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The Use of Rabbits Used to Propagate  
Human Lice for Research

Steven H Weisbroth, MS, DVM, DACLAM*

The globally important human diseases of trench fever, epidemic typhus, and relapsing fever are vectored by the human  
louse Pediculus humanus humanus. Although these conditions are epidemically quiescent at present, they persist in 
socially dysfunctional situations of war, deprivation, and crowding. The taxonomically closely related head louse, Pediculus 
humanus capitis, does not respect economic or social status and is quite common in most countries. The 2 types of lice are 
now recognized as conspecific ecotypes of a single species. While the body louse has been adapted for propagation in the 
laboratory by feeding in vivo on live rabbits, a similar animal model has not been developed for the host-specific head louse. 
Accordingly, research for treatment and control of the head louse has largely been performed by using laboratory-reared 
body lice. This review describes methods for the propagation of body lice in the laboratory and outlines at least 4 areas 
of research that require sufficient numbers of aged body louse cohorts produced in rabbits for use in controlled studies:  
1) pediculicide development and resistance, 2) immunity and vaccine potential, 3) endosymbiotic bacteria needed by lice for 
nutrition, and 4) lice as vectors of human disease. The review concludes with a discussion of several ethical issues involved 
with the standard method of using unsedated rabbits and recommends consideration of providing sedating anesthetics for 
rabbits used in louse feeding procedures.
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Introduction
Sucking lice of the Anopluran genus Pediculus continue to be 

a globally important public health concern. Human body lice, 
Pediculus humanus humanus, are important vectors of trench 
fever caused by Bartonella quintana, epidemic typhus caused 
by Rickettsia prowazekii, relapsing fever caused by Borrelia 
recurrentis, and several other bacterial pathogens including 
Acinetobacter baumannii, Salmonella typhi, Serratia marcescens, 
and the plague bacillus Yersinia pestis.44 Since the advent of 
antibiotics, outbreaks of louse-vectored infections are sporadic 
and more quickly contained but continue to occur in unstable 
conditions.14 Body louse infestation is typically associated with 
dysfunctional societal conditions of poverty, crowding, lack 
of clean clothing, unsanitary hygiene, war, and more recently, 
homelessness, and refugee camp conditions.7,15,29,76,77 Untreated 
infestations are accompanied by allergic lesions of intense pru-
ritus, excoriation, abrasion, and secondary infection of the skin 
due to scratching, reddening, and swelling of skin punctured 
by feeding lice.19,63 Body lice were commonly referred to as 
“cooties” in the World War I era.

While human head lice, Pediculus humanus capitis, can 
be infected carriers of the same pathogens carried by body 
lice5,6,10,11,77,79 and can be experimentally infected with the patho-
gens carried by body lice,45 they have not been established as 
effective vectors of disease.61 However, they nonetheless cause 
the clinical symptoms of pruritus and inflammatory lesions 
of the infested scalp, particularly in epidemics of school-aged 
children.10,87 Head lice are also opportunistic parasites of those 
with an impaired immune system (for example, HIV infection).76 
Head lice are not exclusive to poor economic status and occur 
quite commonly, even in developed countries.27 In the United 

States, to give some sense of head louse economic importance, 
pediculicide sales are over 240 million U.S. dollars per year, and 
infestation rates range from 6 to 12 million cases a year with 
2 to 6 million households affected.40 Annually, in the United 
States, about 1.2% of all school children are infested.27 The cost 
of infestation may be estimated at more than 1 billion U.S. dol-
lars, but the impact of lost days of learning due to the “no-nit” 
policy (before return to school) is more difficult to quantify.21,35,36

