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In studies of the mouse lung involving measurement of pul-
monary function, investigators commonly use inbred strains 
of mice to ensure a common genetic background. When mice 
are genetically identical the effects of specific environmental 
or genetic perturbations can be studied independent of back-
ground genotype. However, the need to similarly control for 
the source of the inbred mice is not always so apparent. In an 
effort to reduce costs in ongoing studies involving lung func-
tion measurements, we switched vendors from The Jackson 
Laboratory to the National Cancer Institute. Initial studies with 
the C57BL/6NCr mice unexpectedly showed substantially less 
responsiveness of the airways compared with the C57BL/6J 
mice. This preliminary observation called into question the 
validity of comparisons between studies of C57BL/6 mice of 
different substrains purchased from different vendors. If the 
differences were due to genetic drift rather than environmental 
factors, the effect of this variation could extend to geneti-
cally engineered mouse models generated by using different 
C57BL/6 substrains.

C57BL/6 substrains have a long history in the United States: 
they were so named because they originated as black offspring 
from female mouse number 57 and male mouse number 52 
in a mating by Clarence Cook (CC) Little of Abbie Lathrop’s 
stock in 1921. CC Little subsequently founded the Jackson 
Laboratory, and the substrain C57BL/6 was established at The 
Jackson Laboratory prior to 1937.14 The sublines C57BL/6N and 
C57BL/6J were separated at NIH in 1951. Harlan and Charles 
River acquired their breeding colonies from NIH in 1974, Taconic 
in 1991, and the National Cancer Institute in 1996. These long 
passages of time would suggest that genetic mutations arising 

in different colonies could have resulted in genetically distinct 
substrains. However, several studies suggest only minimal 
differences exist.29,32,44 Most recently, one study44 evaluated 
1449 single-nucleotide polymorphisms distributed over all 20 
chromosomes in 10 C57BL/6 sources from Europe, Australia, 
and the United States. Of the 1449 single-nucleotide polymor-
phisms, only 12 were polymorphic between strains, and most 
could not be directly associated with a known gene. Although 
these single-nucleotide polymorphisms distinguished the B6/N 
substrains from the B6/J substrains, there were no differences 
within the 4 B6/N or the 3 primary B6/J sources, whereas a 
second group of 3 B6/J sources differed by 3 single-nucleotide 
polymorphisms from the primary B6/J sources.

These minimal differences in genotype between B6 substrains 
suggested that environmental factors may have played the 
major role in the phenotypic differences we observed. Differ-
ences in phenotype attributable to environmental variation 
have previously been reported in several fields. For example, 
behavioral testing differences in inbred mice were attributed 
to different testing locations;11 behavioral tests, tumor growth, 
and immunologic parameters were affected by veterinary treat-
ments with fenbendazole,15,17,25 and numerous research areas 
are affected by intercurrent infections.9,14 In addition, differ-
ences in behavioral testing attributed to differences between 
B6/J and B6/N mice5 may have resulted from differences in 
rearing environment rather than genetic differences. However, 
to our knowledge, there have been no reports of differences in 
airway responsiveness in B6 mice from different vendors. To 
further describe this finding and to evaluate the differing roles 
of genetics and environment, we tested airway responsiveness 
in 5 substrains of male B6 mice from 5 different vendors in the 
United States and then repeated the tests in the male offspring 
of mice of the same substrains purchased from the same vendors 

Variation in Airway Responsiveness of Male 
C57BL/6 Mice from 5 Vendors

Herng-Yu Sucie Chang,1 Wayne Mitzner,1 and Julie Watson2,*

Mice are now the most commonly used animal model for the study of asthma. The mouse asthma model has many character-
istics of the human pathology, including allergic sensitization and airway hyperresponsiveness. Inbred strains are commonly 
used to avoid variations due to genetic background, but variations due to rearing environment are not as well recognized. 
After a change in mouse vendors and a switch from C57BL/6J mice to C57BL/6N mice, we noted significant differences in 
airway responsiveness between the substrains. To further investigate the effect of vendor, we tested C57BL/6N mice from 3 
other vendors and found significant differences between several of the substrains. To test whether this difference was due 
to genetic drift or rearing environment, we purchased new groups of mice from all 5 vendors, bred them in separate vendor-
specific groups under uniform environmental conditions, and tested male first generation (F1) offspring at 8 to 10 wk of age. 
These F1 mice showed no significant differences in airway responsiveness, indicating that the rearing environment rather 
than genetic differences was responsible for the initial variation in pulmonary phenotype. The environmental factors that 
caused the phenotypic variation are unknown. However, differences between vendor in feed components, bedding type, or 
microbiome could have contributed. Whatever the basis, investigators using mouse models of asthma should be cautious in 
comparing data from mice obtained from different vendors.

