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Introduction
Regular health surveillance is a critical component of colony 

management for laboratory mice. Microbial infections have the 
potential to cause clinical and subclinical disease, resulting in 
detrimental effects on animal welfare and could lead to experi-
mental variability. Although the goal of identifying adventitious 
microorganisms in colony animals is the same across institu-
tions, the design of the health surveillance program can vary 
greatly and is tailored to the individual facility. Health surveil-
lance methods include direct sampling of either the resident 
population or indirectly exposed sentinel mice and environmen-
tal monitoring. Despite these options, many programs rely on 
the use of sentinel mice exposed to dirty bedding. These mice are 
dedicated to use for regular exposure to pooled dirty bedding 
from colony animals.51 Relying on fecal-oral transmission, these 
sentinel mice are assumed to reflect the microbiologic status of 
the resident population and are regularly tested to help identify 
infections in the larger colony. This health surveillance system 
prevents disruption of the resident research population and 
allows one or a few sentinel mice to monitor multiple cages at 
once, decreasing the cost and burden of testing.49

Despite the advantages and widespread acceptance and use of 
sentinels exposed to dirty bedding, the effects of exposure to a 
potentially aversive material on the welfare of the sentinel mice 
may be a concern. In addition to microorganisms, dirty bedding 
contains other stimuli (for example pheromones, ammonia) 
that can act as sources of stress.3 Pheromones are species-
specific chemical signals that are secreted into the environment 
by an individual and affect the behavior and physiology of 

conspecifics.11 Pheromones mediate reproduction and recep-
tivity,10,34,36,72,87,88,92 aggression and dominance,14,50,65,74 and 
defensive behaviors.6,9,76 These volatile chemicals are detected 
by the sensory neurons in the main olfactory epithelium and/or 
vomeronasal organ, which relay the signal to the central nervous 
system eliciting a response.57 The presence of pheromones in 
bodily secretions, including but not limited to urine and exo-
crine glands, allows them to be transferred efficiently in dirty 
bedding.41,43,58,59,95 These chemical signs, especially defensive or 
alarm pheromones, can elicit a stress response.38,42 In addition 
to pheromones, dirty bedding may be a source of ammonia. 
Ammonia is produced in rodent cages by the conversion of urea 
present in urine to ammonia by bacterial urease enzymes. Levels 
of ammonia in the cage gradually increase after cage change, 
although the magnitude of this increase depends on the housing 
and environmental conditions.13,22,29,37,48,55,68,69,75,82,91 Ammonia 
is an irritant that can affect the upper airways, and exposure to 
elevated levels has been associated with pathologic lesions in 
rodents.12,13,29,55,91 The effects of these unintended components 
of dirty bedding on sentinel mice are currently unknown.

Previous studies have used dirty bedding as a source of 
olfactory-mediated psychosocial stress in mice.46,47 In this test, 
known as cage switch or exchange, individual male mice are 
moved to a cage previously occupied by an unrelated male 
mouse.46,47 The mice exposed to the dirty bedding exhibit 
characteristic acute changes consistent with stress, including 
hypertension,46,47 increased locomotion,44,46 and increased 
serum adrenocorticotropic hormone.8 Although the conditions 
of the cage switch stress test appear to mimic the experience 
of dirty-bedding sentinel mice, several differences prevent a 
direct comparison, including the sex of the mice, source of the 
bedding, and length of exposure; dirty-bedding sentinel mice 
are usually female and are exposed to bedding from multiple 
cages of mice over long periods of time.49 Despite or perhaps 
because of these differences, sentinel mice may experience stress 
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as a result of exposure to dirty bedding. Therefore, the objective 
of this current study was to evaluate the behavioral and physi-
ologic effects of exposure to dirty bedding on sentinel mice.

Female ICR mice exposed to pooled dirty bedding from 
breeding and experimental colony mice were compared with 
control mice exposed only to clean bedding. Behavioral pa-
rameters measured included home cage evaluation of hair 
coat and behavior (nest building, stereotypical behavior) 
and behavioral tasks (light-dark box, elevated plus maze). 
Neutrophil:lymphocyte ratio (NLR) and weight were evaluated 
as physiologic measurements of stress. The estrous cycle stage 
was determined at the end of the experiment and analyzed 
as a covariate. The effects of exposure to dirty bedding were 
evaluated at 2 time points: 24 h (acute) and 4 wk (chronic). The 
hypothesis was that exposure to dirty bedding would result in 
behavioral and physiologic changes consistent with stress at 
both time points.

