/kg Amostac; Meiji 
Seika Pharma), famotidine (0.1 mg/kg; Sawai Pharma, Osaka, 
Japan), buprenorphine (0.01 mg/kg Lepetan; Otsuka Phar-
maceutical, Tokyo, Japan), and carprofen (4 mg/kg Rimadyl;  
Zoetis, Tokyo, Japan) during the procedure. On the morning after 
surgery, video recording was performed at 0800. Postoperative 
analgesia of buprenorphine (0.01 mg/kg, IM, BID; 0900 and 
1800) and carprofen (4 mg/kg, SC, SID; 0900) was administered 
immediately thereafter and again on days 2 and 3 after surgery.

Face detection and frame extraction. Facial images were cap-
tured from 30 to 60 min of video footage of the macaques under 
2 different conditions: before surgery (No Pain [NP]) and before 
receiving analgesic medication on the morning after surgery 
(Pain [P]), by using cameras (GoPro HERO6Black, HERO7Black, 
and HERO8Black) attached to the cage bars (Figure 1). The 
observer was not in the room during the recording session. 
The video recording was taken before the daily administration 
of analgesics to capture images at the time considered to have 
minimal analgesic benefit based on the pharmacokinetics of 
the analgesics.36 Pain was considered to represent the most 
informative condition for facial pain changes, while NP was 
categorized as pain free. Automatic sequential video processing 
was performed to localize the region of the frame that contained 
faces to build the dataset.

Two facial location and frame extraction systems were com-
pared: box extraction and contour extraction. For box extraction, 
we employed RetinaFace,15 which localizes the face and yields 
a bounding box around it. For the Contour extraction, we used 
Mask R-CNN,23 which marks the specific pixels in the image 
that belong to the face as compared with using coarse bound-
ing boxes during object localization. Therefore, the image 
resulting from contour extraction is a polygon outline of the 
face (Figure 2).

Box extraction. In the first set of experiments, RetinaFace was 
used to detect and capture the macaque face in the frame. A total 
of 68 videos were processed, resulting in 70,852 images. The 
extracted images were labeled based on the macaque’s condition 
(P/NP). Three frames per second were automatically extracted, 
allowing the capture of different versions of the face without 
intensive computation or bias. Redundant data were removed 

Figure 1. Timeline of video recording, surgery, and the administration 
of analgesics in Japanese macaques undergoing laparotomy.
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based on a high incidence of pairwise similarities as detected 
by the histogram of oriented gradients (HOG) (Figure 3). HOG 
is based on feature descriptors, which help to extract use-
ful information while discarding the unnecessary parts. The 
HOG’s 0.9 threshold resulted in 15,987 images, which were 
then classified by the pretrained neural network ResNet50.24 
After experiments 1 and 2 (E1 and E2, described below), we 
manually excluded profile and blurred and occluded images 
or images containing elements other than the face resulting in 
a dataset of 11,445 pictures.

Contour extraction. In the second set of experiments, Mask 
R-CNN was used for object recognition and frame extraction. 
The same 68 videos were analyzed, resulting in 54,542 im-
ages. Masking was used to allow capture of only the face in 
the images, excluding any background or nearby objects. The 
presence of unnecessary data in a machine-learning model can 
be detrimental to its performance. For example, if the model 
uses irrelevant information, such as background and objects 
in the cage, to classify the images, it may mistakenly assume 
that all other pictures containing that background and objects 
belong to the same category. This can lead to inaccurate predic-
tions and decreased accuracy. The extracted images were also 
converted to grayscale, brightness was equalized, and images 
were manually selected for suitability (Figures 4 and 5). After 
redundant data reduction with HOG and manual selection, the 
dataset comprised 19,216 images.

Neural network training. ResNet50 was used for image clas-
sification.24 A backpropagation algorithm was used to train the 
multilayer networks, thereby minimizing the loss function that 
quantifies the difference between the model outputs and correct 
labels, NP or P, for images representing NP or P. To increase the 
amount of training data, real-time data augmentation was ap-
plied by using minor random modifications of the images, such 
as rotations, zoom, shifting, and horizontal flipping. We did not 
use predefined pain indicators, and the classification algorithm 
relies only on the current image being presented to the ANN.

