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Drinking water quality is an important factor in experimental 
outcomes and in the daily care and maintenance of laboratory 
animals. Animal Welfare Regulations1 and the Guide for the 
Care and Use of Laboratory Animals26 both stipulate that research 
animals must be provided clean, potable water, but typically 
water is only monitored for microbiologic contaminants in the 
academic environment.21,31,34 Good Laboratory Practice regula-
tions require that animal drinking water be tested for potential 
confounding contaminants but do not identify specific agents.20 
The literature supports the use of acidified water as a means to 
control bacterial contamination of rodent drinking water, but 
this practice has several biologic effects, and evidence suggests 
that it can affect the water-delivery system.28,33,46,49

Water acidification has been reported to have multiple bio-
logic effects.48 When male CD1 mice ingested water acidified 
to pH 2.0, they had decreased water consumption, decreased 
weight gain, and decreased numbers of bacterial species in the 
terminal ileum.22 Rats provided water acidified to pH 2.0 for 
24 wk had extensive corrosion of both the enamel and dentin 
of the first 2 mandibular molars.27,32,50 Mice provided water 
acidified to pH 2.0 for 120 d had reduced reticuloendothelial 
clearance rates, spleen weights, and spleen:body weight ratios, 
indicating a potential for alteration of the immune response.24 
Although these effects were attributed to the acidification of the 
water, they may have been potentiated by the effects of acidi-
fied water on the water-delivery system and the subsequent 
ingestion of leached metals.

In addition, acidifying drinking water can cause metals to 
leach from water-bottle stoppers. In one study, acidified–deion-

ized water leached more metals from polymer stoppers than did 
nonacidified–deionized water; the authors suggested that other 
types of stoppers would be more appropriate for specific nutri-
tional and toxicological studies.28 Although 4 different types of 
polymer stoppers (rubber, neoprene, vinyl, and silicone) were 
evaluated, the study had several limitations that were never 
further examined.28 For example, metal analysis was performed 
on only 2 of the stopper types (rubber and neoprene), and the 
authors evaluated only 2 samples of each.28 Furthermore, the 
metal analysis of the stoppers was limited to 5 metals and the 
water analysis to 7 metals, with lead being the most notable 
metal that was absent from the analysis. Moreover, the study28 
did not assess the effects of autoclaving on the water-delivery 
system, nor did the authors perform metal analysis of sipper 
tubes or the water bottle.

As part of our own facility water-quality assurance program, 
we recently extended our analysis to include point-of-delivery 
(water bottle) assessment in addition to source assessment 
for both heavy-metal and microbiologic contaminants. As a 
result, the goals of the current study were to identify potential 
heavy-metal contaminants in the water-bottle assemblies and 
to evaluate the leaching of those metals into the drinking water 
by using inductively coupled plasma (ICP) spectrophotometry. 
Specifically, we evaluated neoprene and rubber water-bottle 
stoppers, stainless-steel sipper tubes, and polysulfone water 
bottles for contaminant heavy metals after acid digestion. We 
then evaluated the effects of water acidification and autoclave 
treatment on the leaching of heavy metals from the water-bottle 
assemblies into the drinking water after 1 wk of inversion on 
an empty rodent cage.

Materials and Methods
Acid digestion of materials. The individual components of 

a water bottle were digested in 1 N trace-metal HCl (Sigma, 
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g, 16.7 ± 0.4 g, 74.5 ± 3.4 g, and 8.0 ± 0.1 g each, respectively. The 
sipper tubes contained significantly (P < 0.05) more heavy metal 
(as micrograms metal per gram material) for all tested metals 
except magnesium and zinc (Figure 1). Compared with sipper 
tubes, neoprene stoppers contained more (P < 0.05) magnesium 
and zinc. Compared with neoprene stoppers, rubber stoppers 
contained less (P < 0.05) of all tested metals. The quantities of 
heavy metals in the water bottles and controls were at or below 
the limit of quantitation for all tested metals (data not shown).