Materials and Methods
Animals. Female Crl:CD1(ICR) mice (n = 80, 23- to 25-d-old 

and 13 to 15 g at arrival) were obtained from Charles River 
Laboratories (Wilmington, MA). Based on vendor assessment, 
these mice were free of the following pathogens and opportun-
istic organisms: Sendai virus, pneumonia virus of mice, mouse  
hepatitis virus, minute virus of mice, mouse parvovirus, 
murine norovirus, Theiler murine encephalomyelitis virus, 
reovirus, murine rotavirus, lymphocytic choriomeningitis  
virus, ectromelia virus, mouse adenovirus, mouse cytomegalo-
virus, K virus, polyoma virus, Hantaan virus, mouse thymic 
virus, lactate dehydrogenase-elevating virus, Bordetella bron-
chiseptica, Citrobacter rodentium, cilia-associated respiratory 
bacillus, Corynebacterium kutscheri, Helicobacter spp., Klebsiella 
spp., Mycoplasma pulmonis, Pasteurella spp., Salmonella spp., 
Staphylococcus aureus, Streptobacillus moniliformis, Streptococcus 
pneumoniae, β-hemolytic Streptococcus spp., Clostridium piliforme, 
Encephalitozoon cuniculi, ectoparasites, and endoparasites. Upon 
arrival, the mice were housed in pairs in standard polycarbonate 
static microisolation rodent cages (Allentown 75 Static with low-
profile lid; Allentown, Allentown, NJ). The mice were housed 
on irradiated ¼ in. corncob bedding (Envigo, Indianapolis, IN) 
and provided with approximately 8 g of paper nesting mate-
rial (Enviro-Dri; Shepherd Specialty Papers, Watertown TN). 
Irradiated, pelleted rodent diet (Teklad Global Rodent Diet 
2918; Envigo, Indianapolis, IN) and water bottles containing 
municipal water were provided ad libitum. The cages were 
placed on a stainless-steel rack in a room that was maintained 
at 20 to 23.3 °C (68 to 73.9 °F) and 30% to 70% relative humidity. 
The light:dark photoperiod was 14:10 with the lights turning 
on at 0600. The room was part of a vivarium that is managed 
by the Research Animal Resources department and covered by 
the AAALAC-accredited animal care and use program at the 
University of Minnesota.

Experimental design. The study and experimental procedures 
were approved by the University of Minnesota IACUC. The 
mice arrived in 2 separate cohorts, corresponding to the acute  
(n = 40) and chronic groups (n = 40). Within each group, mice 
were housed in pairs, and each cage of paired mice was ran-
domly assigned to either dirty bedding (n = 20) or control (clean 
bedding) (n = 20). Because bedding treatments were adminis-
tered at the cage level, the experimental unit was defined as 
the cage. The measurements for all experimental parameters 
were averaged for each pair of mice in a cage for both the 
dirty bedding (n = 10) and control (n = 10) treatments. At the 

time of arrival, 1 mouse in each cage was identified by a single 
ear punch. All cages were in the same room on 1 single-sided 
stainless-steel rack. To avoid unnecessary manipulation by other 
investigators or staff, no other mice were housed on the same 
rack. Placement of cages on the rack was randomized. Cages 
remained in the same position for the duration of the study. 
The mice were then allowed to acclimate to the environmental 
conditions for 7 d.

At the start of the experiment (day 0), mice were moved into 
a new cage containing their assigned bedding treatment. The 
mice in the dirty bedding treatment group were placed into a 
cage containing 100% dirty corncob bedding from colony mice 
whereas the control mice were placed into cages containing 
clean corncob bedding. All cages received new paper nesting 
material (Enviro-Dri; Shepherd Specialty Papers, Watertown 
TN), food (Teklad Global Rodent Diet 2918; Envigo, Indianapo-
lis, IN), and water bottles. The acute groups of mice underwent 
only 1 cage change procedure (day 0) whereas the chronic 
groups experienced weekly cage changes for 4 wk (days 0, 7, 14, 
21, 28). Cage change occurred between 1400 to 1600. Handling 
for this cage change procedure involved grasping the mouse at 
the base of their tail. Mice in the chronic groups were weighed 
on a digital scale during the cage change procedure between 
removal from the previous cage and transfer to the new cage. 
For each group of mice, 2 types of behavioral assessment (home 
cage and behavioral core tasks) were performed at certain time 
points. For the acute group, home cage assessment took place 1 
d before (day -1) and 1 d after (day 1) cage change. Behavioral 
core assessment occurred 1 day after cage change (day 1). For 
the chronic group, home cage assessment took place 1 d before 
(days -1, 6, 13, 20, 27) and 1 d after (days 1, 8, 15, 22, 29) cage 
changes. On the day after the last cage change (day 29), the 
chronic group of mice also underwent behavioral core testing. 
At the end of the study (day 1 for the acute group; day 29 for 
the chronic group) after completion of all the behavioral tests, 
each mouse was euthanized using CO2 and blood and vaginal 
cytology samples were collected for leukocyte and estrous cycle 
analysis, respectively.

