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Pigs in Transplantation Research and Their 
Potential as Sources of Organs in Clinical 

Xenotransplantation

S Sikandar Raza, MD,1 Hidetaka Hara, MD, PhD,2 Willard Eyestone, PhD,3 David Ayares, PhD,3  
David C Cleveland, MD, MBA,4 and David K C Cooper, MD, PhD, FRCS5,*

The pig has long been used as a research animal and has now gained importance as a potential source of organs for clinical 
xenotransplantation. When an organ from a wild-type (i.e., genetically unmodified) pig is transplanted into an immunosup-
pressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This 
response has been largely overcome by 1) extensive gene editing of the organ-source pig and 2) the administration to the 
recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T cell costimulation pathway. Gene 
editing has consisted of 1) deletion of expression of the 3 known carbohydrate xenoantigens against which humans have 
natural (preformed) antibodies and 2) the introduction of human ‘protective’ genes. The combination of gene editing and 
novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 y and of pig heart 
survival to up to 9 mo. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine 
endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions.

Abbreviations and Acronyms: CRP, complement-regulatory protein; EPCR, endothelial protein C receptor; Gal, galactose-α1, 
3-galactose; GTKO, α1,3-galactosyltransferase gene-knockout; HERV, human endogenous retrovirus; Neu5Gc, N-glycolylneuraminic 
acid; NHP, nonhuman primates; PERV, porcine endogenous retrovirus; TKO, triple knockout; WT, wild-type
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Introduction
Pigs have become increasingly important animals in surgical 

research, particularly in the field of transplantation. In more 
recent years, in an effort to provide an alternative source of 
organs to offset the limited number of organs available from 
deceased human donors each year, pigs have been investigated 
as potential sources of organs, tissues, and cells for clinical trans-
plantation. Their choice as an alternative source was based on a 
number of anatomic, physiologic, logistical, and ethical reasons.

Here, we will first very briefly review 4 areas of transplanta-
tion research in which pigs have played a major role and will 
follow this with a more detailed review of progress in the field 
of xenotransplantation, largely in the pig-to-NHP model.

Pigs in Transplantation Research
Based on research in rodents, miniature swine were de-

veloped as a large animal model of inducing immunologic 
tolerance to a kidney allograft by various methods, including he-
matopoietic stem cell allotransplantation.66,90,104,105,112-114,117,124,132 
An advantage of inbred miniature swine was that they could 
be ‘tissue typed’ so that organ transplantation between pigs of 

known matched or mismatched histocompatibility could be per-
formed. A limitation of this approach, however, is that it is much 
easier to induce a state of tolerance between pigs with closely 
matching histocompatibility profiles than between humans 
with disparate MHC profiles. Nevertheless, the availability of 
MHC-characterized miniature swine has permitted detailed 
investigation of the problems associated with the induction of 
immunologic tolerance, which has been beneficial to the suc-
cessful induction of tolerance in NHPs and in a low number of 
patients with kidney allografts.

This model was also used to explore tolerance induced by 
transplantation of the thymus gland or of thymic tissue to-
gether with a kidney graft.7,9,87,95,106,138,145-156,158 The approach 
has also been used to study xenotransplantation but, because 
of the greater immune barriers associated with cross-species 
transplantation, with less success.

Spleen transplantation was also carried out in the pig-to-
NHP model and, although tolerance to a donor-specific kidney 
graft could be achieved, this approach carried a high risk of 
graft-versus-host disease,41-50,64,119 and so this approach was 
abandoned, at least temporarily.

The early stages of research also determined that, in out-
bred pigs, liver allotransplantation could be followed by the  
spontaneous development of host tolerance to the trans-
planted liver, allowing all immunosuppressive therapy to be 
discontinued.12-26,40,52,53,66,67,73,102,107,129,140 Furthermore, a liver 
transplant could also induce tolerance to a simultaneous kid-
ney transplant from the same donor. Unfortunately, the exact 
mechanism that allowed ‘liver tolerance’ to develop in pigs 
was never clarified, and, although the liver is perhaps the least 
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immunogenic of the major organs in clinical transplantation, 
liver tolerance has not been achieved consistently in humans.

Some of the approaches to allotolerance achieved in pigs 
were subsequently reproduced in NHPs and humans, though 
with more difficulty. Mainly for logistic reasons (e.g., ease of 
breeding large numbers, etc.), in more recent years the pig has 
become the center of attention as a potential source of organs 
for xenotransplantation.

