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Review

High-pressure Hydrodynamic Injection as 
a Method of Establishing Hepatitis B Virus 

Infection in Mice

Juan Wen, Guoli Chen, Tianshun Wang, Wan Yu, Zhengyun Liu, and Huan Wang*

Among several existing mouse models for hepatitis B virus (HBV) infection, the high-pressure hydrodynamic injection 
(HDI) method is frequently used in HBV research due to its economic advantages and ease of implementation. The use of 
the HDI method is influenced by factors such as mouse genetic background, age, sex, and the type of HBV plasmid used. 
This overview provides a multidimensional analysis and comparison of various factors that influence the effectiveness of 
the HBV mouse model established through HDI. The goal is to provide a summary of information for researchers who create 
HBV models in mice.
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pBS, pBluescript II KS (+)
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Introduction
Hepatitis B virus (HBV) belongs to the family Hepadnaviridae, 

a group of DNA viruses with strong species specificity. HBV 
primarily infects humans and a few primate species and is 
a major causative factor of liver cirrhosis and hepatocellular 
carcinoma. In 2019, 296 million people globally were hepatitis B 
surface antigen (HBsAg) positive, the prevalence of chronic HBV 
infection was about 3% to 5%, and HBV caused about 820,000 
deaths.13 Despite a large patient population, existing treatment 
methods have yet to achieve satisfactory viral clearance, and 
due to the narrow host range of HBV, few susceptible animal 
models are available for studying the virus. Currently, HBV 
animal models mainly include nonhuman primates, such 
as chimpanzees41 and tree shrews.15 However, the limited 
availability of these animals and high-costs of using them hinder 
the use of either of them in HBV studies.9 Other HBV-related 
viruses, such as woodchuck hepatitis virus33 and duck HBV9,14 
models, have different infection mechanisms and replication 
processes as compared with human HBV.

Mice are commonly used experimental animals in medical 
research. Although they cannot be naturally infected with HBV, 
their accessibility and well-defined genetic backgrounds have 
led many researchers to establish various mouse models of 
HBV infection using different methods. These models include 
high-pressure hydrodynamic injection (HDI), HBV transgenic 
models, adeno-associated virus HBV (AAV-HBV) transduction 
models, covalently closed circular DNA (cccDNA) replace-
ment models, and humanized liver models,10 all of which have 

provided essential tools for HBV research. Among these, HDI 
is frequently used in HBV research due to its efficiency and 
relative ease of implementation.

Principle and Implementation of the 
HDI Method

HDI is used to inject a large volume of solution containing 
plasmid DNA (approximately 8% to 10% of the mouse body 
weight)23 into the mouse tail vein over a period of 5 to 8 s. This 
injection volume, which is close to the mouse’s circulatory vol-
ume, causes a rapid increase in blood pressure. Due to the large 
injection volume, the heart cannot quickly recirculate plasmid 
DNA after it passes through the inferior vena cava. Instead, blood 
flows back into the liver through the portal vein, leading to a rapid 
increase in liver volume and increased permeability of the capil-
lary endothelium. This enlarges pores in cell membranes, thereby 
allowing the plasmid DNA to enter the cells. When the pores 
close, the plasmid DNA remains in the liver cells.36 This process 
prevents plasmid DNA from being degraded by DNA enzymes in 
the bloodstream and enhances transfection efficiency. In contrast, 
after a typical tail vein injection, plasmids enter the bloodstream 
more slowly and are then distributed by the circulatory system 
at a normal pressure; the liver remains at the same pressure as 
the rest of the major arterial vessels, and normal flow-through 
occurs. However, due to the presence of numerous nucleases in 
the blood and other organs, including on tissue, plasmids are 
rapidly degraded in the circulatory system or recognized and 
absorbed by nonparenchymal liver cells.17

The HDI method was first used in 1999 to inject plasmid DNA 
solution into the mouse tail vein, showing that this approach 
could achieve high-level expression of foreign genes.47 In 2002, 
HDI was used HDI to inject plasmids containing the HBV 
genome, thereby creating an acutely HBV-infected mouse.45  
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Since then, a number of research teams have conducted in-depth 
research by using this simple and convenient in vivo transfec-
tion method.16

Factors that Influence the HDI HBV Model
The expression level and persistence of HBV after HDI are 

highly dependent on factors such as plasmids and vector frame-
works and host genetic background, age, and sex. These factors 
must be considered in the implementation of HDI method of 
HBV infection.