Dirty bedding. Dirty bedding was collected from colony mice 
housed in the same room as the experimental cages. Colony 
mice were housed under similar conditions as the experimental 
mice in static microisolation cages containing irradiated corncob 
bedding and paper nesting material. Irradiated, pelleted rodent 
diet, and water bottles containing municipal water were pro-
vided ad libitum. Colony mice were free of the following agents: 
Sendai virus, pneumonia virus of mice, mouse hepatitis virus, 
minute virus of mice, mouse parvovirus, Theiler murine en-
cephalomyelitis virus, reovirus, murine rotavirus, lymphocytic 
choriomeningitis virus, ectromelia virus, mouse adenovirus, 
mouse cytomegalovirus, polyoma virus, Mycoplasma pulmonis, 
Clostridium piliforme, cilia-associated respiratory bacillus, En-
cephalitozoon cuniculi, fur mites, and pinworms.

The colony mice were being used on multiple IACUC-
approved protocols held by different principal investigators. 
The colony mice consisted of a mix of male and female mice 
on experiment (both singly and grouped housed) as well as 
breeding animals. Multiple strains, including genetically modi-
fied mice, were also present. Per the IACUC protocols, none 
of the colony mice were expected to have any abnormal gross 
changes to their feces or urine (for example melena, diarrhea, 
hematuria). On the day of cage change, all the dirty cages from 
the room (200 to 250 depending on the day) were collected. A 
portion of the dirty bedding (approximately 40 g) from every 
cage was removed and pooled into a single container. The dirty 
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bedding mainly consisted of the corncob bedding and feces, but 
some also contained ground food pellets. Nesting material was 
excluded. Once dirty bedding was collected from all the colony 
cages, it was manually mixed for 5 min. To create the dirty bed-
ding treatment cages, the combined dirty bedding was added to 
the bottom of a clean cage to a depth of 1/4 inch (approximately 
200 g). New nesting material was then placed in one corner of 
the cage. The cages were completed by providing fresh food and 
water in the wire top and a microisolation cage lid.

Home cage behavioral assessments. Home cage assessment 
consisted of scoring of the hair coat and nest and observing for 
stereotypical behavior. The hair coat of each mouse was assigned 
a score based on its appearance (0: shiny, smooth, well-kept 
hair coat; 1: at least one area of the body with rough hair). A 
previously described hair coat scoring system was modified to 
allow for cage-side assessment and avoid manipulation of the 
mice.30 One nest score was assigned per cage (0: no manipula-
tion of nest material; 1: no discernable nest; 2: flat nest with no 
shallow walls; 3: nest with a slightly cupped shape with walls 
less than half the height of a dome that would cover a mouse; 
4: nest with walls that are half the height of a dome; 5: nest 
with walls greater than half the height of a dome which may 
or may not fully enclose the nest) as previously described.32 
To assess stereotypical behavior, each mouse was observed 
for 5 continuous minutes for the presence of stereotypies (bar-
mouthing, circling, twirling, back-flipping, route-tracing) based 
on previous descriptions.64 Behavior was scored (0: absent; 1: 3 
unbroken repeats of the same stereotypical behavior [circling, 
twirling, back-flipping, route-tracing] or repeated continuously 
for 3 s [bar-mouthing]) and the type of stereotypical behavior 
was recorded when present. Home cage behavioral assessments 
were performed during the last 2 h of the dark cycle (0400-0600). 
One observer performed all home cage assessments. Scoring 
was performed on the rack without moving or disturbing the 
cage using a red-light flashlight. If an assessment could not be 
made due to poor visibility, a score was not recorded.

Core behavioral task assessments. The University of Minnesota 
Mouse Behavior Core provided guidance and support on behav-
ioral tasks performed in their facility. Mice were moved from 
housing to the testing facility and were allowed to acclimate for 
1 h prior to testing. Mice underwent sequential behavioral tests 
consisting of light-dark box followed by elevated plus maze 
testing. Both mice in a cage were subjected to the light-dark 
box test simultaneously using 2 identical testing apparatuses. 
After completion of the light-dark box testing, one mouse from 
the cage was immediately subjected to elevated plus maze as-
sessment while the other mouse was returned to the cage. The 
other mouse was tested on the elevated plus maze after the first 
mouse had completed the test. All equipment was cleaned with 
70% ethanol between mice. Testing occurred between 0900 to 
1500. One test operator performed all behavior core testing. The 
cage testing order was randomized.