The Genetically Engineered Pig as a  
Source of Organs for Humans

Currently, in the United States, approximately 120,000 pa-
tients are on the waiting list for organ donation from deceased 
humans. The majority (approximately 100,000) are waiting 
for a kidney, with smaller numbers waiting for a heart, liver, 
pancreas, or lungs.74 A significant number of deaths occur each 
year among those on the organ waiting list. For example, ap-
proximately 45% of those waiting for a kidney transplant die 
within 5 y (or are removed from the waiting list because they are 
no longer suitable to undergo the operation, possibly from the 
development of comorbidities).86 Similar data can be obtained 
from other nations.

An alternative source of organs might be from gene-edited 
pigs. Advances in the techniques of genetic engineering of 
pigs have allowed researchers to make significant strides in 
achieving increased survival of NHPs with life-supporting pig 

kidney or heart transplants.1,82,88,100,122 Pig kidney grafts in NHP 
have functioned for greater than 1 y1,88 and hearts for less than 
9 mo.27,100,108 Progress has been sufficiently encouraging that 
some groups are slowly preparing for initial clinical trials, and 
one patient underwent pig heart transplantation on ‘compas-
sionate’ grounds, surviving for 60 d.32,33,65 To date, pig liver and 
lung transplants have been much less successful.

Genetic engineering of organ-source pigs. The transplantation 
of organs from wild-type (WT, that is, genetically unmodi-
fied) pigs into NHPs results in rapid antibody-dependent, 
complement-mediated rejection (hyperacute rejection) 
 (Figure 1).30 This mechanism is similar to that of the early rejection 
that can occur after the transplantation of an ABO-incompatible 
organ allograft in humans. Progress in pig graft survival in 
the NHP model depends largely on genetic engineering of the 
pig. Two major approaches have been followed: 1) deletion of 
expression of the known pig carbohydrate xenoantigens against 
which humans have natural (preformed) antibodies, and 2) the 
introduction of human transgenes that result in expression of 
‘protective’ proteins on the surface of the pig cells.

Deletion of expression of pig carbohydrate xenoantigens. To 
date, 3 carbohydrate xenoantigens have been identified against 
which humans have natural antibodies (Table 1).

Gal antigens. The most important of these is galactose-α1, 
3-galactose (Gal), which is expressed on many pig cells, most 
notably on vascular endothelial cells.89 Gal is added to underly-
ing carbohydrates by the enzyme α1,3-galactosyltransferase.89 
Humans and NHPs do not have this enzyme and subsequently 
do not express Gal, which results in the production of natural 
anti-Gal antibodies.30,63 Like anti-AB blood type antibodies, 
anti-Gal antibodies are believed to develop during infancy as a 
response to colonization of the gastrointestinal tract by various 
Gal-expressing bacterial and viral flora.62

To overcome the barrier to successful xenotransplantation 
associated with the expression of Gal in the pig, initial studies 
used plasmapheresis or antibody immunoadsorption columns 
to remove anti-Gal antibodies from the potential organ recipient. 
Although these approaches delayed graft rejection, they did not 
result in truly prolonged graft survival.29,96 Once the technology 
became possible, attention shifted to genetic engineering of pigs 
by deleting the gene for α1,3-galactosyltransferase, resulting in 
GTKO pigs28,115 (Table 1). The absence of Gal expression delayed 
graft rejection.

Non-Gal antigens. Some naturally occurring human ‘antinon-
Gal’ antibodies act against 2 additional pig antigens that have 
a significant, though less important, role in mediating rejec-
tion; these are N-glycolylneuraminic acid (Neu5Gc) and Sda 
(Table 1).10,11 Although the cytotoxicity associated with human 
antinonGal antibodies is less than that of anti-Gal antibodies56,123 
(Figure 2), these target antigens on pig organs pose a barrier to 
the transplantation of pig organs into humans.

Neu5Gc is present in all mammals (including the great 
apes and Old-World monkeys), with the notable exception of  
humans.3,10,139 and New World monkeys.97 Therefore, the NHPs 
that are the experimental models for xenotransplantation do not 
produce anti-Neu5Gc antibodies against pig organs (Figure 3), 

Figure 1. (A) WT (genetically unmodified) pig kidney immediately 
after blood reperfusion after transplantation into a baboon. (B) Same 
kidney excised 5 min later, having undergone hyperacute rejection.

Table 1. Carbohydrate xenoantigens that have been deleted in genetically engineered pigs

Carbohydrate (abbreviation) Responsible enzyme Gene knockout pig
Galactose-α1,3-galactose (Gal) α1,3-galactosyltransferase GTKO

N-glycolylneuraminic acid (Neu5Gc) Cytidine monophosphate-N-acetylneuraminic  
acid hydroxylase (CMAH)

CMAH-KO

Sda β-1,4N-acetylgalactosaminyltransferase β4GalNT2-KO
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though humans do (Figure 2). Thus, in clinical xenotransplan-
tation, humans will have preformed anti-Neu5Gc antibodies 
against the pig organ.