Abbreviation: AHR, airway hyperresponsiveness.

Received: 06 Sep 2011. Revision requested: 11 Oct 2011. Accepted: 12 Dec 2011.
Departments of 1Environmental Health Sciences and 2Molecular and Comparative 
Pathobiology, Johns Hopkins University, Baltimore, Maryland.

*Corresponding author. Email: jwatso19@jhmi.edu

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



402

Vol 51, No 4
Journal of the American Association for Laboratory Animal Science
July 2012

kg, 15 mg/kg) administered by intraperitoneal injection under 
manual restraint. When the mice were deeply anesthetized, a 
tracheostomy was performed, and the lungs were connected 
to a Flexivent (SCIREQ, Montreal, Quebec, Canada) ventilator 
to measure lung resistance. Mice were ventilated at150 breaths 
per minute, and lung resistance was determined during a 2-s 
breath hold from a 2.5-Hz sinusoidal oscillation.

After 10 min of regular ventilation at a positive end-expiratory 
pressure of 3 cm H2O, a standard lung volume history was 
established by delivering 2 deep sighs to a pressure limit of 
30 cm H2O. One minute later lung resistance was measured, 
and this measurement was followed by a 10-s inhalation of 
aerosolized methacholine from a nebulizer (Aerogen Galway, 
Ireland). Doses of methacholine were 0.1, 0.3, 1, 3, 10, 30, and 
100 mg/mL. The dose–response curve was constructed in a 
cumulative fashion with measurements made 1 min after each 
dose and 2 min between doses. We continued increasing doses 
until lung resistance was more than double the baseline. From 
this dose–response curve, we extrapolated the dose at which 
resistance doubled (that is, at 200% of baseline), and this dose 
is defined as the PC200. The concept underlying this variable is 
similar to that used to define the PC20, which is routinely used 
to assess methacholine sensitivity in human subjects.27 After 
the last dose, anesthetized mice were euthanized by occluding 
the tracheal cannula, allowing the oxygen to be absorbed, and 
allowing the heart to stop as monitored by electrocardiography. 
All procedures were approved by the Johns Hopkins IACUC.

Statistical analysis. PC200 data from the different groups were 
analyzed by using one-way ANOVA for the log values (Prism 
4.0, GraphPad Software, La Jolla, CA). The log value was used 
because the range of PC200 can encompass several orders of 
magnitude. Significance levels between groups were assessed 
by using the Newman–Keuls Multiple Comparison Test, and 
significance was accepted at a P value of less than 0.05.

Results
Figure 2 shows the normalized mean (± SEM) dose–response 

curves from the different substrains of mice at 1 wk after ar-
rival. Lung resistance was normalized to baseline resistance in 
each substrain, but there were no significant differences among 
strains in this baseline value, which averaged between 0.67 and 
0.88 cm H20/mL/s in all substrains. The 5 substrains showed 
substantial differences in response to methacholine, with the 
least responsive mice coming from the National Cancer Institute 
and the most responsive from The Jackson Laboratory. Figure 3 
shows the dose–response curves from the various substrains of 
mice derived from the different vendors but bred and raised in 
the animal facilities at our institution. All of these F1 mice show 
similar airway responsiveness. Figure 4 shows the PC200 for the 
results in Figures 2 and 3. There were no significant differences 
in the mice bred locally (labeled F1), but there were significant 
differences between several of the different parental substrains 
(labeled F0) that were tested after purchase from the vendors. 
The C57BL/6NCr substrain was significantly different from all 
the others, and the C57BL/6J mice were significantly different 
from the C57BL/6NTac mice.

Husbandry information was obtained directly from vendors 
(Figure 1). Husbandry varied widely between vendors with the 
exception of the National Cancer Institute and Charles River 
Laboratories: C57BL/6NCr mice were raised under contract by 
Charles River, and both vendors used the same feed and bed-
ding. All vendors provided autoclaved feed and bedding and 
treated water; however, the composition of feed and bedding 
and the method of water treatment differed between vendors. 

but bred and maintained under uniform environmental condi-
tions at our institution.

