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Nonhuman primates have long served as models for human 
cardiovascular and metabolic diseases.9,40,43 Most studies have 
been performed under specific laboratory conditions such as 
single housing, with limited access to physical activity or dietary 
manipulations intended to cause diseases such as atherosclerosis 
or obesity. Macaques are one of the most widely studied species 
because they are anatomically similar to humans and exhibit 
similar cardiovascular physiology and metabolism. Macaques 
have been used in studies pertaining to aging, diabetes, obesity, 
and cardiac regeneration.21,32,36,37

In recent years, the growing use of applanation tonometry 
has revived interest in deriving qualitative and quantitative in-
formation from noninvasively obtained arterial waveforms.28,29 
Arterial applanation tonometry allows noninvasive and con-
tinuous recording of the arterial pressure waveform by using 
an external transducer to applanate (flatten) a superficial artery 
supported by bone. This technology commonly involves the 
application of mathematical transfer function to a peripheral 
waveform in order to derive the central aortic pressure wave-
form.3,16 The transfer function, which is based on harmonic 
analysis, has been validated for humans but not nonhuman 
primates. Multiple studies performed over the past several dec-
ades have found the contour of the arterial waveform to provide 
information about the cardiovascular system.1,2,5,6,8 Specifically, 
the harmonic components of arterial waveforms obtained from 
the cardiovascular, cerebrovascular, respiratory, peripheral, and 
ophthalmic beds provide physiologic information beyond that 
of blood pressure measurement alone.1,2,5,6,8,14,24,31,35,38 Various 

harmonic amplitudes obtained by Fourier transfer are associ-
ated with several cardiovascular abnormalities.10,25,33,39,42 Fast 
Fourier transformation is a mathematical algorithm that recre-
ates the original pressure wave by summing a series of simple 
sine waves of various amplitudes and frequencies (that is, 
harmonics).5 Fourier analyses converts the conventional arterial 
waveform in the time domain to harmonics in the frequency 
domain, which typically are displayed as spectra of amplitude 
plotted as a function of frequency. This analytical technique 
also has been used to calculate impedance from simultaneously 
recorded blood pressure and arterial flow.28 Frequency domain 
analysis takes into account systemic vascular impedance, blood 
viscosity, vascular compliance, blood volume, and heart rate 
because these parameters determine the shape of the arterial 
pressure waveform. Therefore, the amplitudes of various har-
monics would change in response to ventricular and arterial 
related factors that alter the arterial waveform.

Hypertension is uncommon in nonhuman primates.11,26 In 
most primate species, blood pressure remains low. However, 
the significance of the arterial wave morphology is unknown 
in primates. Accordingly, the objective of the present study was 
to characterize noninvasively recorded arterial waveforms in 
apparently healthy, socially raised and housed bonnet macaques 
(Macaca radiata) and to assess relations between harmonics and 
cardiovascular variables.

Materials and Methods
Characteristics of the State University of New York Downstate 

Medical Center primate colony have been described previ-
ously.17 The colony currently consists of 125 laboratory-born and 
raised bonnet macaques (Macaca radiata) living in social groups 
of 6 to 10 and maintained on standard commercial monkey 
chow. All procedures were performed in careful conformance 
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images according to American Society of Echocardiography 
standards.19,21 Three measurements were taken, and average 
values were recorded. LV mass and ejection fraction were cal-
culated by the American Society of Echocardiography-corrected 
cube formula.19,21 LV mass indexed by body surface area, frac-
tional shortening, septal wall thickness, posterior wall thickness, 
LV end-diastolic diameter, and LV end-systolic diameter were 
determined for each monkey.

Statistics. Continuous variables were expressed as mean ± 1 
SD. Univariate associations between variables were analyzed 
by using Spearman univariate correlation coefficients. Multiple 
linear regression analysis adjusted for significant univariate 
predictors was used to determine independent correlates of 
LV mass. All analyses were performed by using Statistical 
Package for Social Sciences (SPSS) version 16.0 (SPSS, Chicago, 
IL). A P value less than 0.05 was considered to be statistically 
significant.

Results
Clinical and echocardiographic values for all the monkeys 

are presented in Figure 1. The colony studied was a predomi-
nantly female (66%) population of adult bonnet macaques. 
The total number of harmonics ranged from 5 to 14 harmonics, 
with an interquartile range of 7 to 10. Whereas 53% of the total 
amplitude of the harmonics was contained in the fundamental 
frequency, an additional 21% and 8% were in the first and sec-
ond harmonics, respectively; 95% of the total amplitude was 
contained within the fundamental and first 5 harmonics. The 
arterial pressure waveform in the time domain and its harmonic 
components in the frequency domain of a 10-y-old monkey are 
shown in Figure 2.