Biology of Human Lice
Body and head lice are similar in appearance, although body 

lice may be slightly larger.29,87 Illustrations of various stages 
of head and body lice may be seen in reference.11 The lice are 
closely related, although the taxonomic relatedness of the  
2 types has been debated for more than 2 centuries57 and has been 
extensively investigated.3,4,11,87 At present, they are regarded as 
conspecific ecotypes of a single species,37 despite recognized 
genomic differences.58,59 Phylogenetic analyses have grouped 
Pediculus lice into 6 distinct mitochondrial clades, A to F. Head 
lice appear in all 6 clades, but body lice belong only to clades A 
and D, suggesting that body lice evolved from head lice with the 
advent of clothing, which is required for egg deposition.58,59 On 
the other hand, evolution from head lice to body lice seems not 
to have been a singular event because this type of evolution in 
clade A lice appears to take place frequently, especially in mixed 
infestation.77 A molecular clock analysis indicates that body 
lice originated not more than 72,000 ± 42,000 y ago supporting 
the concept that the first human use of clothing originated at 
about the same time.51 The divergent mitochondrial clades of 
head lice are geographically distributed and allow the study of 
coevolution of both the lice and their human hosts.58

The life cycles of these 2 ecotypes, on the other hand, are quite 
different. Body lice do not live on their human hosts, but peri-
odically, 1 to 5 times daily, emerge from the seamed clothing or 
bedding for blood meals by puncture of capillaries on adjacent 
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skin. The eggs of body lice are laid in the clothing, bedding, and 
body hair. Head lice, by contrast, spend their entire life cycle on 
the scalp or attached to the hairs of the scalp. Louse eggs (called 
“nits”) are attached to the base of the hairs and may be visible 
individually or as aggregate nits. In the case of both ecotypes, 
the eggs hatch in about 7 to 9 d, somewhat dependent on the 
ambient temperature. Lice undergo an incomplete metamor-
phosis. Hatched larval forms become first instar nymphs. As 
they grow, 2 more nymphal molts occur to become second and 
third instars, becoming adults after an additional molt. This 
metamorphic process takes about 20 to 21 d. The adults live 
for about 30 d.

Propagation of Lice on Rabbits
The initial attempts to propagate body lice for research  

used human volunteers,23,83 a method still in use in certain 
circumstances.81,84,85 Human volunteers used as hosts for tempo-
rary colonies of head lice find the practice irritating and arduous 
because of the frequency of feeding activity, at least 4 to 5× per 
day, and many individuals develop allergic immune responses 
of pruritus, inflammation, and secondary infection.84,90 Because 
of the logistic limitations of this approach, efforts were made 
to develop an animal host for sustainable louse colonies under 
laboratory conditions, first successfully made by Culpepper in 
the 1940s at his lab in Orlando, FL.23-25 The success of this model 
enabled investigators around the world to similarly establish 
colonies of body lice by using starter lice from the Orlando lab, 
or de novo, by using the same techniques.83 In vitro techniques 
have been developed for the propagation of both body and 
head lice and are further discussed below. At present, the use 
of laboratory-reared body lice in rabbit hosts remains the pre-
dominant mode for the production of same-age, timed cohorts 
of the various life cycle stages for research and testing. Body 
lice are accepted as an appropriate species for the investigation 
of pediculicide efficacy against head lice.31 Laboratory-reared 
human body lice are important for the development and ef-
ficacy testing of pediculicides for control of head lice; this is an 
ongoing need because head lice cultures suitable for research 
have not been successfully established in an animal model.31,84

Propagation of body lice for research begins with receipt of 
a starter shipment of adult lice from an established lab or by 
de novo collection of adult lice from a human infestation.22,33,83 
Several authors recommend that start-up, de novo colonies from 
lice collected in the field be first fed on human volunteers before 
being transferred to rabbit feeding.22,83 Timing is important 
because adult lice can only live 2 to 3 d without a blood meal 
from the host. The adults are received or placed on patches 
of black cloth, and the patches are placed in covered culture 
dishes or covered glass or steel bowls. The lice are maintained 
under incubator conditions of about 30 to 32 °C and relative 
humidity of about 50%, conditions that mimic the ambiance 
under clothing. Variations of temperature, humidity, frequency 
of feeding, and type of blood have been studied to determine 
their effect on breeding and to establish optimal conditions for 
production.25,31,34,55,56,62,69,80 Adult female lice will lay about 3 to 
10 eggs per day and a total of about 60 to 100 over their lifespan.