In humans, the effect of expression of Sda on pig cells is 
weaker than of Gal (Figures 2 and 3). However, Sda has a 
greater role in the pig-to-NHP model.59 If pig kidneys or hearts 
are to be transplanted successfully into humans, the pig cell 
membranes must lack the Gal, Neu5Gc, and Sda epitopes to 
reduce the risk of antibody-mediated rejection. These pigs 
are known as ‘triple-knockout’ (TKO) pigs. Of considerable 
relevance to pig organ transplantation into human infants 
and children is the observation that these age groups show 
no or minimal serum antibody binding or cytotoxicity to TKO 
pig cells (Figure 4). Even adult humans have markedly less 
binding to, and cytotoxicity of, TKO pig cells as compared 
with WT pig cells (Figure 2).98

Introduction into pigs of protective human transgenes.  Al-
though deletion of expression of the 3 known carbohydrate 
xenoantigens is essential if pigs are to be organ donors for 
humans, other genetic manipulations may also contribute 
significantly to the success of xenotransplantation (Table 2).

Complement-regulatory proteins.  Human cells use several 
mechanisms to protect themselves when the human immune 
system is activated by, and responds to, invading pathogens. 
One such example is protection from the complement cascade. 
When complement is activated to destroy invading pathogens, 
the presence of complement-regulatory proteins (CRPs) on the 
vascular endothelial cells prevents or limits the cytotoxic effects 
on the host.30 Pigs express CRPs that are similar to those of hu-
mans, but pig CRPs are inefficient in protecting against human 
and NHP complement-mediated activity.4,36 Therefore, human 
CRP transgenes have been introduced into pigs to protect their 
organs from complement-mediated injury after transplantation 
into human or NHP hosts.

Studies in the 1990s incorporated transgenic human CRPs, 
such as CD55 (decay-accelerating factor), CD46 (membrane 
cofactor protein), or CD59 (membrane attack complex inhibition 
factor) by microinjection of DNA directly into the pronucleus 
of a fertilized pig egg (Table 3). The introduction of these CRPs 
provided the pig with considerable protection from human 
antibody-mediated injury, and increased survival of pig heart 
and kidney grafts in NHPs from hours or days to weeks.141,142 
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Figure 2. (A) Human serum (n = 14) IgM (left) and IgG (right) antibody binding to WT, GTKO, double-knockout (i.e., deletion of expression of 
Gal and Sda), and TKO (i.e., with additional deletion of expression of Neu5Gc) pig red blood cells (pRBCs). Human serum antibody binding to 
pRBCs (n = 14) was measured by flow cytometry using the relative geometric mean (rGM), which was calculated by dividing the GM value for 
each sample by the negative control, as previously described. Negative controls were obtained by incubating the cells with secondary antihu-
man antibodies only (with no serum). Binding to TKO pig RBCs was not significantly different from human IgM and IgG binding to human 
RBCs of blood type O. (*P < 0.05, **P < 0.01; ns, not significant). (B) Pooled human serum complement-dependent cytotoxicity (hemolysis) to WT, 
GTKO, and TKO pig RBCs. Cytotoxicity of the same serum to human blood type O RBCs was tested as a control. Human serum cytotoxicity is 
significantly less to GTKO pig RBCs than to WT RBCs. Cytotoxicity to TKO RBCs is not significantly different from that to human blood type O 
RBCs. (Used with permission from John Wiley & Sons, from reference 31; conveyed through Copyright Clearance Center)
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Genetically engineered pig organs with transgenes of human 
CRPs combined with the deletion of expression of pig xenoanti-
gens offered more robust protection against antibody-mediated 
rejection.5

Coagulation-regulatory proteins.  Antibody and/or com-
plement and/or inflammatory activation of the vascular 
endothelial cells of the pig graft may result in a change from a 
local anticoagulant state to a procoagulant state, resulting in the 
development of thrombotic microangiopathy in the graft and 
consumptive coagulopathy in the recipient.52,78,125-127 As with 
complement regulation, pig coagulation-regulatory proteins 
are inefficient in maintaining a state of vascular endothelial 
anticoagulation in the pig organ after its transplantation into 
a human or NHP.

Transgenic expression of human thrombomodulin and/or 
endothelial protein C receptor (EPCR) works to provide an 
anticoagulant (and antiinflammatory) state that reduces the 
development of thrombotic microangiopathy and consumptive 
coagulopathy.34,82,99 Platelet aggregation studies have indicated 
that pig cells that express thrombomodulin or EPCR are as-
sociated with significantly less platelet aggregation,81 and in 
vivo studies have shown improved survival of pig kidney and 
heart transplants.

