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Mouse parvoviruses (MPV) are routinely excluded from 
laboratory mouse colonies because of their predilection for 
lymphoid tissues and potential to affect research involving 
host immunologic responses, such as by rejection of tumors or 
skin grafts.16,17 Nevertheless, mouse parvoviruses are among 
the pathogens most commonly identified in research and pet 
shop mice.4,6,12,15,18,20

Despite the use of barrier caging and procedures designed to 
exclude rodent pathogens, sporadic MPV outbreaks are com-
mon, as evidenced by contributors to the NAALAS 2009 panel 
discussion on parvoviruses.7 A source for such infections is 
rarely identified, although several possibilities exist. First, wild 
house mice are commonly infected with parvoviruses,1 and 
viruses shed by wild rodents could be transferred as fomites 
into a facility and therefore into cages during lapses in barrier 
procedure. Indeed, parvoviruses are among the most environ-
mentally persistent viruses and are resistant to many common 
disinfectants.5 Second, there may be undetected infections in 
incoming laboratory mice. However quarantine testing of mice 
from other institutions and restricting purchases to vendors with 
comprehensive health monitoring should mitigate this risk. 
Third, MPV may persist at low prevalence in a facility and only 
be detected intermittently. Transmission to sentinels from colony 
mice is efficient only during the first 2 wk of shedding,14 and 
susceptibility of sentinels to infection decreases with increasing 
age.2 Even evaluation of colony animals can be problematic: 
mice on C57BL/6 backgrounds are common in research facilities 
yet are relatively resistant to infection,2,3 so detecting MPV in 

colonies that contain many C57BL/6 mice may be confounded 
by extremely low infection prevalence.

Until recently, feed had not been suspected as a source of 
MPV infections, however unsterilized feed was discussed as 
a potential source of parvovirus infections at a 2009 NAALAS 
panel discussion on parvoviruses,7 and a subsequent report de-
scribed a reduction in new parvovirus detections after feed was 
switched from unsterilized to irradiated feed and disinfectants 
were upgraded.19 Unsterilized feed is not commonly viewed as 
a source of MPV infection because the sporadic incidence and 
low prevalence of MPV infections argue against a source such 
as feed that is routinely applied to every cage. Further, pelleted 
feed is subjected to 65 to 85 °C, pressure, and steam,22 which 
likely kills many organisms. Nevertheless we here present 
compelling evidence that a temporary change from sterilized 
to unsterilized feed resulted in a widespread mouse parvovirus 
infection at our institution, where parvovirus had not been de-
tected in recent history. The infection was distributed randomly 
throughout approximately 42,000 (of a total of approximately 
50,000) barrier-maintained mouse cages in 4 different build-
ings. After positive cages were removed and sterilized feed 
was reinstated, no additional unrelated cases were detected. 
The barrier cage system prevented spread to adjacent cages, 
and an intensive test-and-remove policy in combination with 
movement controls succeeded in eliminating detectable infec-
tion from the institution within 6 mo.

Case Report
Routine husbandry and infection monitoring. Facilities at the 

Johns Hopkins Medical Institutions are AAALAC-accredited, 
and all procedures were IACUC-approved and in compliance 
with the Guide for the Care and Use of Laboratory Animals.9 Vi-
varia contained approximately 50,000 mouse cages, 86% in the  
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serum plus mesenteric lymph nodes or spleen from the second 
sentinel were frozen and tested in the event of a positive test 
result from the first sentinel. In addition, Helicobacter-negative 
facilities were monitored inhouse for Helicobacter spp. by PCR 
of fecal samples.

Mice from the transgenic core facility and quarantined 
animals from outside institutions were monitored intensively 
before being released into the facilities. Recipient female mice 
from every new litter leaving the transgenic core were each 
tested as for sentinels. For incoming mice from other institu-
tions, health reports from the source institution were screened 
by a veterinarian and assigned either to low-risk (no excluded 
pathogens detected) or high-risk (excluded pathogens detected 
or not evaluated) quarantine. Low-risk mice were assessed by 
serology and parasitology after 6 wk of exposure to both contact 
and soiled-bedding sentinels. High-risk mice were screened by 
parasitology and PCR of pooled fecal samples (PRIA, Charles 
River Laboratories) from all incoming mice in the shipment. 
All quarantined mice were treated for pinworms (with fenben-
dazole-impregnated diet) and for mites (selamectin 10 mg/kg 
applied to the skin between the shoulder blades; Revolution, 
Pfizer, New York, NY). Access to quarantine was limited to 
veterinary and dedicated husbandry staff.