Feeding takes place by removing host rabbits from their cages 
and bringing them to a procedure area with tabletop devices 
that allow the rabbits to be restrained in dorsal recumbency by 
strapping the legs. The abdominal skin is prepared by shaving 
with an electric clipper. Dishes of lice with separate cohorts of 
the sequential metamorphic stages are brought from the incubator.  
The cloth patches with adherent lice are then removed and 
placed directly on the shaved abdominal skin of the rabbit. The 

lice are allowed to feed for 15 to 30 min, and then the patches 
and any fed lice on the skin are brushed back into the dishes 
and returned to the incubator. For optimal production in the 
laboratory, all stages of lice must be fed at least every other day 
(4× per wk). The fed adults live and procreate for 20 to 21 d or 
more after hatching. Under conditions of natural infestation, 
lice from human clothing or bedding will die within a week if 
unable to acquire a human host.

In recent years, the inability to find an effective animal host for 
the rearing and production of human head lice, P. humanus capi-
tis, has led to efforts to develop an in vitro technique to produce 
quantities of lice at various stages of the life cycle for research 
use. These efforts began early,30,37,38,53,61,74 but more effective 
devices and membrane materials have since been developed 
for this purpose (see references below). Different devices have 
been developed but all use a reservoir that holds warmed rabbit 
or human blood. A suitable membrane material (for example, 
American Can Parafilm M or similar) is stretched over the 
reservoir, and the substrate patch material with attached lice is 
placed directly on the membrane for a timed feeding period. 
Devices have been developed for the production of both head 
and body lice.12,28,48,52,62,69,88,90

Research Applications
The following section presents brief introductions to 4 areas of 

research that use lice. The literature based on the subject areas is 
extensive and may be gleaned by cross-referencing. The intent 
here is not to exhaustively review and cite the subject area but 
rather to illustrate the abundant body of research related to 
the human louse that uses rabbits and derived methodology 
to provide life-stage forms necessary for particular areas of 
research. These subject areas are as described below.

Pediculicide development and resistance. Given the public 
health and economic importance of louse control and eradica-
tion, pediculicide development and the concurrent problem of 
pediculicide resistance are active areas of research. The history of 
pediculicide development shows that over time lice will develop 
resistance to current and subsequent chemical pediculicides 
as they are put into use.2,26,89,90,91 This research area is directed 
primarily at head lice because pediculicides are not useful in 
the treatment of body lice. Body lice are treated by correction 
of personal hygiene and hot water laundering of clothes and 
bedding because the lice and nits do not reside on the body.

Insecticide resistance is particularly problematic in the con-
trol of human head lice for several reasons: 1) the parasites are 
obligate blood feeders and are exposed to pediculicides at all 
life stages; 2) lice are highly fecund with short generational time 
and, 3) many of the numerous pediculicidal products actually 
share a common chemistry that promotes cross-resistance.21 
The historic development of common pediculicides since the 
use of dichlorodiphenyltrichloroethane (DDT) in the 1940s and 
documentation of sequential resistance have been cited.2,21,22,60,78

The measurement of both efficacy and resistance to pediculi-
cides can be evaluated objectively only by exposing test lots 
of lice to insecticides applied via an inert carrier.16,17 This ap-
proach is the basis of the WHO test and subsequent variants of 
this standardized procedure.41,54,75,78,88 These tests have used 
cohorts of test lice propagated in rabbits,2,42 head lice collected 
from infested humans,16,43,72 and head or body lice propagated 
by the in vitro membrane feeding method.90

Resistance is usually encountered as poor clinical response 
to treatment with a given product.64 The first study to report 
resistance was that head lice from Massachusetts and Florida 
were resistant to permethrin and that the lice tested in bioassays 
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seemed to have genes consistent with what was termed knock-
down resistance (kdr).54 kdr was first discovered in the house 
fly21 as a heritable trait associated with nerve insensitivity to 
DDT, pyrethroids, and pyrethrins (for example, permethrin). 
kdr and kdr-like genes were later found to be linked to 3-point 
mutations in human lice.32,54 Permethrin was first used in the 
Nix formulation (Prestige, Tarrytown, NY) as a commercial 
over-the-counter product and extensively used for over 20 y. 
Loss of activity of the Nix product over the period from 1998 to 
2013 was correlated with the increase of kdr and kdr-like muta-
tions over that time.32 While the presence of kdr-type mutations 
may not directly predict product clinical failure, their increasing 
frequency in louse populations coincides with reports of product 
failures in controlled studies.32 The literature contains many 
reports describing the genetics of the kdr trait and bioassays 
used to track distribution of kdr and the mean percent resistance 
allele frequency in louse populations.20,22,26,32,43,54