Materials and Methods
Mice. Groups of 8 inbred male C57BL/6 mice were purchased 

at ages 7 to 9 wk from each of 5 United States vendors: C57BL/6J 
(The Jackson Laboratory, Bar Harbor, ME); C57BL/6NCrl 
(Charles River Laboratories, Wilmington, MA); C57BL/6NTac 
(Taconic Farms, Hudson, NY); C56BL/6NHsd (Harlan Labo-
ratories, Indianapolis, IN); and C57BL/6NCr (National Cancer 
Institute, Frederick, MD). Mice were tested at 9 to 10 wk of age, 
approximately 1 wk after arrival. A second cohort of 2 male and 
4 female mice of each of these substrains was purchased and 
subsequently bred by using 2 female and one male mouse to a 
cage. Offspring were weaned at 4 wk, and 5 to 8 male offspring 
per substrain were tested at 9 to 10 wk of age. Male mice were 
used for this experiment because we and others have observed 
a lower, and more variable, airway responsiveness in female 
mice, possibly related to estrus cycle variations.7,8

Husbandry. At our facility, mice were housed in same-sex 
groups of as many as 5 mice in individually ventilated cages 
(Allentown Caging Equipment, Allentown, NJ) on autoclaved 
corncob bedding (Harlan Teklad). They received filtered 
municipal water by means of an in-cage automated watering 
system (Edstrom Industries, Waterford, WI) and autoclaved 
diet (2018SX Teklad Global, Harlan Laboratories). Cages were 
changed on a 2-wk cycle by using chlorine dioxide-based dis-
infectant (MB10 tabs, 100-ppm solution, Quip Laboratories, 
Wilmington, DE) in filtered-air change stations (Lab Products, 
Seaford, DE), to minimize cross-contamination between cages. 
Sentinel testing indicated the colony was free of Sendai vi-
rus, pneumonia virus of mice, mouse hepatitis virus, mouse 
minute virus, mouse parvovirus 1 and 2, Theiler mouse en-
cephalomyelitis virus, reovirus, epizootic diarrhea of infant 
mice, lymphocytic choriomeningitis virus, ectromelia virus, 
murine adenovirus, murine cytomegalovirus, Mycoplasma 
pulmonis, fur mites, and pinworms. Mice were not routinely 
tested for bacterial opportunists. The facility was accredited 
by AAALAC, and all procedures were in compliance with the 
Guide for the Care and Use of Laboratory Animals.19 At vendors, 
mice were housed under varying conditions: information on 
husbandry at each of the vendors is summarized in Figure 1. 
Vendor health reports indicated that mice were free of the 
pathogens listed above that were excluded from our facility. Ven-
dors also excluded several bacterial opportunists: all vendors 
excluded Pasteurella pneumotropica and Bordetella bronchiseptica, 
whereas Charles River, Harlan, The Jackson Laboratory, and the 
National Cancer Institute also excluded Klebsiella pneumoniae 
and Pseudomonas aeruginosa, and Charles River, Harlan, and 
the National Cancer Institute in addition excluded Streptococ-
cus pneumoniae.

Pulmonary function testing. Mice are now the most com-
monly used animal model for the study of asthma, which is 
characterized by airway hyperresponsiveness (AHR). The es-
sential measurement to assess AHR in mice is airway resistance, 
which can be approximated by lung resistance. In this study we 
measured changes in lung resistance in response to increasing 
doses of the cholinergic agonist methacholine.

Pulmonary function testing was performed as previously 
described.33 The mice from a given strain were not all delivered 
at the same time, and the order in which mice were tested was 
assigned randomly to eliminate bias due to time of testing. 
Testing was conducted over the course of several weeks. Briefly, 
each mouse was anesthetized with ketamine–xylazine (75 mg/
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the relatively small variation demonstrated within substrains. 
In addition, the variation in our testing protocol is influenced 
by our use of the PC200 to assess airway responsiveness. For 
example, if one mouse had an extremely large response at a 
low methacholine dose, this outcome would result in a very 
large SD at that dose. However the PC200 for that one mouse 
could never be less than the previous dose (even if the airway 
resistance response was infinite), so this ‘outlier’ would have 
a smaller effect on the variation in PC200. For comparison, we 
note that the coefficient of variation of PC200 within a strain in 
our lab averages 0.22, whereas the variability between vendor-
reared strains averaged more than double this, at 0.48.

Given the multiple possible environmental factors that could 
have contributed to the phenotypic variation documented in this 
study, it is not possible to confirm a specific explanation. How-
ever, we can speculate on several reasonable possibilities that 
may have played a role. Husbandry differed between vendors 

Four of the vendors used feed that contained multiple natural 
ingredients (variable formula), whereas one vendor used a diet 
with limited ingredients (constant formula).

Discussion
Our results clearly demonstrated substantial differences 

in airway responsiveness between C57BL/6 mice from dif-
ferent vendors. Moreover, those differences resulted from 
environmental factors rather than genetic variation, because 
vendor-associated differences in airway responsiveness were 
not present when mice were raised in a uniform environment.

Although the absolute variation we demonstrated between 
substrains when mice were obtained from vendors (not raised 
inhouse) is not large compared with the variation reported 
among different labs in the literature, under our testing proto-
col the variation is significant. This effect is partially a result of 

Figure 1. Husbandry characteristics at vendor facilities of evaluated substrains.