Events leading to the outbreak. Prior to this report, sen-
tinel testing indicated that all colonies were free of Sendai 
virus, pneumonia virus of mice, mouse hepatitis virus, mouse 
minute virus, mouse parvovirus, mouse encephalomyelitis 
virus, reovirus, epizootic diarrhea of infant mice, lymphocytic 
choriomeningitis virus, ectromelia virus, murine adenovirus, 
murine cytomegalovirus, Mycoplasma pulmonis, and fur mites. 
However, pinworms (Aspiculuris tetraptera) had been detected 
sporadically in the larger facilities for several years, and despite 
repeated local treatments, eradication had not been successful. 
Therefore, it was determined to treat all mice at the institu-
tion with fenbendazole-medicated diet and simultaneously 
perform a thorough environmental cleaning in an attempt 
to eradicate pinworms from the institution. Although stock 
sterilizable fenbendazole-medicated pelleted diet was avail-
able, it could not be used because it required additional labor 
for processing to break up the clumps that form when pelleted 
diet is autoclaved. Conversely, the stock diet could not be used 
without autoclaving because it contained additional vitamins 
to compensate for autoclave loss, and our previous report had 
shown that tumor growth was inhibited when fenbendazole was 
fed in combination with supplementary vitamins.8 Therefore, 
our usual feed (Harlan Teklad Global 2018) was compounded 
with 150 mg/kg fenbendazole into pellets without the ad-
ditional vitamins needed for autoclaving, so that it could be 
fed without sterilization. Irradiation of this compounded diet 
was considered; however, in light of the absence of reported 
infections due to unsterilized feed, the substantial additional 
cost did not seem justified. Therefore, between October and 
December 2008, immediately prior to the parvovirus outbreak, 
all mice throughout the institution were treated continuously 
for 12 wk with medicated unsterilized feed. After treatment was 
completed, sterilized diet was reinstituted.

In the 3 y prior to the outbreak, more than 8000 sentinel tests 
had revealed only 5 tests positive for MPV. Of those, only one 
was confirmed by subsequent testing of contributing colony 
cages. In every case, affected racks were quarantined, and 
colony cages tested negative by PCR or serology before being 
released from quarantine. The source of these isolated infections 
was never identified, but in retrospect the labs may have been 
using unsterilized diets during experiments.

3 largest facilities and the remainder in several separate, smaller 
facilities. The majority of mice were housed in individually 
ventilated cages (Allentown Caging Equipment, Allentown, 
NJ and Thoren Caging Systems, Hazelton, PA) on autoclaved 
corncob or TEK-Fresh bedding (Harlan Teklad, Indianapolis, 
IN). Autoclave performance (4 min of sterilization at 132 °C) 
was recorded on autoclave printouts and validated by steam-
sterilization strips (OK Strips, Propper Manufacturing, Long 
Island City, NY) applied to every load, by steam chemical 
integrators (ComplySterigage, 3M, St Paul, MN) in one load 
daily, and by biologic indicators (B/T Sure, Thomas Scientific, 
Swedesboro, NJ) monthly. Water was reverse-osmosis–treated, 
either acidified or hyperchlorinated, and delivered by means 
of incage automated watering systems (Edstrom Industries, 
Waterford, WI, and Systems Engineering, Napa, CA). A smaller 
number of mice consisting of several hundred cages in satellite 
facilities were housed in shoebox-style cages with filter tops and 
provided with filtered municipal water via automated watering 
systems external to the cage or via water bottles. Mice were fed 
either autoclaved or irradiated diet (2018SX or 2918 Teklad Glo-
bal, Harlan Laboratories). Ventilated cages were changed on a 
2-wk cycle by using chlorine-dioxide–based disinfectant (MB10 
Tabs, 100-ppm solution, Quip Laboratories, Wilmington, DE) 
in filtered-air change stations (Lab Products, Seaford, DE, and 
Allentown Caging) to minimize cross contamination between 
cages. A few shoebox cages were changed weekly by using 
aseptic procedures either in change stations or on the tabletop. 
Vermin control (Regional Pest Management, Baltimore, MD) by 
using live mouse traps and sticky insect traps indicated mini-
mal vermin problems. Loose mice caught in the live traps were 
evaluated as for sentinels, but no pathogens had been detected 
in mice caught in traps during the previous 3 y.