Plasmid.  The plasmid of HBV is perhaps the crucial factor  
determining the expression level and persistence of HBV in 
mice. Common plasmids include pAAV,11 pBluescript II KS(+) 
(pBS),19,20 pcDNA3.1(+), and27 pSM2.28,43 Among these vec-
tors, pAAV is probably the most commonly used. AAV is a 
single-stranded linear DNA parvovirus that promotes high infec-
tion efficiency, low pathogenicity, low immunogenicity, and the 
ability to express foreign genes for extended periods. Delivery of 
HBV genes via pAAV can lead to long-term expression of HBsAg 
and a tolerant phenotype with the minimal liver inflammation.44 
pBS is derived from the pUC19 plasmid vector and is a nonviral 
vector with multiple cloning sites; it is commonly used for cloning 
and sequencing. pcDNA3.1(+) is a versatile nonviral vector used 
for both high-level stable and transient expression in mammalian 
hosts. pSM2 is a lentiviral/retroviral vector with high transfection 

efficiency (Table 1). pAAV and pcDNA3.1(+) carrying the HBV 
genome can achieve high and sustained expression in mice, 
making them suitable for establishing HBV infection models.

Dose. The persistence of HBV in mice is notably influenced 
by the dose of the administered plasmid. A study of varying 
doses of the pAAV-HBV1.2 plasmid in mice (a 1.2-fold HBV 
genome)2 revealed that a plasmid dose of 6 μg induces immune 
tolerance, thereby sustaining continuous HBV infection. In 
contrast, 20 μg of plasmid induced antigen recognition recep-
tors and triggered an anti-HBV immune response that cleared 
HBV in a short period of time.40 Consequently, implementation 
of the HBV HDI model requires careful consideration of both 
the plasmid structure and the injected dose. Using high-dose 
HBV plasmids tends to expedite the clearance of HBV in mice. 
Therefore, using a large dose of HBV DNA plasmid is generally 
not advisable for establishing a chronic HBV infection model.

Genetic background. The genetic background of mice plays 
a significant role in their HBV phenotypes. Currently, numer-
ous mouse strains can be used; the appropriate strain should 
be selected based on the research objectives. Acute HBV infec-
tion using HDI in C57BL/6 mice is the classic HBV model. In 
2006, one group established an HDI model using pAAV-HBV 
in C57BL/6 mice; 40% of the mice exhibited sustained HBsAg 
expression for over 6 mo, simulating long-term HBV expres-
sion and providing new approaches to studying chronic HBV 

Table 1.  Effects of different plasmid on HBV HDI model

Plasmid Dose
Mouse  
strain Sex/age

HBsAg expression level  
and persistence Result Reference

pcDNA3.1(+)-HBV1.3C 15 μg C57BL/6 Male/6–8 wk OD450 of HBsAg near 3.5 at 
week 1, maintained around 
2.5 during 2–5 wk, and 1.5 
from 6 to 20 wk

pAAV-HBV1.2A showed 
better persistence than 
pcDNA3.1(+)-HBV1.3C and 
pAAV-HBV1.3C

22

pAAV-HBV1.3C Rapid decrease in OD450  
of HBsAg to below 0.5 by  
week 1, cleared by 3 wk

pAAV-HBV1.2A OD450 of HBsAg at 3.0–3.5 
for the first 2 wk, followed 
by a decline, completely 
cleared by 12 wk

pCS-HBV1.3 5 μg C57BL/6 Female/6 wk HBsAg maintained at  
102–103 IU/mL level for 
over 8 wk

pAAV-HBV1.3 had higher 
HBsAg levels in 2–3 wk 
than pCS-HBV1.3, but 
pCS-HBV1.3 had better 
persistence