The light-dark box consisted of a modified polycarbonate 
cage (48.26 cm long x 25.4 cm wide x 20.32 cm tall, Allentown) 
split into a light side (32.16 cm long x 25.4 cm wide) and a dark 
side (16.10 cm long x 25.4 cm wide) by a dividing wall with a 
small portal (3.81 cm tall x 6.35 cm wide) at the base. The light 
chamber contained overhead illumination (1400 lx). At the be-
ginning of the test, the mice were placed in the light chamber. 
The mice were subsequently recorded using an overhead digital 
camera for 10 min. Two observers who were blind to the mouse 
treatment group independently viewed the recorded footage 
and scored the overall time spent in the light chamber (s) and 
latency to enter the dark chamber (s).

The elevated plus maze (Med-Associated; St. Albans, VT) con-
sisted of 2 open arms (34.9 cm long x 6.07 cm wide) intersecting 
with 2 closed arms (34.9 cm long x 6.07 cm wide x 19.13 cm tall). 
The entire apparatus was elevated (74.93 cm above base) and 
dimly illuminated (45 lx) by overhead lights. At the beginning 
of the test, the mice were placed in the center (2.4 long x 2.4 cm 
wide) of the intersecting arms. The mice were subsequently 
recorded using an overhead digital camera for 5 min. Two ob-
servers who were blind to the treatment group independently 
viewed the recorded footage and scored the amount of time 
spent in the open arms (s). The proportion of time spent in the 
open arms was calculated as the time in open arms divided by 
the sum of time in both the open arms and closed arms.

Postmortem collection of samples. Immediately after the com-
pletion of the behavior core testing (day 1 for the acute group; 
day 29 for the chronic group), the mice were placed back into 
their home cage and the pair was euthanized using CO2. Eu-
thanasia was performed in the home cage using a displacement 
rate of 30 – 70% of cage volume per minute. After confirmation 
of death, approximately 0.5 mL of whole blood was collected 
by cardiac puncture. The blood was immediately placed in an 
EDTA collection tube (K2EDTA MiniCollect Tube; Greiner Bio-
One, Kremsmünster, Austria). The tubes were gently inverted 
for 10 s and then placed on ice until shipment. Two personnel 
collected blood (one person for each mouse) to ensure rapid 
collection of unclotted blood. After blood collection, a sterile 
swab (Sterile Polyester Tipped Applicators 25 to 826 2WD; Pu-
ritan, Guilford, ME) was wet with sterile saline (0.9% NaCl) and 
inserted into the vagina of each mouse. The swab was gently 
turned and rolled against the vaginal wall and then removed. 
Cells were transferred to a dry glass slide by rolling the swab 
across the slide. The slides were allowed to air-dry for at least 
30 min. Sample collection for vaginal cytology was performed 
by one person.

Complete blood count. On the same day of collection, the 
blood samples were shipped next-day on ice to IDEXX Refer-
ence Laboratory (Grafton, MA). Complete blood count testing 
was performed on every sample using a commercial analyzer 
(XT-V Analyzer; Sysmex America, Lincolnshire, IL). A technician 
reviewed blood smears microscopically for abnormalities. The 
reported absolute neutrophil and lymphocyte numbers (/uL) 
were used to calculate the NLR for each sample.

Vaginal cytology. The air-dried slides were stained with a 
Romanowsky-type stain (Rapid Differential Stain Kit; VetOne, 
Boise, ID) according to the manufacturer’s instructions. The 
slides were examined microscopically, and the stage of the 
estrous cycle was determined for each mouse as described pre-
viously.16 One observer who was blind to the treatment group 
determined the estrous cycle stage of each mouse.

Statistics. To assess the agreement of the 2 observers for the 
light-dark box and elevated plus maze, intraclass correlations 
(ICC) were calculated and mean difference plots were cre-
ated. To analyze the difference between bedding treatment, all 
behavioral and physiologic measurements were averaged for 
both mice in the same cage to account for the application of the 
treatment at the cage level and not to individual mice. Using 
these cage averages, t tests were used to compare the following 
data by treatment group: nest score, light-dark box (time spent in 
the light chamber, latency to enter the dark chamber), elevated 
plus maze (proportion of time spent in the open arm), NLR, 
and weight (by day, net weight gain). The acute and chronic 
groups were assessed separately. The haircoat scores were not 
analyzed because all the mice maintained a shiny, smooth, and 
well-kept hair coat at all time points regardless of treatment. The 
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order of testing in the elevated plus maze and the estrous cycle 
stage were assessed as covariates to adjust for any differences. A 
linear mixed model analysis was performed on each measure, 
with treatment as the main predictor, estrous stage and testing 
order as covariates, and a random effect for cage. All statistical 
analyses were performed using statistical software (R version 
4.0.2.; Foundation for Statistical Computing, Vienna, Austria). 
The threshold for significance in all statistical tests was set at 
a P value of less than 0.05. Descriptive values are presented as 
mean ± 1 SD. 