Mouse housing areas were assigned to one of several risk 
levels based on infection status, role, and risk of infection. Both 
mouse transfers and personnel movement were controlled to 
minimize transfer of infection between facilities. Requests to 
move mice between facilities were reviewed and approved by 
veterinary staff, and personnel were required to move between 
facilities in a ‘clean’ (low risk) to ‘dirty’ (high risk) progression 
during the course of a single day. Assigned risk levels (from 
low to high) were: (1) transgenic core; (2) Helicobacter-negative; 
(3) Helicobacter-positive; (4) low-risk quarantine and high-risk 
return (HRR), and (5) areas quarantined for known or suspected 
infections. HRR housing was reserved for mice that had been 
used outside the biosafety cabinet (for example, for imaging and 
behavioral tests or used in laboratories). Mice in HRR housing 
were considered to be at increased risk for infection, but HRR 
facilities were maintained at the same infection-exclusion status 
as were regular colonies. Mice were not permitted to return 
from HRR to regular colonies without returning to quarantine 
for additional pathogen testing.

Mouse colonies were evaluated for infection by using senti-
nels: 2 outbred female sentinels (Hsd:ICR[CD1] or Crl:CD1[ICR]; 
age, 4 to 6 wk) were placed per single-sided rack and exposed 
to approximately 15 mL soiled bedding from each cage on the 
rack at every cage change for 3 to 4 mo. Sentinels were submit-
ted for gross necropsy and evaluation according to a rotating 
schedule such that 25% of the racks in each room was sampled 
every month, with all racks being sampled over a 4-mo period. 
Sentinel serum samples were evaluated by Charles River Labo-
ratories (Wilmington, MA) by using multiplexed fluorometric 
immunoassays for multiple pathogens, and fur, anal tape, and 
fecal samples were evaluated inhouse for fur mites and pin-
worms. Initial tests were conducted on the first sentinel; the 
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of the usual procedure of moving infected racks to high-risk 
quarantine. Instead an intensive communication campaign was 
mounted to inform both affected and unaffected investigators 
about the quarantine and testing plan. Emphasis was placed on 
informing investigators that the majority of cages were unaf-
fected and would likely remain so if personnel were careful to 
follow existing procedures to prevent spread of infection. Mice 
on affected racks were not permitted to be moved from their cur-
rent positions, and mice on unaffected racks could be relocated 
only after testing negative. Personnel were required to attend 
to mice on positive racks after those on unaffected racks during 
the course of each day. Mice in positive cages were euthanized 
or moved to high-risk quarantine as soon as they were identi-
fied. In addition, current procedures for preventing spread of 
infection were emphasized: personnel were reminded to clean 
and disinfect biosafety cabinets before use, to spray MB10 (Quip 
Laboratories) on all surfaces allowing 10-min contact time, to 
spray gloved hands and the outside of cages before opening 
each cage, to change gloves between racks and risk groups, and 
to thoroughly clean and disinfect hoods after use. Furthermore, 
we emphasized that investigators should not share mice with 
others unless veterinary staff had tested the cages.

Several routes of communication were used, including the 
university rodent advisory committee and email notifications 
and by posting highly visible facility, room, and rack signage. In 
addition, cage cards on infected racks were marked with rack, 
row, and column position to facilitate identification and detect 
unauthorized movement. However, the success of the opera-
tion relied heavily on the cooperation of investigators and their 
staff. To encourage compliance, we emphasized that continued 
research would be supported, providing that veterinary staff 
was notified so that procedures could be instituted to minimize 