Figure 3. Dose–response curves plotting normalized mean (± SEM) 
lung resistance compared with methacholine dose for mice from each 
of the C57BL/6 substrains bred and raised inhouse. The curves for all 
groups overlap.

Figure 2. Dose–response curves plotting normalized mean (± SEM) 
lung resistance compared with methacholine dose for each of the 
C57BL/6 substrains tested 1 wk after arrival from the vendor. The 
wide variation in these curves is visually apparent.
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Vitamins A and E are hypersupplemented in sterilizable diets 
to compensate for losses during autoclaving. Because the actual 
reduction in vitamin content during autoclaving may vary,38 
vitamins are supplemented sufficient to ensure that minimum 
requirements are met. Therefore some mice may have been fed 
higher-than-normal amounts of these vitamins, with potentially 
variable effects on AHR. Supplementation with oligosaccha-
rides similar to those found in breast milk has been shown to 
decrease parameters of allergic asthma in mice by increasing 
Th1 relative to Th2 responses.40 Vendors in the current study 
used different diets; therefore, oligosaccharide components 
likely varied between vendor—and with the exception of the 
constant formula diet used at one vendor—between batches of 
the same diet. Although contaminants such as heavy metals, 
pesticides, mycotoxins, phytoestrogens, and nitrosamines have 
been found in low concentrations in some laboratory rodent 
diets,38 they are not reported to affect airway responsiveness. 
However, steam-sterilized feed may contain small quantities 
of the additive 2-diethylaminoethanol, which is used to reduce 
corrosion in steam sterilization systems. 2-diethylaminoethanol 
is a respiratory irritant and has been associated with develop-
ment of asthma in people after accidental exposure during a 
steam leak.16

Ambient particulate matter can affect the immune system 
parameters that impact AHR. Even relatively inert particu-
late matter (such as carbon black) has been show to activate 
pulmonary dendritic cells and promote a Th2-type cytokine 
response from naive CD4+ T cells.4 Airway dendritic cells also 
are known to play important roles in initiating the allergic 
innate immune response in the lung in humans and murine 
models of asthma.13,24,39 This dendritic cell activation is con-
sistent with studies of airway responsiveness in mice in vivo, 
where cytokines from both Th1 and Th2 T cells were shown to 
be increased after exposure to particulate matter collected from 
inner-city air.42 The same study also showed upregulation of 

with respect to caging system, methods for water delivery and 
treatment, feed components, and bedding type. Caging system 
can affect in-cage air quality: ammonia generated by bacteria 
from nitrogenous wastes can cause respiratory irritation and 
corneal injury.2 The maximum 8-h time-weighted average am-
monia exposure for humans is 25 ppm,2 whereas concentrations 
in closed mouse cages changed weekly can reach 500 to 710 
ppm.10,36 However, none of the vendors in this study used closed 
cages, and the open cages (4 vendors) and ventilated caging (1 
vendor) that were used are not typically associated with high 
in-cage ammonia levels.10,20,34

Although mice were conditioned for at least 1 wk at our 
facility before testing, disruptions in circadian rhythm and 
physiologic parameters due to shipping cannot be discounted 
as a cause for variation,30 particularly as mice from the different 
vendors traveled over distances varying from 46 (the National 
Cancer Institute, Harlan) to 659 (The Jackson Laboratory) 
miles, The period required for these parameters to recover has 
not been established, but in one study,6 rats transported for 5 
h required only 3 d for body weight, heart rate, and activity to 
return to preshipping levels. Further, even fairly stressful pro-
cedures do not have long-lasting effects on AHR. For example, 
residual effects on AHR after anesthesia for bronchoalveolar 
lavage with 1 mL of fluid, were gone in 3 d.41 We also know 
that repeated measurement of airway resistance in individual 
mice measured with nonlethal intubation does not vary over 
the course of several weeks.28 Whether riding in a truck is more 
stressful than either of these procedures is not known, but 7 d 
would seem to be sufficient time for recovery. Finally, even if 
shipping was associated with neurologic activation, the effect 
of the vagus nerve on airway resistance in the mouse lung is 
relatively minor.26

Feed components such as vitamin A,35 α tocopherol (vitamin 
E),31 and prebiotic oligosaccharides40 can affect mouse models 
of AHR. Vitamin A increases AHR, and vitamin E decreases it. 

Figure 4. Log of the PC200 from each of the parental and locally bred C57BL/6 substrains. Among the F0 vendor-supplied substrains, C57BL/6J 
mice were significantly different from C57BL/6NCr and C57BL/6NTac mice. In addition, C57BL/6NCr mice were significantly different from 
C56BL/6NHsd, C57BL/6NCrl, and C57BL/6NTac mice (P < 0.05). PC200 did not differ among locally bred substrains.
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