Immunity to human lice and vaccine potential. The potential 
of vaccines for louse control has prompted study of the immu-
nogens found in louse salivary and digestive products and louse 
feces.8,65-68,70,71 In the process of biting and imbibing of blood, lice 
inject vasodilators, anesthetics, and anticoagulants (for example, 
thrombin inhibitor) to facilitate the process.47,65 Human clinical 
literature is also replete with reports that infested humans de-
velop pruritus and dermatitis as clinical symptoms of untreated 
infestation.14,63 The sequence of skin lesion development has been 
characterized as a series of phases: 1) initially, no lesion; 2) 3 to 4 
wk later, papules and moderate pruritus; 3) wheal development 
(so-called immediate hypersensitivity); and 4) delayed papular 
development and intense pruritus (delayed hypersensitivity). 
When healed hosts were reinfested, lesion development went di-
rectly to phase 2, indicative of an allergic immune response.63 The 
literature commonly asserts that the clinical allergic responses are 
a consequence of saliva injection during louse feeding, but, while 
plausible, no laboratory research directly attributes the allergic 
condition to saliva injection. Another indicator of parasitic allergy 
is the recently noted hematologic eosinophilia that occurs during 
pediculosis.14 The host allergic symptomology has no significant 
effect on louse populations (that is, infection-induced immunity 
is not very effective).7,14

The digestive process in the human louse and the assorted 
digestive enzymes have recently been reviewed.88 Antigens 
of the louse midgut, including aminopeptidase,71 have been 
studied and characterized.67 When rabbits were immunized 
with extracts of louse midgut, they developed antibodies to all 
major midgut proteins.70 When lice fed on rabbits immunized 
to midgut extracts, they took smaller blood meals, had higher 
mortality, laid fewer eggs, and took longer to develop.8 Simi-
larly, when rabbits were immunized with extracts of louse feces, 
they showed the same indicators of immunologic resistance.66 
The immunogenic antigens of the louse midgut were located 
in the outer epithelial cells of the midgut.67 Unlike the salivary 
proteins, these midgut antigens are not injected at feeding and 
therefore are not normally presented to the host immune system 
and have been termed hidden antigens.88 The hidden antigens 
include the gut proteases, components of the peritrophic mem-
brane, and midgut symbiotic bacteria. Immunization of rabbits 
with recombinant hidden antigens has not been tested but 
presents a potential for vaccine development as an alternative 
to chemical pediculicides for louse control.86,88

Symbionts of Pediculus lice. Human lice are deficient in the 
gene-enabled synthesis of most B vitamins, including panto-
thenate (vitamin B12), a necessary nutrient that is provided by 
the resident obligatory symbiont Candidatus Riesia pediculicola. 

These symbiotic bacteria are located in specialized cells of the 
mycetome, a visible disk-shaped organ located on the ventral 
aspect of the midgut.13,18,49,50,88 The symbionts are transmitted 
to the next louse generation transovarially from the maternal 
mycetome to the developing oocysts and undergo a complex 
transfer cycle to 4 subsequent mycetomes as the lice go through 
their nymphal molt stages to the adult form.73,88 The genomes  
of the symbionts and their louse hosts have been studied  
extensively.39,49 A given louse clade can be identified by de-
termining its particular subset of symbionts.39 Further, the 
digestive tract of human lice and their digestive processes, 
including elucidation of the enzymes needed for the digestion 
of blood, have been investigated and recently summarized.88