Outbreak: testing and eradication procedures. The first MPV-
positive sentinel test in this outbreak occurred in January 2009, 
less than 3 mo after the start of treatment with unsterilized diet. 
Initial positives were confirmed by a second serologic test on 
the same sample, by repeating the serologic tests on the frozen 
serum from backup sentinels, and by positive PCR tests of 
spleen or fecal samples. Subsequently only serologic testing 
was used to detect infections. During the 4 mo after the first 
positive tests (one complete testing cycle that encompassed all 
racks at the institution), 72 sentinels in 4 buildings (from a total 
of 927 sentinels) tested serologically positive for MPV. Serum 
tested positive for MPV1 (29%), MPV2 (11%), or both (60%) by 
multiplexed fluorometric immunoassay. Tests for MPV1 were 
confirmed with immunofluorescent assays and for MPV2 with 
ELISA. Only 28% of MPV1- or MPV2-positive sera detected by 
using the rVP2 viral capsid protein were also positive by the 
conserved nonstructural protein NS1, which is consistent with 
other reports that NS1 antibody response can be reduced or 
delayed compared with response to VP antigens.2 The 3 largest 
housing areas (encompassing approximately 42,000 cages) and 
one smaller facility (containing approximately 4000 cages) were 
affected. The distribution of positives appeared to be random: 
Figure 1 shows the distribution of sentinel-positive racks in 
the largest facility (BR), which contained approximately 28,000 
mouse cages. The percentage of affected racks in each facility 
varied (Table 1), and even on sentinel-positive racks, there were 
commonly either no or few infected colony cages (Figure 2).

Once we recognized that a widespread MPV outbreak was 
occurring, a plan was developed to contain the outbreak and 
eradicate the virus through a test-and-remove process. Prevent-
ing further spread required the quarantining of racks in place: 
the sheer scale of the outbreak prevented implementation 

Figure 1. Distribution of racks with positive sentinels (red dots) in facility BR, which contained approximately 28,000 mouse cages.
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and introductions from a vendor or from the transgenic core 
facility. False positives were discounted because the initial cases 
were all confirmed by PCR evaluation of spleen or fecal samples, 
and all positive tests by multiplexed fluorometric immunoassay 
were confirmed by a second test. Sentinel contamination was 
ruled out because 2 different sentinel vendors (Harlan and 
Charles River) were used for the affected facilities, there were 
no vendor reports of infection, and colony cages in addition to 
sentinel cages tested positive. Water as a source was discounted 
because 4 buildings were affected, each of which had its own 
water treatment system. Feedbag contamination could not be 
discounted; however, it is highly unlikely that an outbreak this 
widespread (4 separate buildings, 72 racks) could have resulted 
via fomite transfer from contaminated bags, particularly given 
that the feed was delivered to us immediately after manufacture. 
Feed bags were delivered to our facility in batches on shrink-
wrapped pallets and the plastic removed before bags were 
taken into facilities. Bags were not sprayed with disinfectant 
before opening: indeed disinfectants are relatively ineffective 
at reducing viral titers on paper products,11 so the value of this 
practice is unproven. Investigators were required to test biolog-
ics passaged through, or derived from, outside rodent sources 
by PCR assays for rodent pathogens. In practice, few samples 
were submitted for testing, and the only organism commonly 
detected was Mycoplasma spp. The sudden appearance of this 
outbreak argued against dissemination via shared resources or 
collaborations, and we were unable to detect a common rela-
tionship between the numerous affected investigators. Shared 
resources were ruled out rapidly, because all mice used in those 
areas were subsequently housed in high risk areas, and this MPV 
outbreak affected all areas. Mice from vendors and the trans-
genic core unit were placed directly into facilities; however, no 
vendors reported MPV during this period, and the transgenic 
core facility, in which every outgoing cage is tested routinely, 
continued to test negative for parvoviruses throughout.

In short, the systems at our institution have maintained, and 
continue to maintain, our colonies free of detectable parvoviral 
infections for many years. Given the sudden, widespread nature 
of this outbreak followed by its rapid resolution, the cause had to 
have been applied and then withdrawn from a majority of cages 
over a short period. The only change in husbandry that met that 
criterion was the change from sterilized to unsterilized feed for 
12 wk of pinworm treatment immediately prior to the MPV 
outbreak. Unsterilized feed was used from October through 
December, and sterilized feed was reinstituted in January. The 

the risk of infection spread. For example, mice on affected 
racks could be removed for euthanasia or acute procedures, 
but a dedicated staff person monitored or assisted with site 
decontamination afterward. Continued breeding was permit-
ted provided that cages were labeled to allow tracking back to 
parent cages, and relocation of cages for research purposes was 
permitted after individual cage tests.