Leaching. As determined by ICP spectroscopy, heavy metals 
leached into the water; the pH for each combination of stop-
per and water treatment (acid and autoclave) are reported in 
Table 1. There was no detectable leaching of either cadmium 
or selenium into the water from any water bottle combination. 
Acidification and stopper type had significant (P < 0.05) main 
effects on the leaching of copper, iron, zinc, and lead, as did the 
interaction between acidification and stopper type. Acidification 
was the only variable to have a significant (P < 0.05) effect on 
chromium. There were significant (P < 0.05) 3-way interactions 
between acidification, stopper type, and autoclaving on both 
manganese and magnesium, and each individual variable had 
significant (P < 0.05) main effects. Acidified water samples had 
a pH of 2.23 ± 0.03; tap water samples had a pH of 7.89 ± 0.02. 
The main effects of acidification, stopper type, and autoclav-
ing; the interaction between acidification and autoclaving; and 
the interaction between acidification and stopper type all had 
significant (P < 0.05) effects on pH.

Discussion
This study is the first to report the metal analysis for all of 

components of a water-bottle assembly. Although we used a 
very similar analysis method (ICP spectroscopy) to that used 
previously (atomic absorption spectroscopy), the composition 
of the water-bottle stoppers differed slightly between studies.28 
Rubber stoppers in the current study had less copper, iron, mag-
nesium, manganese, and zinc per gram of polymer.28 Neoprene 
stoppers had less copper, iron, and magnesium but comparable 
quantities of manganese and zinc per gram of polymer to those 
evaluated previously.28 We also identified quantifiable amounts 
of lead, cadmium, chromium, and selenium in both the rubber 
and neoprene stoppers, which was not previously reported. We 
did not analyze any other stopper types, because they are not 
commercially available. The stainless-steel sipper tubes had 
large quantities of all tested metals, which were significantly 
greater than those in the stoppers for all metals except magne-
sium and zinc.

Similar to findings from the previous study,28 leaching in the 
current study was increased under the acidified condition. Of 
the metals tested, magnesium, zinc, and copper reached the 
highest concentrations in the water after 1 wk. Acidified water 
leached lead from the neoprene stoppers—a finding that has 
not previously been reported. In the current study, acidified 
water leached more chromium and magnesium but less cop-
per, iron, and zinc and comparable amounts of manganese 
and selenium from rubber stoppers, compared with previous 
results.28 Similarly, acidified water leached more copper and 
magnesium but less iron and zinc and comparable amounts of 
chromium, manganese, and selenium from neoprene stoppers 
in the current study compared with the previous study.28 Slight 
differences between the studies may be partially responsible for 
some of these discrepancies. In particular, water bottles in the 
current study were left inverted for 7 d instead of 6 d; deionized 
water was not used; pH was 0.3 units lower; and the source of 
the stoppers was different.

St Louis, MO) for 1 wk. Five samples of each constituent were 
digested and tested independently to identify variability within 
specific components. New double-seal rubber and neoprene 
water bottle stoppers (Ancare, Bellmore, NY) each were cut into 
1 mm3 pieces by using a razor blade to maximize surface area 
and then digested in a 50-mL polypropylene tube (BD Labware, 
Franklin Lakes, NJ) containing 10 mL HCl per gram of sample. 
We poured 10 mL HCl into each of 5 polysulfone screw-top 
water bottles (Ancare), which subsequently sealed and stored 
on their sides to maximize the contact area. Stainless-steel open 
straight drinking tubes (Ancare) were placed individually in 
50-mL polypropylene tubes containing 10 mL HCl. To control 
for potential leaching from the tubes, we placed 10 mL HCl in 
each of 5 empty tubes and let them sit for 1 wk. At the time of 
sample analysis, we also analyzed 5 aliquots of fresh HCl, as 
an additional control for contaminants in the HCl.

After 1 wk, each sample was diluted with deionized water to 
decrease the acid concentration to less than 5 weight–percent. 
Samples were passed over syringe filters (diameter, 25 mm; 
pore size, 0.45 μm; Aerodisc, PALL Life Science, Ann Arbor, 
MI) and analyzed for cadmium, chromium, copper, iron, lead, 
magnesium, manganese, selenium, and zinc by using a spectro-
photometer (Vista-MPX ICP, Varian, Walnut Creek, CA). Before 
analysis, standard curves for each metal were established over 
the range of 0.02 to 100 ppm.