Lice as vectors of human disease. The human health issues 
of epidemic typhus, trench fever, and relapsing fever are cur-
rently somewhat quiescent but globally continue to occur as 
important infectious diseases.14,77 In fact, the collection and 
examination of lice from infested populations are effective 
surveillance mechanisms for the detection of these bacterial 
pathogens.77 Laboratory studies of the respective rickettsial, 
bacterial, and spirochete organisms and their louse vectors 
have required substantial numbers of timed louse cohorts at 
various stages, provided predominantly by using the rabbit host 
system.9,28,45,46,82 Infected bacteremic rabbits have been shown 
experimentally to effectively transmit Rickettsia prowazekii to 
body lice.46 The study of the dynamics of louse infestation has 
shown that although infective rickettsia were discharged in the 
louse feces, infected lice did not transmit the bacteria to their 
progeny.46 Similarly, infected rabbits were used to establish 
body lice as potential vectors of R. rickettsii and R. conorii45 and 
proliferation and excretion of Bartonella quintana.81 Isolation of 
R. prowazekii from infected rabbit midgut cells enabled ultras-
tructural studies.82

The potential for head lice as vectors of R. prowazekii and 
B. quintana has been investigated. Although head lice can be 
experimentally infected with these organisms and later void 
virulent forms in their feces, they do not transmit the organ-
isms to rabbit hosts.61 Under field conditions, human bacterial 
infection by head lice in the absence of body lice has not been 
reported, leading to the conclusion that head lice were poor 
biological vectors of human disease.61

Ethical Considerations
Important final topics are the ethical considerations of using 

sentient unsedated rabbits as the current standard model for 
periodic feeding of body lice at sequential stages of their life 
cycle. The discomfort (distress?) of rabbit hosts has scarcely been 
noted or commented on in the literature describing their use. 
Moreover, except for one affirmative comment in the 1940s,24 
no descriptions have been reported regarding the development 
of pruritus or dermatitis in rabbits that are used repeatedly 
as subjects for louse feeding. For at least the last 30 y or so, 
institutional IACUCs have approved these studies seemingly 
without questioning whether sedated alternatives exist and 
should be used.

Human volunteers used as subjects for body or head louse 
feeding subjects unquestionably find the practice uncom-
fortable. Researchers have difficulty in using humans as a 
sustainable and repetitive source of lice. Based on the author’s 
several years’ experience in maintaining a human body louse 
colony fed on rabbits for evaluation of commercial pediculi-
cide formulations, rabbits clearly seemed to find successive 
episodes of feeding to be upsetting and they struggled after 
removal from the cage on their way to recumbency, as if they 
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knew what was coming. Whether the distress was due to the 
expectancy of lice feeding on their abdomen or merely to the 
process of being turned upside down and having their legs 
strapped down in dorsal recumbency was not clear. Once in 
place with the lice feeding, the rabbits were calm, seemingly 
tolerant of the situation, and not in pain. Furthermore, we 
did not observe rabbits developing pruritus or inflammatory 
skin lesions after repetitive use for feeding lice. Although 
the duration of use of a rabbit as a host for feeding lice is not 
part of the literature, the author suggests that good practice 
might be to discontinue the use of a given rabbit after 4 to  
5 wk because the antibodies that develop in response to saliva 
injection might inhibit the production of healthy lice.

Long-standing institutional policy as promulgated by  
1) the NIH Principles for the Utilization and Care of Vertebrate 
Animals, 2) the terms of accreditation by AAALACI as recom-
mended in the Guide for the Care and Use of Laboratory Animals, 
and 3) the requirements of compliance with the Federal Ani-
mal Welfare Act regulated by the USDA all recommend with 
authority or require by statute that procedures causing more 
than momentary pain and distress be performed with appro-
priate sedatives, analgesics, or anesthetics. These converging 
obligations are also summarized in the AALAS policy on this 
issue. The AALAS Position Paper1 on what seems like a gray 
zone of uncertainty can bring some clarity to this discussion. 
The Paper states that “AALAS supports live animal research 
when it is performed in an ethical and humane manner. That 
is, anyone working with laboratory animals has the moral 
obligation to explore, consider, and implement any means for 
avoidance and minimization of pain or distress in laboratory 
animals, whenever possible.” Further, the Paper outlines that

1) The ability of vertebrate animals to feel or perceive pain is 
not fully understood and the assessment of pain in non-
verbal individuals is often difficult. Therefore, any event, 
procedure, or situation known to cause pain or distress in 
humans must be expected to cause pain or distress in non-
human vertebrate animal species, as well, unless proven 
otherwise.