Other protective proteins. A NHP host develops a sustained 
systemic inflammatory response to a transplanted pig organ,57,58 
and the inflammation may be associated with potentiation of 
the immune response. This inflammation can be reduced to 
some extent by drug therapy (e.g., by blockade of IL-6). Trans-
genic expression of a human antiinflammatory (antiapoptotic) 
protein, such as hemeoxygenase-1 or A20, may provide local 
protection of the graft.31

Protection from the human adaptive immune response. The 
host adaptive immune response is a delayed, but important, 
response. Currently, it is largely controlled by exogenous drug 
therapy (e.g., agents that deplete T and B cells, and/or agents 
that block one of the T cell costimulation pathways), but in the 
future its effects are likely to be minimized by selective genetic 
engineering of the donor pig.

For example, macrophages link with the innate immune 
response to activate T cells that can mediate cellular xenograft 
rejection through direct cytotoxicity. Therefore, a method to 
limit the activation of host macrophages may prolong graft  
survival.79,135,136 Human CD47, a cell-surface moiety, is 
recognized by macrophage signal-regulatory protein-α 
(SIRP-α), which inhibits macrophage activation and decreases 
macrophage-mediated phagocytosis of ‘self’ cells. However, 
NHP and human macrophages recognize pig CD47 as ‘foreign,’ 
and thus macrophage activity is not inhibited, possibly shorten-
ing graft survival.31 The introduction of a transgene for human 
CD47 into the pig reduces phagocytosis by human and NHP 
macrophages, suppresses inflammatory cytokine production, 
and decreases T cell infiltration of pig xenografts.79,134,135,160

Swine leukocyte antigens. In pigs, swine leukocyte antigens 
(SLAs) correspond to the leukocyte antigens found in human 
leukocyte antigens (HLAs). SLAs are surface proteins on pig 
nucleated cells that modulate the adaptive immune response 
to intra- and extracellular microorganisms. Incompatibility 
between donor and recipient HLA types may impede graft 
survival in human allotransplantation. SLAs have similarities 
to HLA (e.g., their 3-dimensional structure), but there are some 
differences.94 Like HLAs, the SLAs can be divided into class I 
and II (although SLA class II proteins lack a DP locus). After pig 
organ or cell transplantation in humans or NHPs, expression of 
SLA class I is associated with the presentation of intracellular 
peptides to host CD8+T cells, whereas SLA class II presents 
extracellular peptides to CD4+ T cells.94

Several studies have attempted to elucidate the humoral re-
sponse of humans and NHPs to SLA. SLA has been confirmed 
to be a xenoantigen,92 but less than 5% of HLA-nonsensitized 
persons have serum anti-SLA antibodies.6,51,92,93,103 Even in 
HLA-sensitized subjects, crossreactivity between anti-HLA 
antibodies and SLA is uncommon,71,144,161 suggesting that, in 
many patients, prior sensitization to HLA will not be detrimental 
to the survival of a pig xenograft. Nevertheless, these studies 
suggest a need to screen all potential recipients of a xenograft for 
the presence of anti-HLA antibodies that crossreact with SLA. 
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Figure 3. Baboon (an Old World monkey; n = 14) IgM (left) and IgG (right) antibody binding to WT, GTKO, GTKO/β4GalNT2-KO (DKO), and 
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However, genetic-engineering techniques are being developed 
that will allow modification of SLA expression to ensure that 
HLA sensitization will not affect the outcome of a pig organ 
transplant.93

Organ xenotransplants from pigs that, through genetic  
engineering, do not express SLA would stimulate a much 
weaker human/NHP immune response, but may seriously 
hinder the survival of the organ-source pig because it would  

be more susceptible to infection. Recent approaches have 
therefore been focused on genetically engineering the pig to 
knockout expression of SLA class I antigens and/or to reduce 
expression of SLA class II antigens, as knockout of class II results 
in immunodeficiency and could be lethal to the developing pig.

One study used the CRISPR/Cas9 system to mutate the 
β2-microglobulin locus of SLA class I and found that pro-
liferation of human peripheral blood mononuclear cells 
(PBMCs) was significantly lower in pigs with low expression 
of β2-microglobulin as compared with cells from WT pigs.76 By  
reducing SLA class II expression, the introduction of a mutant 
dominant-negative transgene of the class II transactivator 
(CIITA) markedly impaired human CD4+ T cell proliferation.72 
Studies in mice have shown prolonged survival of skin grafts 
from pigs that were β2m−/CIITA−.61

Although knockout or knockdown of SLA has potential in 
prolonging pig graft survival after xenotransplantation, these 
modifications may reduce survival of donor pigs, and, after 
xenotransplantation, the organ may have impaired protection 
against infection.121 This approach, therefore, requires further 
exploration.