Unadjusted LV mass was inversely correlated with third H:T 
(r = −0.52, P = 0.001; Figure 3) and second H:T (r = −0.38, P = 
0.02). LV mass index was inversely correlated with third H:T 
(r = −0.53, P = 0.001) and second H:T (r = −0.35, P = 0.048) but 
not with systolic blood pressure (r = −0.04, P = 0.84) or diasto-
lic blood pressure (r = 0.04, P = 0.83). The third H:T also was 
inversely correlated with septal wall thickness (r = −0.41, P = 
0.01), posterior wall thickness (r = −0.41, P = 0.01), and LV end-
diastolic diameter (r = −0.49, P = 0.002), whereas second H:T was 
inversely correlated with LV end-diastolic diameter (r = −0.38, 
P = 0.02; Table 1). Heart rate was inversely correlated with the 
eighth H:T (r = −0.42, P = 0 0.035) but not the total number of 
harmonics (r = 0.00, P = 1.0). On multivariate analysis adjust-
ing for age, gender, weight, and crown–rump length, third H:T 
was an independent predictor of LV mass (β = −54.14, P = 0.03).

Discussion
In the present study, we performed harmonic analysis of 

noninvasively recorded brachial arterial waveforms by using 
applanation tonometry. Given that 95% of the total harmonic 
amplitude is contained within the first 5 harmonics, the fre-
quency spectra of nonhuman primates appears to be similar to 
that previously reported in humans.23 By using Fourier analy-
sis, the arterial blood pressure waveform can be decomposed 
into its fundamental and its harmonics. Because the LV ejects 
blood into the arterial system, it seemed likely to us that various 
harmonics would reflect LV structure and function. We found 
that the ratios of lower harmonics amplitude to total harmonic 
amplitude (second and third H:T) were related to LV mass, 
whereas the higher harmonics amplitude ratio (eighth H:T) 
was related to heart rate. In addition, LV mass was unrelated 
to blood pressure measured by sphygmomanometry.

with the Guide for the Care and Use of Laboratory Animals.13 The 
State University of New York Downstate Medical Center Division 
of Laboratory Animal Research approved this prospective study. 
We studied 38 bonnet macaques (25 female, 13 male; mean age, 
13 ± 4 y) that had no recent or ongoing participation in physi-
ologic or pharmacologic studies.

Laboratory methods. Morphometry. Anesthesia was adminis-
tered by using intramuscular ketamine (15 mg/kg) as clinically 
indicated to achieve sedation throughout the procedure. Imme-
diately after sedation, each monkey was weighed; crown–rump 
length was measured; and heart rate, systolic blood pressure, 
and diastolic blood pressure were recorded by sphygmoma-
nometry of the right lower extremity. Body mass index was 
calculated for all monkeys by dividing weight in kilograms 
by the square of the crown–rump length in meters.15 The body 
surface area of each monkey was calculated by using a previ-
ously published formula.22

Arterial tonometry. Applanation tonometry was performed 
in all 38 monkeys according to previously published tech-
niques13 by using a pulse-wave analysis system (SphygmoCor 
applanation tonometer interfaced with SphygmoCor software, 
version 81; AtCor Medical, New South Wales, Australia). The 
tonometry transducer was applied to the brachial artery of all 
monkeys studied, and continuous arterial waveforms were 
displayed instantaneously on a laptop connected to the pulse 
wave analysis system. Arterial waveforms were considered 
technically adequate if all of the following criteria were met: 
consistency and large amplitude of pulse height, presence of 
diastolic decay, and morphology maintained for 10 s. For each 
monkey, arterial waveforms were recorded for 10 s, correspond-
ing to an average of 28 arterial waveforms per monkey given 
the average heart rate of 166 bpm in the cohort. The signal 
from the probe was amplified, filtered and digitized to 12 bits 
at a frequency of 128 samples per second, and transferred by 
USB interface to a laptop. The applanation tonometer uses a 
0.67- to 40-Hz bandpass filter to minimize both group delay 
and distortion. The highest frequencies we recorded were an 
octave lower than the upper end of the tonometer’s passband. 
For this reason, the filter settings did not affect the waveform 
morphology or harmonic components. The data were stored 
as a set of vectors in an Excel (Microsoft, Redmond, WA) file  
for later processing. Signal processing was performed by us-
ing a program running under MATLAB (MathWorks, Natick, 
MA). The program reads the Excel (Microsoft) file, displays the 
original waveforms, and calculates the amplitude spectrum. 
The determination of the spectrum was made by performing 
discrete Fourier transform individually on each signal vector 
and calculating the absolute value of the transform. The ampli-
tude spectrum is the original signal in the frequency domain 
and contains the signals’ constituent frequencies and their 
amplitudes. In addition, the relative amplitudes of the first 7 
harmonics were tabulated and displayed. The amplitude of 
additional harmonics was measured by moving a cursor over 
the harmonic’s peak in the displayed spectrum. The ratio of 
individual harmonic amplitude to the total amplitude (H:T) 
was derived for each decomposed wave.