The experiments were conducted to study the influence of 3 
factors: the number of trained layers, image preprocessing, and 
generalization to nontrained datasets. We assessed the model’s 
overall performance using accuracy, recall (sensitivity), preci-
sion (positive predictive value), and F1-score. The accuracy 
indicates the proportion of pictures correctly classified by the 
ANN. However, the accuracy does not indicate the degree of 
bias of the ANN. For example, 50% accuracy may result from 
classifying images as P or NP 100% of the time. Therefore, ANN 
performance in binary classification can be described in more 
detail using recall, precision, and F1-score. Recall indicates how 
many times the model was able to detect a specific category 
(that is, of all pain images, what fraction is correctly detected). 
Precision indicates the fraction of samples classified as pain that 
are truly pain images. The F1-score summarizes the precision 
and recall by taking their harmonic mean.

Accuracy
True Positive True Negative

Total of images
=

+

Recall
True Positive

True Positive False Negative
=

+

Precision
True Positive

True Positive False Positive
=

+

F
Precision Recall

Precision Recall
1

2
=
× ×

+

Six experiments (E) were conducted after box extraction of the 
face from the videos using RetinaFace. Each experiment comprises 
a session of training and testing of images. The first layers of an 

Figure 2. Extraction of facial images of Japanese macaque images  
using RetinaFace and Mask R-CNN. RetinaFace applies boxing 
around the face, while Mask R-CNN applies masking based on the 
object’s contour.

Figure 3. A histogram of oriented gradients (HOG) was used to measure the similarities between images and avoid redundant data. The ex-
tracted dataset was reduced from 70,852 images to 15,987 after HOG.
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ANN are usually not unlocked during training because they 
recognize the basic geometrical structures of the objects. The last 
layer is the one typically modified and refined to recognize a new 
set of classes, such as P or NP in facial expressions. We compared 
the number of trained layers in E1 and E2 when using the whole 
dataset. In E1, only the last layer (a fully connected layer with 256 
ReLU units) was modified to classify images, and E2 permitted 
the training of all 50 layers. For E3, E4, E5, and E6, images were 
manually selected. We also compared the number of trained 
layers in E3 (only the last layer was modified) and E4 (all layers 
were modified). For E5 and E6, the dataset was further refined 
and contained only paired data (that is, training data included 
only images of the same individual before and after surgery). E5 
and E6 also excluded the datasets of 2 animals to test the model’s 
generalization (that is, an estimate of how well the system can 
classify novel data). The generalization test set comprised 1,088 
images: 544 images each of P and NP classes.

E7 to E30 were conducted after masking extraction of the face 
from the videos using Mask R-CNN (for an outline of the study, 
see Figure 6). We compared the number of trained layers in E7 (the 
last layer modified) and E8 (all layers modified). E9 (the last layer 
modified) and E10 (all layers modified) used only paired data, 
and the datasets of 2 animals were not used for training to test 
the model’s generalization. The goal of E11 to E30 was to improve 

accuracy for generalization. Therefore, we ran 20 trained ANNs 
using 2-stage training; this allowed fine-tuning of learning. The 
generalization test set contained 1,586 images (793 images each 
of P and NP), using the parameters shown in Table 1.

Results
Tables 2, 3, and 4 show classification performances across 

experiments. The results of the tests using RetinaFace for facial 
image capture and classification with ResNet50 are as follows: 
E1, which considered only the modification of the last layer 
of the ANN and contained all images, resulted in an accuracy 
of 69%. After excluding unsuitable images, E3 resulted in an 
accuracy of 70%. The exclusion of unsuitable images and gener-
alization test to 2 novel macaques in E5 resulted in an accuracy 
of 48% (Table 2).

Results for tests using Mask R-CNN for facial image capture 
and classification with ResNet50 are as follows: E7, which 
excluded unsuitable images, resulted in an accuracy of 72%. 
E9, which excluded both unsuitable images and tested the 
generalization to 2 novel macaques, resulted in an accuracy 
of 55% (Table 3). Excluding unsuitable images and fine-tuning 
the ANN resulted in accuracy between 57% and 64%, with an 
average ±SD of 60 ± 2% for the generalization test to 2 novel 
macaques (Table 4).