Results
Home cage behavior. For both the acute and chronic groups, 

most mice were visible for home cage assessment of hair coat 
and behavior at every time point. On average 7 of 40 mice from 
each group could not be assessed at each time point due to 
poor visibility. All mice in both the acute and chronic groups 
maintained a shiny, smooth, and well-kept hair coat at all time 
points regardless of treatment. No stereotypical behaviors were 
noted in the mice in the acute group. In the chronic groups, 
stereotypical behavior was noted in mice exposed to control 
and dirty bedding treatments. One control mouse was noted 
bar-mouthing (day 29). One mouse exposed to dirty bedding 
was identified as bar-mouthing (days 13 and 22) and another 
mouse was twirling (days 20, 22, and 29). The prevalence of 
these behaviors was too low to be analyzed statistically. No sig-
nificant differences (P < 0.05) in nest scores based on  treatment 
were noted in either the acute or chronic groups at any of the 
time points (Table 1).

Light-dark box and elevated plus maze. Data analyzed for the 
light-dark box included latency to enter the dark chamber and 
overall time spent in the light chamber (Table 1). There were no 
significant differences (P < 0.05) in these measurements between 
the control and dirty bedding treatments in either the acute or 
chronic groups (Figure 1A and B). There was little variance 
between reviewer scoring (ICC: 0.97 to 0.99).

For the elevated plus maze, the proportion of time spent in 
the open arm was calculated (Table 1). There was no significant 
difference (P < 0.05) between the control and dirty bedding 
treatments in either the acute or chronic groups (Figure 2). Vari-
ance between reviewers was mild (ICC: 0.83). No significant 
difference (P < 0.05) in the behavioral test measurements was 
detected between the mice that had elevated plus maze testing 
immediately and those that were delayed.

Neutrophil:lymphocyte ratio. One sample from a mouse ex-
posed to control bedding in the acute group coagulated prior 
to analysis and white blood cell counts could not be obtained. 
The NLRs were calculated from the absolute leukocyte counts 
(Table 1). No significant differences (P < 0.05) were detected 
in the NLR between treatments in either the acute or chronic 
groups (Figure 3). No significant difference (P < 0.05) in the NLR 
was detected between mice that underwent elevated plus maze 
testing immediately and those that were delayed.

Weight. Because weight changes were considered unlikely 
in the acute groups, weights were collected only for mice in 
the chronic groups (Table 1). Mice that were exposed chroni-
cally to dirty bedding weighed significantly less than mice 
in the control group at day 21 (27.6 ± 1.6 g and 29.4 ± 1.0 g, 

Table 1. Mean ± SD for behavioral and physiologic parameters measured in the acute and chronic groups treated with control or dirty bedding.

Acute Chronic

Control Dirty Bedding Control Dirty Bedding

Nest Scores
D-1 3.4 ± 1.1 3.5 ± 0.9 3.8 ± 0.9 4.0 ± 1.2
D1 3.7 ± 0.8 3.2 ± 0.9 3.5 ± 1.0 2.6 ± 0.5
D6 3.2 ± 0.9 3.8 ± 0.8
D8 3.5 ± 1.4 3.3 ± 0.8
D13 3.8 ± 0.9 2.9 ± 0.9
D15 3.4 ± 1.3 3.6 ± 1.0
D20 3.8 ± 1.4 3.5 ± 1.2
D22 3.5 ± 1.1 3.4 ± 1.2
D27 3.2 ± 0.9 2.9 ± 0.7
D29 3.9 ± 1.1 3.6 ± 1.4

Light-Dark Box

Time Spent in Light Chamber (s) 125 ± 66 174 ± 81 100 ± 55 142 ± 74
Latency to Enter Dark Chamber (s) 27 ± 21 36 ± 26 34 ± 34 29 ± 22

Elevated Plus Maze

Proportion of Time Spent in the Open Arm 0.42 ± 0.12 0.36 ± 0.10 0.41 ± 0.11 0.40 ± 0.07
Neutrophil:Lymphocyte Ratio 0.17 ± 0.03 0.17 ± 0.04 0.12 ± 0.05 0.14 ± 0.04

Weight

D0 (g) 24.45 ± 1.04 25.15 ± 0.91
D7 (g) 25.75 ± 0.92 25.50 ± 1.08
D14 (g) 27.40 ± 1.07 26.55 ± 1.32
D21 (g) 29.35 ± 0.97 27.55 ± 1.61 *
D28 (g) 31.10 ± 1.22 28.70 ± 1.57 *
Net Gain (g) 6.65 ± 1.53 3.55 ± 0.90 *

*P < 0.05
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respectively; P = 0.009) and day 28 (28.7 ± 1.6 g and 31.1 ± 
1.2 g, respectively; P = 0.001). (Figure 4B). The net change in 
weight over the entire study was also significantly less for mice 
exposed chronically to dirty bedding as compared with control 

mice (3.6 ± 0.9 g compared with 6.7 ± 1.5 g, respectively; P = 
0.00006) (Figure 4A).