Echocardiography. Echocardiography (model Sonos 5500 
machine with a 3.5- to 5.5-MHz transducer, Phillips, Andover, 
MA) was performed in all 38 monkeys by an experienced 
echocardiographer. Each study was inspected carefully to assure 
optimal imaging and was recorded on high-definition video 
tapes. Standard echocardiographic images were obtained. Left 
ventricular (LV) dimensions were measured from M-mode and 
2-dimensional parasternal long-axis and apical 4-chamber axis 
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the total amplitude was represented by the first 5 harmonics. 
This finding is similar to that previously found in humans,23 
although the number of harmonics analyzed was limited to 
the first 10 in that earlier study. Therefore, despite differences 
in size, heart rate, and hip flexion, which all may affect arterial 
waveform reflection, the overall distribution of harmonics ap-
pears similar in human and nonhuman primates.

Harmonic analysis has been used once in primates to assess 
LV pressure waveforms derived by cardiac catheterization.25 
Among 37 rhesus monkeys, various harmonic contents were 
correlated with contractility indices whereas others correlated 
with LV loading indices.25

Several lines of evidence suggest that the third harmonic 
represents arterial compliance. In a rat model, bending the aorta 
to yield transverse displacement decreased blood pressure with 
a maximal drop in the second and third harmonics.12 Similarly, 
in another study,7 clamping the femoral artery produced large 
variations in only the third harmonic of the pressure wave. In 
studies of dogs and wombats,34 the third harmonic was deter-
mined to be the dominant harmonic of the flow wave, given 
that it corresponded to the pronounced diastolic flow wave, 
and the authors proposed the frequency of the third harmonic 
to be the natural frequency of arterial waveform. In a study of 
94 human patients with suspected peripheral arterial disease, 
only the third harmonic derived from electrical impedance 
rheographic signals was predictive of significant obstructive 
disease.38 Among 10 survivors of acute myocardial infarction, 
changes in effective renal plasma flow over 1 wk were corre-
lated strongly with changes in the third harmonic.4 Moreover, 
among 59 patients with hypertension, the ratio of the change in 
the third harmonic relative to the change in the first harmonic 
was related to LV mass reduction after 1 y of antihypertensive 
therapy;10 of note, LV mass reduction was not related to the 
drop in blood pressure in that study. The dominance of the 
third harmonic in these studies may relate to its relation with 
forward (LV ejection) as well as reflected (arterial) pressure 
waves. Indeed, although most of the spectral power is contained 
in the fundamental and first harmonic, the second and third 
harmonics have long been considered the main accumulators 
of energy of the pulse wave.30

There was no significant correlation between LV ejection 
fraction or fractional shortening and any of the harmonic ratios. 
This finding was surprising, given that the arterial waveform 

Although the use of applanation tonometry to measure arte-
rial stiffness and wave reflection has grown in recent years, we 
are aware of only 2 prior studies using this technique to assess 
arterial stiffness in monkeys.20,40 In one,40 the carotid artery in 6 
older rhesus monkeys was assessed to determine the effects of a 
thiazolium on arterial properties in old, healthy Macaca mulatta 
primates. In the other study,20 our group found applanation 
tonometry feasible for recording pressure waveforms from the 
carotid, brachial, and axillary arteries in 61 bonnet macaques. 
Although the augmentation index, a measure of arterial wave 
reflection and compliance, was found to correlate with LV 
mass, the transfer function by which this index was derived 
has been validated in humans but not in primates.20 In addi-
tion, augmentation index was largely determined by heart rate, 
which varies greatly in nonhuman as compared with human 
primates. Neither study assessed the harmonic components 
directly. Consequently, we here performed harmonic analysis 
of the arterial waveform in a similar manner to that performed 
in humans over the past several decades,5,35 to provide informa-
tion about the cardiovascular system beyond blood pressure 
measurement alone.

We recorded arterial waveforms from the macaque brachial 
artery because of its close proximity to the aortic arch and 
because of the high yield of technically adequate waveforms.20 
Decomposition of the brachial artery pressure waveform yielded 
5 to 14 harmonics, with an interquartile range of 7 to 10; 95% of 

Figure 2. The arterial pressure waveform (above) and its harmonic 
(below) of a 10-y-old monkey.