2) The avoidance and minimization of pain and distress in 
laboratory animals is an ethical obligation that preserves 
the welfare of animals used in research, teaching, and 
testing, and optimizes the interpretation of scientific data 
collected during experiments.

3) Any experimental, husbandry, or other procedure that has 
the potential to produce more than slight or momentary 
pain or distress (for example, in excess of an injection of 
an innocuous substance) requires the consideration and 
implementation of pain-relieving measures, including 
but not limited to, the use of anesthetic and analgesic 
drugs, supportive care associated with surgical/painful 
procedures, social housing, acclimatization to stressful 
procedures, environmental modifications, and training to 
perform particular tasks allowing the animal some con-
trol over the situation. Preemptive measures should also 
be considered.

The use of rabbits for feeding lice is highly relevant to the 
AALAS policy and other regulatory or accrediting organiza-
tions. In the author’s experience and opinion, the use of rabbits 
in this manner causes them distress. Whether the discomfort 
is caused by the simple anticipation of either being placed in 
dorsal recumbency, having the lice feed, or both, the evident 
stressful effects of the feeding process are sufficient to recom-
mend giving consideration to the use of sedating anesthetics to 

ameliorate or prevent the distress that rabbits experience when 
used in this manner.

Some limited experience has been reported regarding the use 
of anesthetics to sedate rabbits being used for louse feeding in 
the standard model.46,88 One study46 used an intramuscular 
injection of a combination of 17 mg chlorpromazine and 67 mg 
ketamine chlorohydrate over a period of years, seemingly 
without (reportable?) ill effect on louse propagation. If any labs 
have used anesthetics, they should report this in the literature.  
The issue of whether sedation of the rabbit host has an adverse 
effect on the feeding lice is an open question at present, as no 
published information is available on the subject. Laboratories 
that use rabbits for feeding lice might investigate this question. 
IACUCs should ask investigators proposing the use of rabbits 
for the propagation of lice to consider the use of distress- 
alleviating sedation if that is not included in the protocol and 
to justify the need to omit sedation by citing scientific reasons.

IACUCs should also question whether the proposed use of 
rabbits could be accomplished by using an in vitro membrane 
feeding method, which is already a process well-established 
method. In short, “why use rabbits at all?” As an interesting 
aside, a similar evolution in accepted methodology took place 
about 25 y ago when the then-standard producing monoclonal 
antibodies in mice was replaced by the use of in vitro in cell 
cultures. The answer to the question of why rabbits are used 
is in a state of evolution based on 2 considerations. The first is 
historic. From about 1950 until 2015, virtually all nonclinical 
research and testing using human lice was conducted by using 
body lice produced in rabbits, even though reports of using in 
vitro membrane feeding technique to propagate human lice 
date back to 1949, this approach produced only small numbers 
of somewhat physiologically impaired lice. Although in vitro 
membrane feeding methodology is currently well established 
in principle for the production of both head and body lice, 
the assembly and use of the apparatus requires training and 
experience and until recently produced only small numbers 
of lice. More recently, perhaps in the last 5 to 10 y, improved 
membrane-feeding technology has been developed, and more 
recent research reports have used lice produced by an in vitro 
technique. For many types of research, in vitro methodology 
can replace the standard rabbit model.

The second rationale for the need to use live-rabbit hosts is 
that some types of testing and research (for example, pesticide 
testing) require larger numbers of same-age cohort lice, which 
can currently only be produced through the use of live rab-
bits. Furthermore, studies of the transmission, immunology,  
and pathobiology of infectious organisms carried by lice also 
require the use of a live host.

In conclusion, the need for a reliable source of lice continues 
to require a live host under some circumstances. Nonetheless, 
sedating the rabbits is a possible option that should be evalu-
ated with regard to the amount and condition of the harvested 
lice. Such considerations are essential to minimizing animal 
distress, and because lice are vectors of serious human diseases 
and cause discomfort and possible allergic responses in human 
hosts, research on lice and therefore need for a live rabbit host 
may be necessary for many years.
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