Estrous cycle. Estrous cycle stage as a covariate did not have 
any significant impact on any of the measurements.

Figure 1. Results of the light-dark box behavioral assay for acute and chronic groups exposed to control or dirty bedding. (A) Box and whisker 
plot with solid black line representing the median amount of time spent in the light chamber (s). (B) Box and whisker plot with solid black line 
representing the median latency to enter the dark chamber (s). No significant differences between control or dirty bedding were noted (n = 10 
per treatment, t test).

Figure 2. Results of the elevated plus maze behavioral assay for acute 
and chronic groups exposed to control or dirty bedding. Box and 
whisker plot with the solid black line representing the median propor-
tion of time spent in the open arms. No significant differences between 
control or dirty bedding were noted (n = 10 per treatment, t test).

Figure 3. Neutrophil:lymphocyte ratio for acute and chronic groups 
exposed to control or dirty bedding. Box and whisker plot with the 
solid black line representing the median neutrophil:lymphocyte ra-
tio. No significant differences between control or dirty bedding were 
noted (n = 10 per treatment, t test).
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Discussion
Dirty-bedding sentinels are regularly exposed to soiled 

bedding from colony animals to transfer and detect excluded 
microorganisms in the resident population. However, dirty 
bedding can also contain other elements, such as pheromones 
and ammonia, which may act as a source of stress for sentinel 
mice. The goal of this study was to determine whether acute 
or chronic dirty bedding exposure causes behavioral and/or 
physiologic changes consistent with stress to better understand 
the experience of a sentinel mouse.

No significant differences in home cage behavior (hair coat, 
nest score, stereotypical behavior), behavioral tests (light-dark 
box and elevated plus maze), or NLR were detected between 
the mice exposed to dirty or clean bedding in the acute or 
chronic groups. However, the mice exposed to dirty bedding 
in the chronic group weighed significantly less at days 21 and 
28 as compared with the control mice. The chronic dirty bed-
ding mice also had a significantly lower net weight gain over 
the course of the study.

Stress describes an internal state that occurs in response to 
a disturbance in homeostasis or wellbeing.62 Stress in animals 
must be inferred from behavioral and physiologic responses to 
stressors. One method of assessing stress is by identifying signif-
icant deviations from species-specific behavior.60 Self-grooming 
and nest building are common natural behaviors in mice that can 
be used to identify changes consistent with stress.30,32,45 In this 
study, no significant differences in hair coat or nest scores were 
detected between the mice exposed to dirty or control bedding. 
All the mice in both the acute and chronic groups maintained a 
well-kept hair coat with no areas of rough hair to indicate a lack 
of grooming. Nest scores of the acute groups ranged from 2-5 
on all days measured regardless of treatment. For the chronic 
groups, only the control group measured on day 1 showed a 
tighter range of 3-5. At all of the other timepoints, the nest scores 
ranged from 2-5 regardless of treatment. Others have studied 
grooming and nest building over time, which may provide more 
sensitive assessment of behavioral alterations.73,90 This was not 
done in the present study due to the desire to maintain consist-
ent timing of treatment and observations in each group of mice, 
and because of lack of enough equipment for observation of 40 
cages of mice simultaneously.

Another method of assessing stress is by identifying abnormal 
behaviors.19 Stereotypical behaviors are classified as abnormal 

repetitive behaviors that lack any goal or function.31 They are 
complex behaviors that are not well understood, but have been 
suggested to be associated with stress although a true cause and 
effect relationship has not been established.26,93 In this study, 
mice chronically exposed to control (1 of 20) and dirty bedding 
(2 of 20) showed stereotypical behavior during the observation 
period. Stereotypical behaviors were noted earlier in the mice ex-
posed to dirty bedding than in the control mice (on days 13 and 
20 as compared with day 29). In individual mice that showed 
stereotypical behavior on multiple observations throughout 
the study, the presence of the abnormal behavior was not 
observed consistently after first being identified. Based on the 
literature, the prevalence of stereotypical behavior was lower 
than expected for this stock of mice.31,94 As for grooming and 
nest building, stereotypical behavior can vary over time such 
that investigators observe mice during the entire dark phase 
to capture these behaviors.63,64 This variation may be present 
in our data given that the behaviors were intermittent once 
identified. This variation may also account for the unexpect-
edly low prevalence of stereotypical behaviors.94 Given that the 
prevalence of stereotypical behaviors was too low to analyze, 
increasing the duration of observation may have yielded more 
instances of stereotypy. This was not done in our study due to 
an effort to maintain consistencies in the timing of treatments 
and insufficient equipment to monitor this number of mice 
simultaneously as stated above.