Figure 4. (A) Mask R-CNN was used to capture facial frames. (B) Images were converted to grayscale and brightness equalized to mitigate 
external interference.
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Discussion
Machine learning techniques have been used to decode 

animal emotions with less risk of anthropocentric biases and 
comparable performance with human evaluators.2,28,43 The cur-
rent study provides information on 2 face detection methods 
and one ANN model (ResNet50) to classify pain in Japanese 
macaques without hyperparameter or architecture modifica-
tion. The methods were tested to identify which performed the 
classification of facial expressions of pain in Japanese macaques 
with the greatest accuracy. Using RetinaFace for face detec-
tion and image extraction resulted in an overall test accuracy 
between 48% and 98%, depending on the experiment. E1 used 
all images extracted by RetinaFace, without manual selection, 
while E3 used the dataset after manual selection, which exclud-
ed profile and blurred or occluded images. Despite rigorous 
image exclusion, the test accuracy rose from 69% to only 70%, 
suggesting that the excluded images did not extensively impact 
the classification system. For E3, modification of all 50 layers 

was permitted for training, resulting in an accuracy of 94%. 
However, the high accuracy per se does not mean that the ANN 
is highly efficient in the classification task. This could result 

Figure 5. (A, B, C) Example of images extracted with Mask R-CNN. Images of clear faces were included. (D) Blurred images or (E) greater than 
50% occluded images or (F) images showing elements other than the face were excluded from the final dataset.

Figure 6. Flowchart of image processing for the classification of pain in facial expressions using Mask R-CNN and ResNet50.

Table 1. Architecture and hyperparameters of the neural network 
ResNet50

Architecture
ResNet-50 - 256 FC (0.5 dropout) - 512 
FC (0.5 dropout) - 256 FC (0.5 dropout)

Hyperparameters l2_reg = 0.0001 
lr_decay = lr × sqrt(batch_size/

(train_size × epochs))
Two-stage training (decreasing the learning rate  

at the second stage to fine-tune)
Stage I All layers updated, lr = 5 × 10-6 

EarlyStopping (1) config: monitor = 
“val_accuracy,” patience = 10

Stage II All layers updated, lr = lr/100 
EarlyStopping (2) config: monitor = 

“val_accuracy,” patience = 20
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from overfitting training images, as confirmed in E6 in which 
generalization to novel subjects resulted in 48% accuracy. 
In E6, the ANN likely recognized and incorporated features 
that were irrelevant to pain, such as color and background, 

resulting in low accuracy. Tailoring the dataset by removing 
background and obstructing objects, converting to grayscale, 
and normalizing the brightness improved accuracy for E7 
and E8 as compared with E3 and E4 from 69 to 72% and 94 to 
97%, respectively.

The results of the generalization tests in E9 and E10 had 
unsatisfactory performance levels of 55 and 44%, respectively. 
Ensuring that training and test subjects do not overlap is crucial 
to avoiding classification and learning of individual-specific 
features by the model.19 Tests to evaluate generalization are 
essential to classification systems;46 therefore, a subset of the 
data not used for training was used to determine whether the 
model could be applied to other Japanese macaques. Our results 
indicate that the tests conducted after box extraction did not 
perform well for generalization. The dataset from box extraction 
included a significant amount of “noise,” such as background 
and different illumination, that could have interfered with the 

Table 2. Performance of classification of Japanese macaque facial images into No Pain (NP)/Pain (P)

Experiment
Number of 
P images

Number of 
NP images Total Status Accuracy (%) Precision (%) Recall (%)

E1–All data; 
the last layer modified

5,182 10,805 11,990 Train
3,997 Test 69 59 (NP) 

82 (P)
91 (NP) 
39 (P)

E2–All data; 
all layers modified

5,182 10,805 11,990 Train
3,997 Test 91 95 (NP) 

97 (P)
97 (NP) 
95 (P)

E3–Only suitable data;  
the last layer modified

3,786 7,659 8,584 Train
2,861 Test 70 55 (NP) 

73 (P)
90 (NP) 
27 (P)

E4–Only suitable data;  
all layers modified

3,786 7,659 8,584 Train
2,861 Test 94 98 (NP) 

88 (P)
86 (NP) 
98 (P)

E5–Only suitable data;  
the last layer modified; 
generalization

3,463 5,013 7,388 Train
1,088 Test 48 54 (NP) 

81 (P)
95 (NP) 
21 (P)

E6–Only suitable data;  
all layers modified; 
generalization

3,463 5,013 7,388 Train
1,088 Test 54 53 (NP) 

60 (P)
84 (NP) 
24 (P)

After frame extraction with RetinaFace, the classification was performed with the pretrained neural network ResNet50 on ImageNet.