To eliminate positive cages from affected racks, all colony 
cages on affected racks were evaluated by serologically testing 
one mouse per cage for antibodies to MPV1, MPV2, and NS1 
antigens. Mice in positive colony cages were either euthanized 
or moved to quarantine pending completion of the experiment. 
All colony cages on positive racks were retested monthly, and 
new positives were removed until all cages on the rack tested 
negative. At the beginning of the outbreak, a subset of 38 senti-
nel-positive racks were tested by colony cage bleeds 5 times at 
monthly intervals to determine whether 3 colony cage bleeds 
would be sufficient to ensure that racks were negative. At the 
first colony test, 56 positive colony cages were removed from 
26 of 38 racks, and 12 of 38 racks had no colony positives. At 
the second colony test, 4 of the 26 racks with prior positives had 
6 additional positive cages, which were removed, and 2 of the 
12 racks that previously had no positives had 8 positive colony 
cages, which were removed. After removal of these cages, no 
further cages tested positive on the 3 subsequent colony tests; 
therefore, it was concluded that 3 colony tests were sufficient to 
ensure that all cages would continue to test negative. Once all 
colony cages tested negative, a new sentinel cage was exposed 
to all cages on the rack for 6 wk and then was tested; and this 
process was repeated once. No racks tested positive on these 
sentinel tests, and racks were released from quarantine after 2 
negative sentinel tests.

Racks that had not initially tested positive for MPV by sen-
tinel were reevaluated on an accelerated schedule: sentinels 
were evaluated and replaced every 6 wk for 2 tests. However, 
only 2 positive racks (housing mice from the same laboratory 
as previously positive racks) were identified, and by July 2009, 
all racks in the institution were testing negative. The outbreak 
was concluded in October 2009, and there have been no further 
MPV-positive sentinel tests in the 3.5 y since the outbreak.

Discussion
A number of possible explanations for this MPV outbreak 

other than unsterilized feed were considered, included false 
positives, infected sentinels, water, feed bag or biologic con-
tamination, dissemination via shared equipment or resources, 

Table 1. Number and percentage of rack sentinels positive for MPV 
in each facility.

Facility
Total no. 
of racks

No. of 
positive racks

% of 
positive racks

BR 518 38 7.3
CR1 108 16 14.8
CR2 85 15 17.7
SH 57 3 5.3
RO5 30 0 0
RO3 24 0 0
WW 21 0 0
HW 36 0 0
AA 48 0 0

Total 927 72 7.8%

Figure 2. Frequency distribution of MPV-positive colony cages on 
racks with MPV-positive sentinels.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



87

Unsterilized feed and a mouse parvovirus outbreak

our strategy of repeatedly testing colony cages and removing 
positive cages, similar to that since reported,1 worked well: 82% 
of affected racks were negative on the second colony cage test, 
and all tested negative on the third colony cage test. A subset 
of 38 racks were tested on 2 subsequent colony tests (a total of 5 
colony cage tests) at monthly intervals, but no further positives 
were identified, and no racks subsequently tested positive by 
using sentinels. Positive colony cages were not identified on 33% 
of sentinel-positive racks. The most likely explanation for this 
result is that outbred sentinels succumbed to a lower infectious 
dose of MPV in feed than did the more resistant mice (such as 
C57BL/6) in colony cages. In addition, several investigators 
chose to eliminate mice from infected racks rather than to wait 
for testing, thus removing potentially positive colony cages.

This parvovirus outbreak did not continue to spread: instead 
it was contained and eliminated via test-and-remove policies 
in combination with strict movement controls and barrier cage 
procedures. The efficacy of these measures lends weight to the 
argument that the initial MPV source was no longer present. In 
a prior case report,19 detection of parvoviruses in a small colony 
spontaneously decreased once sterilized feed was instituted; 
however, whether simple attrition played a role in our eradica-
tion process is unknown.

In summary, the timing and extent of this event and its 
subsequent resolution provide strong circumstantial evidence 
that unsterilized feed was the source of this MPV outbreak. In 
addition, our successful eradication strategy provides evidence 
that barrier cage procedures are effective in preventing spread 
of MPV between cages and that test-and-remove procedures 
are a viable option for MPV eradication under cage–barrier 
conditions, providing that the source of the infection is no 
longer present.
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