Table 2. Selected genetically modified pigs produced for xenotransplantation research
Antigen or deletion or ‘masking’
 Human H-transferase gene expression (expression of blood type O antigen)

 Endo-β-galactosidase C (reduction of Gal antigen expression)
 GTKO)
 Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) gene knockout (NeuGc-KO)

 β4GalNT2 (β1,4 N-acetylgalactosaminyltransferase) gene knockout (β4GalNT2-KO)
Complement regulation by human complement-regulatory gene expression
 CD46 (membrane cofactor protein)
 CD55 (decay-accelerating factor)
 CD59 (protectin or membrane inhibitor of reactive lysis)
Anticoagulation and antiinflammatory gene expression or deletion
 von Willebrand factor (vWF)–deficient (natural mutant)
 Human tissue factor pathway inhibitor (TFPI)
 Human thrombomodulin
 Human EPCR
 Human CD39 (ectonucleoside triphosphate diphosphohydrolase-1)
Anticoagulation, antiinflammatory, and antiapoptotic gene expression

 Human A20 (tumor necrosis factor-α-induced protein 3)
 Human heme oxygenase-1 (HO-1)
Inhibition of phagocytosis

 Human CD47 (species-specific interaction with SIRPα inhibits phagocytosis)
 Porcine asialoglycoprotein receptor 1 gene knockout (ASGR1-KO) (decreases platelet phagocytosis)

 Human signal regulatory protein α (SIRPα) (decreases platelet phagocytosis by ‘self’ recognition)
Suppression of cellular immune response by gene expression or downregulation
 CIITA-DN (MHC class II transactivator knockdown, resulting in swine leukocyte antigen class II knockdown)
 Class I MHC knockout (MHC-I-KO)

 HLA-E/human β2-microglobulin (inhibits human natural killer cell cytotoxicity)
 HLA-G
 Human FAS ligand (CD95L)
 Human GnT-III (N-acetylglucosaminyltransferase III) gene
 Porcine CTLA4-Ig (Cytotoxic T-Lymphocyte Antigen 4 or CD152)

 Human TRAIL (tumor necrosis factor–α–related apoptosis-inducing ligand)
 Programed death-ligand 1 (PD-L1)
Prevention of porcine endogenous retrovirus (PERV) activation
 PERV siRNA
 PERV-KO

Table 3. Timeline for application of evolving techniques for genetic 
engineering of pigs employed in xenotransplantation

Year Technique
1992 Microinjection of randomly integrating transgenes
2000 Somatic cell nuclear transfer
2002 Homologous recombination
2011 Zinc finger nucleases
2013 Transcription activator-like effector nucleases
2014 CRISPR/Cas9a

aCRISPR/Cas9 = clustered randomly interspaced short palindromic 
repeats and the associated protein 9.
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The techniques of pig genetic engineering.  Somatic cell 
nuclear transfer.  The development of somatic cell nuclear 
transfer (SCNT) was critical to the successful production of 
gene-edited pigs116,143 (Figure 5). In this process, the endog-
enous nuclei of porcine oocytes are replaced with gene-edited 
nuclei from donor pig fibroblasts. The newly constructed oo-
cytes develop into pigs that express the genetic modifications 
made in the donor fibroblast nuclei. Using SCNT technology 
and homologous recombination, knockout of genes for en-
zymes (e.g., α1,3-galactosyltransferase) can be produced in 
the pig fibroblasts and then incorporated into pig oocytes.35 
Therefore, pigs derived from the oocytes lack the gene for 
α1,3-galactosyltransferase and phenotypically lack expression 
of Gal antigens (GTKO pigs) (Table 1).

Once the founder pigs have been produced by cloning tech-
nology, future generations can be bred naturally. GTKO pigs are 
recognized by the U.S. FDA as sources of food for consumption 
by humans and of tissues for transplantation.137 Increasing 
sophistication of the techniques now allows multiple genetic 
manipulations (consisting of knockout and ‘knockin’ of genes), 
resulting in pigs with 10 or more genetic changes.