5

pAAV-HBV1.3 HBsAg levels higher than 
pCS-HBV1.3 in 2–3 wk, then 
rapidly decreased and 
completely cleared by 4 wk

pBS-HBV1.1B 10 μg BALB/c Male/6 wk HBV DNA, 2–4 l-g copies/mL 
(0–7 dpi)

pBS-HBV1.3B had higher 
HBV DNA expression than 
pBS-HBV1.1B and 
pBS-HBV1.2B

19

pBS-HBV1.2B HBV DNA, 4–6 l-g copies/mL 
(0–7 dpi)

pBS-HBV1.3B HBV DNA, 6–8 l-g copies/mL 
(0–7 dpi)

BPS 10 μg C57BL/6 Male/6–8 wk OD450 of HBsAg maintained 
around 3 for the first 3 wk, 
then completely cleared 
after 3 wk

BPS showed better 
persistence than pSM2

43

pSM2 OD450 of HBsAg maintained 
at 3–4 for the first week, 
then rapidly decreased below 
BPS group, completely 
cleared after 3 wk

dpi, days postinfection.
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infection.11 Another group found that C3H/HeN mice showed 
higher and more persistent HBV expression than C57BL/6 
mice after HDI. Differences in HBV infection related to genetic 
background have been described in different mouse strains 
and strains (Table 2).30 C57BL/6 substrains have significant 
phenotypic differences in physiology, biochemistry, and im-
munocompetence, which result in differential susceptibility to 
virus-induced inflammatory disease.29 Viral clearance differs 
among different C57BL/6 substrains created using HBV HDI. 
Around 40% of C57BL/6J mice had detectable HBsAg and HBV 
DNA in their serum at week 26, while HBsAg and HBV DNA 
dropped below detection limits by week 8 in C57BL/6N mice.38 
The use of HDI to establish the HBV infection in transgenic mice 
via the human AAVS1 site element transgenic mice resulted in 
high-level and sustained expression of HBV genes.46 C57BL/6J, 
CBA/CaJ, and C3H/He mice exhibit higher and more persistent 
HBV expression as compared with NOD/ShiLtJ mice and are 
therefore better choices for establishing HBV mouse models.

Age.  Another crucial factor that affects HBV clearance is 
age. In adult humans, some proportion of infected individuals 
can clear the virus from their bodies, whereas newborns and 
children tend to have high rates of virus replication after HBV 

infection,8,25,34 often leading to chronic infection. Juvenile mice 
(approximately 6 to 8 wk)8 show age-dependent HBV clearance 
(Table 3), partly because HBV can overcome the immature liver 
immune functions to establish a chronic infection. As mice age, 
their immune systems gradually mature and become more 
efficient at HBV clearance. Adult mice (approximately 8 to  
12 wk)7 have a mature liver immune system and exhibit strong 
immune responses to HBV.6,12,42

Gut microbiota. The ability of mice to clear intrahepatic HBV 
is closely related to their gut microbiota. As compared with 
juvenile mice, the gut microbiota in adult mice is relatively 
abundant and complex and can stimulate liver immunity and 
facilitate rapid HBV clearance. The addition of combinations of 
antibiotics to the drinking water of 6- to 8-wk-old C57BL/6 mice  
with established HBV HDI resulted in lower HBV clearance 
by mice in the antibiotic group as compared with the control 
group; this difference occurs mainly because antibiotics dis-
rupt the composition and function of gut microbiota, leading 
to elevated levels of serum lipopolysaccharide, which in turn 
induce endotoxemia and inflammatory factor production, which 
subsequently accelerates HBV clearance.51 Mice treated with 
antibiotics and subsequent fecal microbiota transplantation 