Table 3. Performance of classification of Japanese macaque facial images into No Pain (NP)/Pain (P)

Experiment
Number of 
P images

Number of 
NP images Total Status Accuracy (%) Precision (%) Recall (%) F1-score (%)

E7–Only suitable 
data; the last 
layer modified

6,172 13,044 14,022 Train
5,194 Test 72 75 (NP) 

51 (P) 
68

82 (NP) 
41 (P) 

69

79 (NP) 
45 (P) 

68

E8–Only suitable 
data; all layers 
modified

6,172 13,044 14,022 Train
5,194 Test 97 97 (NP) 

96 (P) 
97

98 (NP) 
93 (P) 

97

98 (NP) 
94 (P) 

97

E9–Only suitable 
data; last layer 
modified; 
generalization

6,172 13,044 18,833 Train
1,943 Test 55 58 (NP) 

32 (P) 
47

90 (NP) 
7 (P) 

55

70 (NP) 
11 (P) 

46

E10–Only suitable 
data; all layers 
modified; 
generalization

6,172 13,044 18,833 Train
1,943 Test 44 52 (NP) 

33 (P) 
44

52 (NP) 
33 (P) 

44

52 (NP) 
33 (P) 

44

After frame extraction with Mask R-CNN, the classification was performed with the pretrained neural network ResNet50 on ImageNet. 
Bolded numbers are weighted averages.

Table 4. The mean accuracy for 20 trained ANN after fine-tuning 
was 60% ± 2%

Experiment
Accuracy 

(%)
Precision 

(%)
Recall 

(%)
F1-score 

(%)
E11 63 65 (NP) 

61 (P)
57 (NP) 
69 (P)

60 (NP) 
65 (P)

E12 63 63 (NP) 
64 (P)

64 (NP) 
63 (P)

64 (NP) 
63 (P)

E13 64 61 (NP) 
67 (P)

73 (NP) 
54 (P)

67 (NP) 
60 (P)

The best 3 results are shown. Only suitable data, last layer modi-
fied, and generalization were used for these tests.
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learning. Because these features are unrelated to pain, and yet 
this information might have been incorporated by the model, 
it resulted in poor generalization. Contour extraction excluded 
a significant proportion of these potential interferences. In this 
study, P is the classification of greater importance because 
incorrectly classifying P as NP (false negative) is worse than clas-
sifying NP as P (false positive). Therefore, P recall and precision 
values are important components in assessing the model. In a 
study on pain classification in cats using a pretrained ResNet50 
network, the overall accuracy reached 72%. In the present study, 
the NP recall values in E9 and E10 were close to 100%, while 
for P was near 0%. In tests of generalization, the model will 
likely classify images as NP due to an unbalanced training set 
that has significantly more NP than P images. A model with 
good accuracy should be able to distinguish features from a 
small number of pain images. The model’s performance was 
improved by fine-tuning, and the best model achieved a 69% 
recall and a 65% F1-score for P.

Even when controlling for a small number of images and an 
unbalanced training dataset, the classification of pain images 
is difficult. The facial features that indicate pain in Japanese 
macaques are usually subtle and vary in intensity.22 Also, our 
system does not use predefined regions of the face, action unit 
annotation, or geometric features to indicate pain areas but 
learns only from full-face images and their associated labels. 
Therefore, we view our model results as satisfactory for this 
dataset. We stress that our classification algorithm relies only 
on the current image being presented to the ANN. However, a 
potential avenue for further research is to use images within a 
predefined time window, classify each image separately, and, if 
the fraction of images classified as pain exceeds a user-defined 
threshold, classify the image as P. This approach is similar to 
recent research on pain categorization based on the facial expres-
sions of mice.45 We hypothesize that this approach will provide 
higher accuracy because facial expressions change over time, 
and some frames are more representative of pain facial expres-
sions than others. Furthermore, this method would prevent 
false positives that can occur when a brief facial expression 
similar to a pain expression is misclassified as P. However, this 
method may require larger datasets because multiple images 
are used for a single final classification. A more sophisticated 
approach to detect pain could be the use of Convolutional Long 
Short-Term Memory (C-LSTM) ANN, as used to detect pain in 
horses.9 C-LSTM integrates both temporal and spatial infor-
mation, thereby using facial expressions and behavior for the 
classification and outperforming convolutional neural networks 
(CNN) and CNN followed by an LSTM NN.9