CRISPR/Cas9.  The techniques by which pigs have been  
genetically manipulated have evolved over time (Table 3).  
The clustered regularly interspaced short palindromic repeats 
(CRISPR) technique is based on an RNA sequence that is ho-
mologous to the genomic target site. CRISPR carries a short 
guide nucleotide sequence that directs the Cas nuclease to  
induce a double-stranded DNA break at the target site. This 
break is then rejoined using the process of nonhomologous 

end joining, which is error prone and can result in the insertion 
or deletion of a few nucleotides (indels). If these indels occur 
within an exon, they can cause a frameshift mutation resulting 
in a truncated, nonfunctional protein, thus creating a knockout. 
Alternatively, if the DNA is repaired by the homology-directed 
presence of a DNA vector flanked with sequences homologous 
to the target region, an intervening sequence can be incorporated 
into the genome. CRISPR/Cas9 technology allows efficient gene 
targeting for creating knockouts and, with homology-directed 
repair, transgenes can be inserted into predetermined 
‘landing-pad’ sites in the genome.103

CRISPR/Cas9 provides an opportunity to knockout multiple 
genes in cultured GTKO fibroblasts, followed by SCNT.55 In an 
assessment of the effect of each knockout on human serum anti-
body binding and complement-mediated cell lysis (Figure 6),55 
GTKO alone reduced IgG binding by 68%, followed by 76% with 
GTKO+β4GalNT2KO, and 79% with GTKO+CMAHKO. To-
gether, GTKO+β4GalNT2KO+CMAHKO (TKO pigs) reduced 
total human serum IgG binding by 92%.

Promoters and vectors. The use of bicistronic or multicistronic 
vectors allows 2 or more transgenes to be inserted under the 
control of one or more promoters (Figure 7). Incorporating 
several transgenes into a single vector incurs several benefits 
for mitigating the innate immune response to a pig organ.133 A 
vector can be incorporated into a genome using homologous 
recombination specific to a landing pad or transgenic expres-
sion reading frame.103 The landing pad can be vacated after 
knockout of a carbohydrate xenoantigen (e.g., Gal, Neu5Gc, 
and/or Sda).

Generation of fibroblast cell line

Transfection using
Electroporation by
Nucleofector

Transgenic fibroblast colonies

Donor cells
with high
expression
level of
transgene

Somatic cell
nuclear transfer

Nuclear transfer
into enucleated
oocytes

Activation
Formation of
cloned embryos

Embryo
transfer

Birth of
cloned
piglet

Genetically
modified cloned
pig

Matured oocyte

Sow ovaries
recovered at the
abattoir

Enucleated oocytes

Figure 5. Steps involved in SCNT. (Reproduced with permission from Springer Nature, from reference 55)
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The type of promoter determines whether the transgenic 
protein will be expressed ubiquitously in all tissues of the pig 
(e.g., a CAG promoter) or endospecifically (i.e., only in the 
endothelial cells, for example, ICAM-2 or pig thrombomodu-
lin promoters). For example, human CRPs (e.g., CD46, CD55, 
CD59) are more effective if widely expressed, whereas if human 
coagulation-regulatory proteins (e.g., thrombomodulin, EPCR) 

are widely expressed, the pig may develop bleeding tenden-
cies. Therefore, coagulation-regulatory proteins are preferably 
expressed only in endothelial cells.

Judicious genetic engineering of donor pigs has resulted 
in significant prolongation of pig heart or kidney function in 
immunosuppressed NHP recipients, with delayed or absent 
rejection.1,27,82,88,100,122

A hCD46.DAF bicistronic vector

B hTBM.hEPCR.hCD47.hH01 multicistronic vector.

Cut at landing pad with Crispr/Cas9

Wild-type
landing pad locus

Homology-
directed repair

Targeting
vector

Targeting
vector

Homology
arm

Homology
arm

P2A

Homology
arm

Homology
arm

P2A P2A

CAG promoter hCD46 hDAF

CAG promoter hCD46 hDAFLanding pad with
targeted vector

Cut at landing pad with Crispr/Cas9

Wild-type
landing pad locus

Homology-
directed repair

Insulator

Endo promoter

Endo promoter

hTBM hEPCR

hTBM hEPCR

hCD47 hH01CAG promoter

hCD47 hH01CAG promoterLanding pad with
targeted vector

Figure 6. Design and targeting of multicistronic vectors (MCVs). CRISPR/Cas9 is designed to cut within an expression-permissive landing 
pad. Homology arms direct vector insertion to the landing pad by homology-directed repair. The CAG promoter was used to drive ubiquitous 
transgene expression (A, B), whereas one of several ‘endo promoters’ was used to obtain endothelial-specific expression (B). (Reproduced with 
permission from Springer Nature, from reference 55)
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Which type of donor pig is optimal for the initial clinical  
trials? Opinions vary on this topic, with some researchers believ-
ing that TKO pigs will suffice if the organ is transplanted into a 
patient who has no serum antibody binding or cytotoxicity to 
TKO pig cells.2 Our own opinion is that the additional protection 
provided by expression of human ‘protective’ proteins, espe-
cially CRPs and coagulation-regulatory proteins, will provide 
resistance to immune-mediated injury associated with events 
such as ischemia-reperfusion injury, a systemic inflammatory 
response, and a systemic infection. The optimal combination of 
genetic manipulations requires further clarification. Neverthe-
less, TKO pigs (with or without added human transgenes) will 
almost certainly provide the organs for initial clinical trials.31,98