Leaching into drinking water. Water-bottle components 
equivalent to those we used in the acid-digestion study were 
assembled to make complete water bottles that included either 
a rubber or neoprene stopper. The water conditions included: 
HCl-acidified (pH 2.2) water; autoclaved, HCl-acidified (pH 
2.2) water; tap water; and autoclaved tap water. Samples were 
autoclaved in fully assembled water bottles. Water bottles re-
mained inverted on an empty rodent cage for 1 wk to simulate 
the intended use. We assessed 5 replicates of stopper and water 
condition combination to accommodate intersample variation. 
At the time of analysis, fresh samples of tap and acidified water 
(n = 5 each) were included to serve as baseline controls for the 
leaching experiments.

Water samples (6 oz each) were submitted for analysis 
(Siemens Analytical Laboratory, Rockford, IL). Heavy-metal 
analysis was performed by using an ICP spectrophotometer 
(Ultima 2, Horiba Jobin Yvon, Edison, NJ) that was calibrated 
with a multielement standard prior to each sample run. The 
water samples were tested for cadmium, chromium, copper, 
iron, lead, magnesium, manganese, selenium, and zinc. In addi-
tion, all water samples were pH-analyzed by using an Accumet 
XL25 (Fisher Scientific, Waltham, MA) that was calibrated daily 
at pH 4 and 7.

Statistical analysis. All statistical analysis was performed 
by using MATLAB (MathWorks, Natick, MA). The results of 
the acid digestion were analyzed by ANOVA and a multiple-
comparisons procedure using a Bonferroni correction to identify 
the significance associated with metal concentrations in the 
individual water-bottle components. The leaching data were 
evaluated by using 3-way ANOVA to test for the interaction 
effects of stopper type, water acidification, and autoclaving 
on metal concentrations in the water. For all statistical tests, 
significance was defined as a P value of less than 0.05.

Results
Acid digestion. The quantities of heavy metals in the individ-

ual water-bottle components and controls are reported in Figure 
1. New rubber and neoprene stoppers, old rubber stoppers, 
water bottles, and sipper tubes weighed 22.9 ± 0.1 g, 25.9 ± 0.3 
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of toxic effects and, as a result, the Environmental Protection 
Agency has set the ideal water concentration of lead at 0 ppm 
and the level of action at 0.015 ppm.51 In the current study, lead 
leached from neoprene stoppers into acidified drinking water. 
These lead levels reached 0.2 ppm, thus exceeding the human 
guidelines.51 The primary toxic effects of lead are immunologic 
and reproductive in nature, but lead also can affect other body 
systems in rodents when administered at high concentratio
ns.7,9,13,14,23,39-42,45,53,54 Contaminant concentrations of dietary 
lead (0.4 μg/g wet weight of feed) have been associated with 
increased mortality rates in aged male CD1 mice.44 The amount 
of lead that these previous mice44 ingested over the course of 
their lives was comparable to the exposure (on a μg/g body 
weight basis) with that which theoretically would be ingested 
from acidified water in contact with neoprene stoppers. This 
finding suggests that animals on aging studies should not be 

The results of the current study and those obtained previ-
ously28 collectively suggest that water should be analyzed for 
contaminants at the level of delivery to animals. These studies 
further suggest that all materials used in water bottle assemblies 
should be analyzed for potential heavy-metal contaminants.28 
The differences in the metal content of the stopper types between 
the 2 studies highlights the potential variability in stopper mate-
rials due to differences in sources and manufacturing processes. 
To address the variability in material contents, facilities should 
periodically test these materials for potential contaminants. This 
suggestion is further supported by the recent reports of lead and 
melamine contaminants in children’s toys and pet foods from 
foreign suppliers.8,10,11,47,52

Heavy-metal leaching into drinking water may be problem-
atic due to the individual biologic effects of these components 
after exposure. Lead has been documented to cause a variety 

Figure 1. Heavy-metal composition (µg metal/g material; mean ± SEM; n = 5) of stoppers and sipper tubes as determined by ICP spectrometry. 
(A) Cadmium. (B) Chromium. (C) Copper. (D) Iron. (E) Magnesium. (F) Manganese. (G) Lead. (H) Selenium. (I) Zinc.
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provided acidified water from water bottles with neoprene 
stoppers, to mitigate potential premature death associated with 
chronic low-level lead toxicity.

