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Many aquatic frog pathogens are considered susceptible 
to fluoroquinolones; therefore, enrofloxacin is a logical drug 
of choice.1,6,11 Our lab recently used HPLC to determine the 
plasma pharmacokinetics of enrofloxacin (single 10-mg/kg 
dose; Baytril, Bayer HealthCare, Monheim, Germany) after sub-
cutaneous and intramuscular administration in Xenopus laevis.7 
The results showed that Xenopus metabolize enrofloxacin in a 
manner similar to that of mammals. The plasma pharmacoki-
netics and the wide spectrum of activity for enrofloxacin and 
its active metabolite ciprofloxacin indicate that enrofloxacin is a 
safe and efficacious antibiotic choice for X. laevis. Whereas enro-
floxacin has been shown to penetrate most tissues and achieve 
therapeutically effective concentrations in mammals,3,5,13,15 this 
information remained unknown for Xenopus. Here we sought 
to determine whether enrofloxacin disseminated from plasma 
and concentrated in various tissues of Xenopus.

Materials and Methods
Animals. We used 8 physically healthy, adult female frogs (X. 

laevis; weight, 112 to 175 g) for the tissue distribution portion of 
this IACUC-approved project. The frogs were fed a commercial 
diet (Frog Brittle, Nasco, Fort Atkinson, WI) and housed in an 
AAALAC-accredited facility in a 300-L pond-style holding 
tank at a stocking density of approximately 1 frog per liter. The 
following water parameters were maintained: temperature, 16 
to 21 °C; pH, 7.0 to 8.5; average hardness, 15 to 30 dGH; total 
chlorine, less than 0.01 mg/L; chloramines, less than 0.01 mg/L; 
ammonia, less than 0.25 mg/L; nitrite, less than 0.20 mg/L; 
nitrate, 0.00 to 50.0 mg/L; copper, less than 0.02 g/L; water 
fecal coliform count, less than 2000 organisms per 100 mL; 

conductivity, 100 to 300 μΩ, and dissolved oxygen, 8.00 to 9.00 
mg/L. The room was on a 12:12-h light:dark cycle.

Study design. Frogs were assigned to 1 of 4 groups: subcu-
taneously administered enrofloxacin, n = 3; intramuscularly 
administered enrofloxacin, n = 3; subcutaneously administered 
saline, n = 1; and intramuscularly administered saline, n = 1. 
Each frog was housed individually after injection.

Tissue collection. Approximately 5 min prior to scheduled 
tissue collection time points (1, 4, and 8 h after injection for 
enrofloxacin-treated frogs; 1 h after injection for saline-treated 
frogs), frogs were submerged in tricaine methanesulfonate (5 
g/L and buffered with 10 g sodium bicarbonate) until both right-
ing and toe-pinch reflexes were absent. The deeply anesthetized 
frogs underwent cardiac venipuncture followed by euthanasia 
via cardiac removal. Samples of brain, heart, kidney, liver, lung, 
and spleen were collected and placed in a −80 °C freezer until 
concentration analyses were performed.

Tissue distribution analysis. HPLC was used to determine the 
concentrations of enrofloxacin and its metabolite ciprofloxacin 
in sampled tissue. Assays were performed as done in a previous 
study using X. laevis.9 The limit of quantification was 0.05 μg/
mL, which was the lowest level that gave a linear response on 
our calibration curve. Tissue concentrations then were compared 
with previously determined plasma concentrations9 to derive 
tissue:plasma concentration ratios.

Statistical analysis. Excel 2007 (Office, Microsoft, Redmond, 
WA) was used to compute average tissue concentration and 
associated values. The threshold used to determine statistical 
significance was a P value of less than 0.05.

Results
The concentrations of enrofloxacin and ciprofloxacin in tissue 

samples from enrofloxacin-treated frogs are shown in Table 1; 
tissue levels of enrofloxacin and ciprofloxacin from saline-
treated frogs (controls) were 0 μg/g and are not included in 
the table. After both subcutaneous and intramuscular delivery, 
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in general, enrofloxacin is more active against gram-positive 
bacteria, whereas ciprofloxacin is more active against gram-
negative bacteria.2,7 Therefore, when the parent compound is 
administered, its metabolite produces an additive effect that 
increases activity, especially against gram-negative bacteria.

The enrofloxacin concentrations in kidney and heart at the 
4-h time point of intramuscularly treated frogs were essentially 
zero (Table 1). This finding is perplexing, particularly when 
one considers the high enrofloxacin concentrations achieved 
at 1 and 8 h. This variation in the results is not easily explained 
but is inherent when measuring tissue concentrations from 
small samples in animals. The aberrant data probably are either 
artifacts or outliers that cannot be verified or refuted without 
further investigation.

Although pharmacokinetic analysis could not be performed 
due to the limited time points and tissues sampled in the current 
study, the results show that enrofloxacin and ciprofloxacin dif-
fused from the plasma and concentrated in the tissues at levels 
above the minimal inhibitory concentrations of various aquatic 
pathogenic bacteria (Table 2). The high tissue concentrations are 
evidence that these drugs penetrate tissue and that there is no 
barrier to diffusion into tissues. However, plasma concentra-
tions typically are used to predict the therapeutic efficacy of 
compounds in this class of drugs.10,12 In contrast, the authors of 
a previous study10 concluded that the antibiotic concentrations 
in the interstitial fluid at the target site are responsible for the 
antibacterial effect and are more relevant in predicting therapeu-
tic efficacy than are plasma concentrations. The homogenized 

enrofloxacin was rapidly absorbed and readily diffused into all 
sampled tissues (brain, heart, kidney, liver, lung, and spleen). 
Enrofloxacin and its metabolite ciprofloxacin were present in the 
tissue samples collected at 8 h. The average kidney concentration 
of enrofloxacin in kidney (14.66 μg/g) was significantly (t test, P 
= 0.04) higher than that in liver (0.46 μg/g). Ciprofloxacin con-
centrations paralleled those of enrofloxacin for all time points 
in all tissues except brain and kidney.