Figure 3. Relation between LV mass and the ratio of third over total 
harmonic amplitude (third H:T).

Figure 1. Clinical and echocardiographic measurements (mean ± 1 SD) 
in adult bonnet macaques.
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amplitude ratio (eighth H:T) was related to heart rate. This study 
is the first to have evaluated harmonic analysis of noninvasively 
derived arterial waveform in bonnet macaques. The relative 
contribution of LV and arterial properties merits further study, 
as does extension of this approach to human subjects to derive 
information about LV mass. Subsequent studies might evalu-
ate the utility of harmonic components of pressure and flow 
waveforms to derive impedance measures.
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is composed of a primary wave generated by LV contraction 
and secondary wave due to waveform reflection. Whether other 
indices of LV function including change in pressure relative to 
time are related to various arterial harmonics remains unclear. 
The finding that LV mass index was unrelated to blood pressure 
is consistent with prior studies21,27 and may relate to the narrow 
range of blood pressure in bonnet macaques.

The present study is associated with various limitations. This 
study is a cross-sectional study of apparently healthy bonnet 
macaques. All measurements were obtained during sedation 
with ketamine. Although anesthetic agents are known to in-
fluence LV performance, ketamine has been shown to have 
minimal effects on cardiac contractility and heart rate.18 The 
mean heart rate of our macaques was similar to that observed 
in other monkey experiments. Similar LV wall thicknesses have 
been obtained from rhesus monkeys sedated with ketamine 
and with a combination of Telazol and isoflurane.18 LV mass 
was based on measurements from the parasternal view, which 
was easily obtained in all of the animals. Other indices derived 
from applanation tonometry reflecting cardiac workload were 
not assessed. Arterial flow was not measured, and therefore 
impedance indices (the ratios of the harmonics of pressure to 
the harmonics of flow) could not be calculated. Respiratory vari-
ations in the arterial pressure waveforms could not be avoided 
completely, but arterial waveforms were considered technically 
adequate and were captured if all of the following criteria were 
met: consistency and large amplitude of pulse height, presence 
of diastolic decay, and morphology maintained for 10 s. Arterial 
properties were not assessed by a different technique, such as 
biopsy, to determine the direct effects of arteriopathy on specific 
harmonics. These results may not be referable to other arterial 
sites, given that the frequency spectra of different arterial beds 
can vary significantly.7,41,44

Harmonic analysis of noninvasively recorded arterial wave-
form may provide information pertaining to LV mass. Although 
the ratios of lower harmonics amplitude to total power (second 
and third H:T) were related to LV mass, higher harmonics  

Table 1. Correlations between echocardiographic indices and harmonic amplitude ratios

1st H:T 2nd H:T 3rd H:T 4th H:T 5th H:T 6th H:T 7th H:T 8th H:T

Left ventricular mass r 0.15 –0.38 –0.52 0.05 –0.32 0.05 0.18 0.16
P 0.36 0.02a 0.001a 0.75 0.051 0.77 0.35 0.45
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P 0.49 0.048a 0.001a 0.15 0.12 0.24 0.73 0.82

Septal wall thickness r 0.25 –0.24 –0.41 –0.08 –0.26 0.02 –0.01 –0.09
P 0.13 0.15 0.01a 0.64 0.11 0.90 0.97 0.69

Posterior wall thickness r 0.11 –0.24 –0.41 0.05 –0.23 0.08 0.17 –0.07
P 0.53 0.15 0.01a 0.75 0.16 0.60 0.36 0.73

Left ventricular end–diastolic diameter r 0.05 –0.38 –0.49 0.07 –0.29 0.01 0.14 0.28
P 0.76 0.02a 0.001a 0.68 0.08 0.95 0.48 0.19

Left ventricular end–systolic diameter r 0.05 –0.31 –0.24 0.03 0.18 –0.08 0.25 0.22
P 0.77 0.06 0.14 0.88 0.28 0.63 0.19 0.30

Fractional shortening r 0.10 0.19 0.02 0.09 0.11 0.09 –0.12 0.18
P 0.56 0.27 0.92 0.60 0.50 0.60 0.31 0.51

Left ventricular ejection fraction r –0.10 0.18 0.02 0.08 0.11 0.09 –0.12 –0.21
P 0.55 0.27 0.92 0.64 0.51 0.60 0.52 0.33

Heart rate r 0.03 0.24 0.29 –0.11 0.19 –0.26 –0.18 –0.46
P 0.88 0.13 0.09 0.55 0.29 0.14 0.37 0.035a

H:T, ratio of individual harmonic amplitude to total amplitude
aP values of ≤ 0.05 are significant.
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