Copper was detected in the acidified water at a maximal aver-
age concentration of 3.25 ppm for neoprene stoppers and 0.02 
ppm for rubber stopper. The limit for copper in drinking water 
is 1.3 ppm due to the development of gastrointestinal distress 
acutely and liver or kidney damage chronically in humans.51 
Although the amount of copper in acidified water exposed to a 
neoprene stopper exceeds this limit, the risk of rodents develop-
ing long-term liver or kidney damage as a result of long-term 
exposure under these watering conditions is minimal, given 
that they typically consume a larger quantity of copper from 
their diet (Table 2).

Zinc was detected in the largest concentrations in the neo-
prene stoppers and leached into the water that contacted these 
stoppers. When the water was acidified, the amount of zinc 
leached increased significantly to the maximal average of 6.6 
ppm after 1 wk. Although acute zinc toxicity often is associated 
with the ingestion of nonfood items (for example, a penny or 
lead sinker), dietary zinc is relatively nontoxic.18 However, 
when supplemented at 10 to 20 times the recommended dietary 
allowance of 15 mg/d in humans, clinical signs of zinc toxicity 
do develop.18 The risk of rodents developing toxicity due to 
long-term exposure to zinc under these watering conditions is 
minimal because they normally consume a much larger quantity 
of zinc from their diet (Table 2).

Although the concentrations of copper and zinc that leached 
into acidified water in contact with neoprene stoppers is not 
expected to lead to acute toxicities, the potential to affect ex-
perimental outcomes remains. For example, an investigator 
studying the immune-modulating effects of copper and zinc 
might choose to feed their animals a diet low in copper and 
or zinc.4,12,15,16,19,29,30,37,38 In these cases, the potential quantity 
of zinc and copper ingested from acidified water on neoprene 
stoppers would exceed that from the diet by 5-fold and 20-
fold, respectively (Table 2). This situation likely would negate 
the effects of feeding the metal-deficient diets and potentially 
confound the results of the animal experiment.

The Environmental Protection Agency currently does not 
have a threshold concentration for iron in drinking water, 
because iron toxicity is exceedingly less common than is iron 
deficiency in humans. Iron deficiency increases the absorption, 
potentially leading to toxicity, of other divalent metals, includ-
ing lead, cadmium, aluminum, and manganese.55 The amount 
of iron in drinking water affects its palatability, which sharply 
declines at 0.3 ppm for humans.51 Iron leached into the water 
in the current study, especially when the water was acidified 
and a neoprene stopper was used, but the maximal iron con-
centration reached was only 0.1 ppm. This finding indicates 
that leaching of iron is unlikely to affect water palatability or 
cause toxicity in rodents.

Magnesium often is found in high concentrations in tap water, 
especially when the source is groundwater, and tap water is 
considered a major source of the required dietary magnesium 
in humans.55 As expected, magnesium was present in high con-
centrations in all water samples in the current study, including 
fresh tap water. Although additional magnesium leached from 
the neoprene stoppers exposed to acidified water, the potential 
quantity of magnesium ingested from drinking water remains 
far less that the amount consumed from the diet (2000 μg/g 
diet, Teklad 7912). These results suggest that the magnesium 
that leached from the neoprene stoppers is of minimal concern 
and not expected to result in toxicity.
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degradative effects on the material properties of the stoppers. 
Specifically, the neoprene stoppers began to crack the first time 
they were autoclaved, and they subsequently crumbled after 
repeated cycles of autoclaving, requiring their removal from 
circulation after just 2 or 3 cycles. The rubber stoppers were not 
observed to degrade during this brief experimental period.

As illustrated in the current study, water acidification has 
unintended consequences that should not be ignored. The effects 
of water acidification on the water-bottle assembly can become 
a confounding variable, especially in rodent immunologic and 
aging studies. In light of these findings, we suggest that water-
quality monitoring programs should include periodic analysis 
for heavy metals in addition to microbiologic contamination 
at the level of water delivery to the animal. We also suggest 
establishing a program to routinely perform metal-analysis 
testing of water bottle stoppers to identify potential sources of 
water contamination. Additional studies may be necessary to 
identify the biologic effects of long-term exposure to the met-
als leached from water bottle stoppers or gaskets in automatic 
water systems into acidified water.
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