Discussion
Enrofloxacin was rapidly absorbed after both intramuscular 

and subcutaneous administration to X. laevis frogs and diffused 
into all tissues studied. Tissue ciprofloxacin concentrations 
rose rapidly after the administration of enrofloxacin and re-
mained above the detection limit for at least 8 h. The organ 
of metabolism of fluoroquinolones has not been determined 
for amphibians. However, kidney showed the highest con-
centrations of enrofloxacin in the current study, suggesting 
that renal metabolism may be the preferred route. By contrast, 
the enrofloxacin concentrations in liver were low at all time 
points, indicating that the liver may not serve as a major site 
of metabolism. This pattern is distinctly different from that in 
mammals, in which liver metabolism and intestinal excretion are 
the major routes of elimination. The current study shows that 
enrofloxacin is well absorbed and distributed into tissues. Its 
metabolite ciprofloxacin, which similarly appeared in high con-
centrations in various tissues, is also active as an antimicrobial 
compound. Comparisons of the activity of each drug show that, 

Table 1. Tissue concentrations (μg/gm) of enrofloxacin (E) and ciprofloxacin (C) and tissue:plasma ratios of enrofloxacin (TE:PE), ciprofloxacin (TC:PC), 
and enrofloxacin plus ciprofloxacin (TE+C/PE+C) in X. laevis (n = 6) at various times after a single dose of enrofloxacin (10 mg/kg IM or SC)

Brain Heart Kidney

E C TE:PE TC:PC TE+C:PE+C E C TE:PE TC:PC TE+C:PE+C E C TE:PE TC:PC TE+C:PE+C

IM, 1 h 5.2 1.4 0.9 5.7 1.1 3.6 0.9 0.61 3.9 0.7 32.7 1.6 5.5 6.5 5.5
IM, 4 h 4.3 1.9 2.4 2.1 2.3 0 0.9 0 1 0.3 0 0.3 0.3 0 0.1
IM, 8 h 1.1 1.7 0.6 8.3 2.6 1.2 1.1 0.65 5.6 2.1 8.40 2 4.47 10.05 9.6
SC, 1 h 3.3 1.9 1.2 9.0 1.8 13.1 1.4 4.79 6.5 4.9 24 1.1 8.79 5.38 8.5
SC, 4 h 1.9 1.6 1.1 2.8 1.53 7.4 1.3 4.43 2.3 3.9 8.20 1.1 4.94 2.02 4.2
SC, 8 h 0.8 1.5 0.5 1.0 0.7 1.3 0.4 0.85 0.3 0.6 2.96 0.5 1.86 0.3 1.1

Liver Lung Spleen
E C TE:PE TC:PC TE+C:PE+C E C TE:PE TC:PC TE+C:PE+C E C TE:PE TC:PC TE+C:PE+C

IM, 1 h 0.1 0.9 0.0 3.8 0.2 3.5 0.4 0.58 1.5 0.6 4.40 1 0.74 4.33 0.9
IM, 4 h 0.4 0.7 0.2 0.8 0.4 4.3 0.5 2.36 0.5 1.8 7.91 1.2 4.34 1.4 3.4
IM, 8 h 0.7 0.7 0.4 3.4 1.3 2.1 0.4 1.13 1.8 2.3 ND ND ND ND ND
SC, 1 h 0.4 0.5 0.1 2.3 0.3 2.7 0.2 0.98 1.1 1.0 18 1 6.61 4.95 6.5
SC, 4 h 0.7 0.4 0.4 0.8 0.5 2.5 0.2 1.52 0.4 1.2 8.89 0.4 5.36 0.79 4.2
SC, 8 h 0.4 1.1 0.2 0.7 0.5 1.3 0.2 0.8 0.1 0.5 4.4 0.7 2.77 0.42 1.7

ND, not determined.

Table 2. Minimal inhibitory concentrations (µg/mL) of enrofloxacin and ciprofloxacin in various aquatic pathogens

Enrofloxacin Ciprofloxacin

Escherichia coli 0.004–0.015a ≤0.5b

Aeromonas. salmonicida salmonicida 0.008–0.03a 0.015–1.0c

Aeromonas hydrophila 0.25d 0.00375–1.0e

aFrom reference 7
bFrom reference 3
cFrom reference 4
dFrom reference 6
eFrom reference 12
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tissue concentrations reported previously10 may overrepresent 
those in the extracellular fluid of tissues because enrofloxacin 
is known to concentrate intracellularly. However, because 
enrofloxacin is much more lipophilic than is ciprofloxacin (by 
approximately 100-fold1,14), the tissue enrofloxacin concentra-
tions we report here may be underestimates.

Despite these limitations in the interpretation of tissue con-
centrations due to small sample size and inherent variability, 
the current study shows that there are no barriers to diffusion 
of enrofloxacin into the tissues examined. Our results also show 
that kidney concentrations of enrofloxacin were significantly 
higher than were those in liver, suggesting that the kidney 
rather than the liver (as seen in many mammalian species) may 
be the major route of metabolism. Collectively, these current 
findings regarding tissue distribution, together with previ-
ously published data from pharmacokinetics studies and the 
known minimal inhibitory concentrations of enrofloxacin in 
aquatic pathogenic bacteria, provide a strong evidence-based 
rationale for choosing enrofloxacin to treat infectious diseases 
in X. laevis.
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