In humans, stress, especially when prolonged or repeated, 
can lead to emotional disturbances including anxiety and 
depression.15 Therefore, another method of assessing stress is 
identifying these emotional changes. Several well-established 
behavioral tests in mice are used to assess anxiety.2,81 A bat-
tery of tests is often recommended to define the behavioral 
phenotype. The light-dark box and elevated plus maze are 2 of 
the most widely used tests for anxiety that rely on the conflict 
between exploration and avoidance.2 Mice prefer dark, closed 
areas instead of light, open spaces, so decreased willingness to 
explore environments that are more aversive is used to identify 
anxiety. Based on our data, exposure to dirty bedding (acute 
or chronic) did not significantly affect any of the parameters 
measured in the light-dark box or elevated plus maze. Agree-
ment of the 2 reviewers varied from very good (light-dark 
box) to moderate (elevated plus maze). Possible causes for 
the variation in viewer agreement for the elevated plus maze 
include the complexity of the apparatus and/or visualization 
of the mice. The elevated plus maze has 3 areas - open arms, 
closed arms, and central area. The presence of the central area 
may have contributed to discrepancies between the reviewers. 
In addition, the apparatus used was built for mice with black 
coats so that the observer could benefit from the contrast of a 
dark mouse on a light background. However, the CD-1 mice 
used in this study are white. The lack of contrast between the 
white hair coats and white background may have added a layer 
of complexity to the assessment.

The majority of laboratory tests for anxiety-like behavior are 
validated and performed with male rodents despite evidence 
for sex-related differences in stress psychopathology.7,53 For 
our study, the light-dark box and elevated plus maze were 
used because they take advantage of characteristic behaviors 
(that is avoidance of light or open areas) that are present in 
both sexes, despite some minor differences.66 Other behavioral 
tests of anxiety and stress can have large differences between 
female and male responses, which can confuse interpretation of 
results.67 This is especially true for assessments of psychosocial 
stress, which often involve male dominance and aggression.4,67 

Figure 4. Weights of mice chronically exposed to control or dirty 
bedding. (A) Box and whisker plot with the solid black line repre-
senting the median weight gain (g) over the study duration. (B) Box 
and whisker plot with the solid black line representing the median 
weight (g) per day. Significance is set at p < 0.05 and is indicated by * 
(n = 10 per treatment, t test).
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Because dirty bedding is postulated to act as a source of olfac-
tory-mediated psychosocial stress, the use of other behavioral 
assessments in this study may have shown significant results; 
however, the light-dark box and elevated plus maze minimize 
potential sex-related difficulties in test results.

In addition to behavioral changes, stressful stimuli can 
also result in characteristic physiologic changes, including 
alterations to the endocrine,54,56 nervous,33 immune,20,23,84 and 
reproductive systems.86 One such change is activation of the 
hypothalamic-pituitary-adrenal (HPA) axis and the production 
of glucocorticoids, including cortisol and corticosterone.56 In 
response to stress, the hypothalamus synthesizes and releases 
corticotropin-releasing hormone, which stimulates the pituitary 
to release adrenocorticotropic hormone. Adrenocorticotropic 
hormone acts to promote the release of glucocorticoids by the 
adrenal glands. Because of this system, glucocorticoid levels 
have been used experimentally to quantify the impact of stress-
ful stimuli.80 Despite its widespread use, several limitations 
can impact data results and interpretation, including circadian 
fluctuations and pulsatile secretion rhythms.80 In addition, 
many sampling and experimental procedures cause significant 
elevations in glucocorticoids, which may obscure meaningful re-
sults.80 Due to these limitations, other measurements of the HPA 
axis have been investigated. One measurement is NLR.18,27,35 
Glucocorticoids mediate an increase in the number of neutro-
phils and a decrease in lymphocytes, causing an increase in the 
NLR. Furthermore, because this change occurs more slowly, 
it has the potential to eliminate confounding increases due to 
experimental procedures, such as the behavioral tests that were 
run in this study. No significant differences were detected in the 
NLR of mice exposed to dirty or control bedding in either the 
acute or chronic group. No evidence of increased lymphocytes 
was found in response to antigens in the dirty bedding, which 
could have confounded the interpretation of this ratio. Not all 
stressors activate the HPA axis, so other measurements may 
have resulted in significant effects.