The testing of TKO pig organs in NHP models is compli-
cated by the differences in serum antibody production between 
humans and NHPs (Figure 8).54,159 Because NHPs express 
Neu5Gc, knockout of this carbohydrate xenoantigen in pigs 
exposes them to an unidentified carbohydrate xenoantigen (or 
antigens) against which NHPs (but not humans) have natural 
antibodies. Exposure to this xenoantigen(s) is associated with 
a high cytotoxicity (Figure 8).

A key issue is the determination of which genetic manipu-
lations are essential for a successful clinical trial, and which 
may be beneficial, but perhaps are not essential. Reduction of 
expression of SLA class I and/or II can be considered nones-
sential at present because immunosuppressive agents can be 
administered to block the adaptive immune response, whereas 
no agents are available that can effectively prevent the innate 
immune response. National regulatory authorities (e.g., the 
FDA in the USA) will probably require some justification for  
the inclusion of each genetic manipulation made in pigs in-
tended to be organ donors. Furthermore, each additional genetic 
manipulation risks a detrimental effect on the health of the pig 
or the viability or function of the organ graft, and thus will also 
require evaluation to produce the ultimate donor pig.

Potential complications of genetic engineering and SCNT of 
organ-source pigs. Some genetic mutations are lethal, and others 
are associated with physical defects or functional deficiencies 

in the pigs. These mutations include some of the manipula-
tions discussed above (e.g., overexpression of one or more 
coagulation-regulatory proteins, knockout of SLA). Every novel 
and previously untested genetic manipulation entails some risk 
in this respect. However, if the optimal promoters and tech-
niques are used, multiple genetic manipulations can be carried 
out successfully without detriment to the health of the pig.

Genetic engineering to prevent potential complications 
associated with the presence of porcine endogenous retrovi-
ruses. Another area in which genetic engineering of the pig could 
play a role is in minimizing or preventing potential complications 
related to the presence of porcine endogenous retroviruses or 
retroviral particles (PERVs), which are present in the DNA of 
every cell in the pig. These PERVs have been present in pigs for 
millions of years110 and do not appear to harm the pig. Human 
cells contain similar human endogenous retroviruses (HERVs), 
which are generally believed to be largely innocuous, although 
some evidence indicates that they are overexpressed in some 
human tumors and may contribute to tumor development.131 
However, concern was raised128 as to whether PERVs might be 
harmful after the transplantation of a pig organ into a human 
(e.g., by possibly causing immunodeficiency and/or tumero-
genicity). The possibility was also raised with regard to whether 
fragments of PERVs might combine with fragments of HERVs 
to produce a problematic hybrid virus.

Although evidence indicates that under specific laboratory 
conditions, PERVs can be transmitted into human cells in vitro 
(specifically a PERV A/C recombinant virus), no evidence in-
dicates transmission or any complication in an in vivo model in 
NHPs or in humans who have received porcine cells or tissues 
over decades of xenotransplantation research. However, this 
negative outcome may be in part associated with difficulties 
in transmitting the virus to NHPs.38 The potential risk will be 
unknown until clinical trials are initiated.37,60 What is perhaps 
of more concern than the fate of the patient (who may be very 
willing to accept this potential risk) is whether a patient who 
develops a complication associated with PERV will be a risk 
to his/her family and friends and other close contacts (e.g., 
healthcare providers), although this seems unlikely.

Although the risk of a complication is generally considered to 
be low, techniques have been developed to reduce or abrogate 
any potential risk. Activation of PERVs can be prevented,39,120 
and multiple copies of PERV have been knocked out, thus ren-
dering the pig PERV free.111 Whether the national regulatory 
authorities will consider this to be necessary is uncertain. At pre-
sent, most research groups are proceeding with pigs that have 
been engineered or bred to be null for PERV-C, which eliminates 
the risk of potential PERV-A/C recombination events.75 Drugs 
are available that are likely to successfully treat a PERV-related 
infection, if it should occur.60,91

Breeding and housing of organ-source pigs in a biosecure  
clean facility. To minimize the risk of the transfer of an exog-
enous infection (e.g., bacterial or viral) from the donor pig organ 
to the recipient, regulatory authorities will require the donor pig 
to be bred and housed under strict biosecure ‘clean’ conditions. 
The pigs will require careful screening and proof that they are 
negative for, or treated for, relevant microorganisms before they 
enter the facility. Several lists of microorganisms that should be 
excluded from the pigs have been published (e.g.,91). The regula-
tory requirements and means for their fulfillment have also been 
outlined91 and will not be detailed here. The housing facility 
must be ‘biosecure’ to prevent any possible infection of the pigs 
by insects, humans, or other sources, and the staff maintaining 
the facility and caring for the pigs will require screening for 
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symptoms or signs of infection to prevent transfer to the pigs. 
If maintained in such a clean environment, it is anticipated that 
a pig herd will remain infection free.