Recently, automated recognition of pain has been extensively 
applied in horses to determine the presence9,28 and level28 of 
pain. Most efforts to identify facial indicators of pain rely on 
the FACS, which decomposes expressions into individual facial 
muscle movements or “action units” (AUs). AUs have been 
identified in research species and provide the anatomic foun-
dation for the development of grimace scales and other tools 
used to evaluate pain.17,25,27,43 AUs can be classified and used 
to train an ANN, tested either alone or together for detecting 
the presence and intensity of pain.28,31,32,41 Although FACS was 
recently published for Japanese macaques,14 a grimace scale has 
not yet been developed for this species. The classification model 
may benefit from specific facial features that contribute to the 
detection of pain in primates, such as orbital tightening, cheek 
tightening, and eyebrow lowering.22,39 When detecting pain in 
human faces, fusing the best-performing AUs associated with 
pain achieved a slightly better accuracy (78%) than extracting 

features from the whole face (75%).32 Focusing on specific areas 
of the face is likely to reflect pain more accurately and could 
improve classification accuracy. For example, using the Mouse 
Grimace Scale for mice, an automated method achieved an 
overall accuracy of 89% for pain classification after anesthesia 
and surgery.4 In sheep, a multilevel approach with detection 
of faces, localization of facial landmarks, normalization, and 
extraction of facial features provided an overall accuracy of 
67% of AUs classification.31

The position of the ears is a common indicator of pain in 
mammals.25,27,43 In Japanese macaques; however, the ears are 
covered by fur, making them hard to see. The boxing and mask-
ing extraction methods were able to include the ear area, but 
this area probably had no significant impact on the classification 
results. Ears that are forward or flattened, as compared with 
being in a neutral position, have been associated with silent 
threatening and affiliative behaviors.38,44 However, information 
on ear changes associated with pain has not been reported. Pain 
expression can vary widely among species, which complicates 
the extrapolation of these external cues. Currently, lip tighten-
ing and squeezed eyes are considered potential pain indicators 
in macaques, while ears were not found to be associated with 
pain.17,39

In addition to facial expression, behaviors are also important 
when evaluating pain. Smart devices have been used to record 
behavior patterns and activity changes associated with pain in 
humans12 and animals.47 Smartwatches and wearable sensors 
can provide information in real-time and facilitate the medical 
approach to the condition. Devices that have contact with the 
patient’s body may be ill-suited for captive wild species and 
induce stress or be damaged. Therefore, video recording is still 
among the least expensive and most viable options for objective 
and continuous monitoring in captive or naturalistic scenarios. 
Markerless motion capture was developed from video-recorded 
macaques, facilitating the study of macaque behavior with 
accuracy comparable to that of humans.26 In experimental 
surgical settings, data processing can reduce observation and 
training bias by monitoring the body parts that indicate the 
patient status.

Limitations of this study include the limited number of im-
ages for training and testing, which differs from human pain 
and object detection datasets that are more easily accessible in 
open libraries, containing many images compared with those 
used in animal studies. In addition, housing macaques in 
pairs with their conspecifics could have influenced the facial 
expressions of some individuals. The experience of pain can 
vary among individuals, and different surgeries can result in 
different types of pain. Sedation may also affect facial expres-
sions and impact pain scoring, as observed in rats anesthetized 
with isoflurane.34 Because our recordings began the day after 
the surgery, sevoflurane anesthesia was not likely to have af-
fected the frames captured. Finally, the DL approach used in 
this study uses “black-box” reasoning, which means that the 
model’s decision-making process may not be easily understood 
by humans, limiting its use in clinical applications.8,30

Assessing pain in research macaques is essential for animal 
welfare and helps to reduce bias in research outcomes. However, 
manual annotation of facial expressions and behaviors is labor- 
and time-intensive. Our study has shown that ANN-based 
algorithms can be used for automated facial recognition and 
classification of pain in Japanese macaques. Further studies 
might improve overall performance by expanding the training 
set, focusing on specific areas of the face, and using sequential 
models that consider video dynamics for classification.9
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