Changes in body weight have also been identified as a con-
sequence of stress in laboratory rodents. Depending on sex and 
the type of experimental procedure, stress can result in either 
body weight gain or weight loss.17,39,70,77,79,89 Decreased body 
weight is generally considered indicative of stress, especially 
when bolstered by other behavioral and physiologic changes.70 
In this study, the mice that were chronically exposed to dirty 
bedding had a significantly lower body weight on days 21 and 
28 and decreased overall weight gain as compared with con-
trol mice. This significant effect was identified after multiple 
exposures to dirty bedding. However, despite this difference, 
all mice remained within the expected weight range based on 
age as provided by the vendor (Charles River Laboratories). 
The neurophysiological mechanisms of stress-induced nega-
tive energy balance are still being elucidated, but likely involve 
both central and peripheral changes.70,71 These changes are 
mediated not only by glucocorticoids, but also by other factors 
including but not limited to leptin and catecholamines, which 
induce changes to food intake and lipolysis, respectively. In 
addition, mounting evidence suggests that the composition 
of the gut microbiome plays a significant role in metabolism 
and the development of lean or obese phenotypes.40,61 The 
responsible mechanisms are complex and still being identi-
fied, but may include microbiota-induced changes in nutrient 
breakdown and utilization,85 regulation of adipose tissue,1 and 
secretion of bacterial products resulting in inflammatory21 and 
hormonal changes.78 Therefore, exposure to dirty bedding and 
subsequent gut microbiome changes could be responsible for 

decreased weight gain independent of stress. Identification of 
the metabolic changes in response to dirty bedding was beyond 
the scope of this study, but considering the results, further stud-
ies could establish the specific mechanism(s) and determine 
how they may or may not relate to known stress-related energy 
balance deviations.

The estrous cycle stage is an important experimental vari-
able in female mice and must be considered when interpreting 
results. Fluctuations in sex hormones (estrogen and progester-
one) can result in significant differences in the interpretation 
of stress- and anxiety-related behavioral tests and physiologic 
responses.67,83 In this study, the stage of the estrous cycle was 
determined by vaginal swabs performed postmortem. The 
stage of the estrous cycle did not significantly affect any of the 
measures. Mice in both the acute and chronic groups were in 
various stages of the estrous cycle, with each stage found at least 
once in both treatment groups. Despite our negative data, the 
potential role of the estrous cycle stage as a variable warrants 
future study into the effects of dirty bedding on reproduction. 
Mice were not sexually mature at the beginning of the study, 
making them particularly vulnerable to the effects of sex phero-
mones that can accelerate87 or delay maturation.24 Nutritional 
status and body weight may be associated with the onset of 
sexual maturity. In mice, the relationship between body weight 
and puberty is complex and an area of current study, but avail-
able evidence suggests that low body weight is associated with 
delayed sexual maturation.5,28 Given the potential reproductive 
effects of pheromone-containing dirty bedding and the age of 
the mice, the age of sexual maturation and estrous cycling could 
be measured in future experiments with regard to the cause of 
the decreased weight gain. In addition, stress is known to also 
affect sexual development.25,52 Therefore, further investigation 
could help to determine whether the weight changes observed in 
this study were related to stress. Monitoring sexual maturation 
and the estrous cycle requires regular handling and therefore 
was not performed in the current study to avoid disruption 
associated with visual examination and/or sampling.

Stress in the laboratory setting can be defined by a multitude 
of behavioral and physiologic tests and predicting which tests 
will provide significant results based on the stressor is difficult. 
In the current study, the tests were chosen for reasons related to 
the sex of the mice, the characteristics of the stressor, timeline 
of exposure, and potential interactions between tests. Other 
tests that may have yielded significant results and helped to 
define the complete phenotype that results from dirty bedding 
exposure were outside the scope of this study.

Another important limitation is the variable nature of dirty 
bedding. Depending on the donor mice and their use in research, 
dirty bedding can be quite diverse with regard to its composition 
and the presence of potential stressors (for example phero-
mones, ammonia). Therefore, depending on the composition of 
the dirty bedding, individual sentinel mice may be exposed to 
different levels of stressors. In the current study, this variation 
was intentionally minimized, but not eliminated, by thoroughly 
mixing bedding prior to exposure, but the choice of a different 
source of colony mice could yield different results.

To summarize, mice that were exposed chronically to dirty 
bedding weighed less in the latter part of the study (days 21 and 
28) and had an overall lower net weight gain over the 28-day 
duration of the study. Increasing the duration of exposure could 
provide additional data that assists in determining whether 
exposure to dirty bedding is associated with stress. Because 
sentinel mice are often exposed to dirty bedding for much longer 
time periods (for example 6 to 12 mo), increasing the duration 
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of exposure could be the focus of a future study. In addition, 
studying the mechanisms of this difference in weight (for exam-
ple food consumption, body mass analysis, levels of metabolic 
hormones and neurotransmitters, microbiome, estrous cycle, 
sexual maturity) to identify the cause(s) of this change could 
further elucidate the effects of dirty bedding exposure. Under-
standing the effects of prolonged dirty bedding exposure and 
the specific pathways that are modulated could help to further 
define and improve the housing of sentinel mice.
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