Certain viruses are particularly important to eliminate from 
the pig herd. For example, porcine cytomegalovirus stimulates 
an immune response and may be associated with injury to a 
pig graft.33,65,109,157

Experts in treating the infectious complications associated 
with long-term immunosuppressive therapy in patients with 
organ allografts predict that patients with pig organ grafts will 
be susceptible to the same infectious complications.60 Their 
many years of experience in managing such patients suggest 
that these complications will be equally manageable in patients 
with xenografts.
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The function of a pig kidney in a primate recipient.  Few 
detailed studies of pig kidney graft function after transplanta-
tion into an immunosuppressed NHP host have been carried 
out as yet,68,70,86 but these studies indicate that life-supporting 
pig kidneys have maintained NHPs for many months or 
even greater than 1 y, demonstrating that renal function is 
adequate. Detailed studies (e.g., of glomerular filtration rate, 
and compatibility of the renin-angiotensin-aldosterone sys-
tem) confirm that a pig kidney largely fulfills the functions of 
a NHP kidney68,86 and is therefore likely to fulfill those of the 
human kidney.

Two observations have been made that warrant comment. 
First, baboons have been observed to develop an increase in 
serum creatinine that is associated with the development of 
hypovolemia/dehydration in the absence of histopathologic 
or other clinical features of graft rejection (Figure 9).84 In our 
experience, an episode of rejection is associated with an increase 
in proteinuria, whereas hypovolemia/dehydration is not.

The baboon does not appear to be aware that it is becoming 
dehydrated, and we have not observed a measurable differ-
ence in fluid intake or urine output relative to those measures  
prior to the episode. The increase in serum creatinine can  
immediately be reversed by the intravenous or subcutaneous 
infusion of normal saline. Although alternative explanations 
are possible, these episodes could be because of the observa-
tion that primate angiotensinogen is a relatively poor substrate  
for porcine renin.68,69 This difference may result in reduced 
vasoconstriction, which in turn leads to low arterial blood  
pressure and subsequent hypoperfusion of the pig kidney. If this 
becomes a serious problem, genetic engineering of the donor 
pig to produce human renin could solve the problem.

The second observation is that the pig kidney graft (whether 
from a WT or genetically engineered pig) grows rapidly, at  
least during the first few months after transplantation, as if 
it were still in the rapidly growing pig.80,82,83,130 This rapid  
growth is likely associated with an innate factor in the graft. 
Similar observations have been made after orthotopic pig heart 
transplantation in NHPs.100 In our experience, early rapid 
growth of the pig kidney within the abdomen has not been a 
problem, but others have reported compression of the kidney or  
even rupture of the abdominal surgical wound.134 We suggest 
that the difference in reported outcomes may be associated 
with our use of rapamycin, which can restrict growth, as an 

immunosuppressive agent. However, rapid growth would be a 
greater problem after orthotopic heart transplantation in which 
the pig heart may be compressed in the more restricted confines 
of the pericardial and thoracic cavities.100

A suggestion has been made that this complication could be 
avoided if the pig were genetically engineered with knockout 
of growth hormone receptors.77,85 Our group has tested this 
idea, with results indicating reduced growth of both the pig 
(Figure 10) and the pig kidney. However, we initially observed a  
significant rate of necrosis of the ureter in pigs with this genetic 
manipulation, and others have commented on the fragility of 
the ureter.118

The problem of rapid growth is resolved if the organ is taken 
from one of the many breeds of miniature swine, in which  
posttransplant growth of the kidney is much slower.101

Comment.  Largely based on the advances that have been 
made in the genetic engineering of pigs, as well as the use of 
novel immunosuppressive agents8 and greater experience in 
pig-to-NHP organ transplantation, clinical trials of pig organ 
xenotransplantation are drawing closer. However, several 
details need to be clarified before a trial can be appropriately 
initiated. Once proof of concept is obtained, xenotransplantation 
will open immense opportunities for patients with end-stage 
organ failure and with diseases such as diabetes mellitus, 
Parkinson’s disease, and corneal blindness and possibly will 
provide a source of red blood cells for transfusion.
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