Table 2.  Effects of different mouse genetic backgrounds on the HBV HDI model

Mouse strain Sex/age Plasmid Dose
HBsAg expression level and 

persistence Result Reference
C57BL/6J Male/6 wk pAAV-HBV1.2 10 μg HBsAg positivity rate 40% at 8 wk, 

15% after 6 mo
CBA/CaJ had the 
longest persistence, 
highest positivity rate

4

C3H/HeN HBsAg positivity rate 90% at  
20 wk, 80% after 6 mo

DBA/2J HBsAg positivity rate 70% at 8 wk, 
25% after 6 mo

CBA/CaJ HBsAg positivity rate 100% at  
21 wk, 80% after 6 mo

BALB/cJ Rapid clearance of serum HBsAg 
within the first 4 wk

FVB/NJ Rapid clearance of serum HBsAg 
within the first 4 wk

NOD/ShiLtJ Rapid clearance of serum HBsAg 
within the first 2 wk

129 × 1/SvJ Rapid clearance of serum HBsAg 
within the first 2 wk

C57BL/6J Male/6 wk pAAV-HBV1.2 10 μg HBsAg at 103–104 ng/mL within 
the first 8 wk, nearly 40% of mice 
still detectable at 26 wk

C57BL/6J had higher 
HBV DNA and longer 
persistence than 
C57BL/6N

38

C57BL/6N HBsAg positive within the first 8 
wk, rapidly dropped below 
detection limit after 8 wk

Table 3.  Effects of age on HBV HDI model

Age
Mouse  
strain Plasmid Dose HBsAg expression level and persistence Result Reference

Young C57BL/6 pAAV-HBV 10 μg Around 50% of mice HBsAg positive 
for more than 8 wk

Young mice have higher 
HBsAg positivity rate 
than adults

12

Adult HBsAg positivity rate drastically drops 
by 3 wk, completely cleared by 6 wk

Young DBA/2J pAAV-HBV1.2 10 μg HBsAg positive for more than 25 wk 4
Adult HBsAg completely cleared by 4 wk
Young C3H/HeN pAAV-HBV1.2 10 μg HBsAg positivity rate 50% by 25 wk 4
Adult HBsAg completely cleared by 4 wk

Young: 6–8 wk; adult: 8–12 wk.
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were less susceptible to HBV infection.37 This type of evidence 
highlights the crucial role of gut microbiota in the ability of mice 
to clear HBV. Therefore, the use of juvenile mice for about 6 to 
8 wk is recommended when establishing the HBV HDI model.

Sex.  Susceptibility to HBV infection is also related to sex. 
Sex hormone receptor signaling drives sexual dimorphism in 
gene expression throughout liver development. This sexual 
dimorphism is evident in the different infection rates of male 
and female mice after inoculation with HBV.50 Human men tend 
to have a higher rate of chronic HBV infection and higher viral 
loads than do women. Women have stronger innate and adaptive 
immune responses than men. Sex hormones such as testosterone 
and estrogen influence systemic immune responses through 
hormone receptors expressed in immune cell lineages. Hormones 
also contribute to hepatic epigenetics and genetic alternations.24 
Mice show sex differences in HBV-related immune responses, 
particularly with regard to immune tolerance and clearance.  
Testosterone can enhance the synthesis of HBV mRNA,35 result-
ing in higher HBV gene expression and viral replication levels in 
males as compared with females (Table 4).39 However, the mecha-
nisms underlying the sex hormone-regulated HBV-specific 
immune response remain unclear.

Advantages, Disadvantages, and Existing  
Challenges for HDI-HBV Models

Advantages. The HDI method is widely applicable for the 
study of HBV, including areas such as recombinant covalently 
closed circular DNA (rcccDNA) persistence and the devel-
opment of new intervention strategies. Except for its wide 
range of applications, HDI is also highly efficient. A study 
that used site-specific DNA recombination technology and 
HDI to establish HBV infection in mice showed that HBsAg 
and rcccDNA persisted for more than 62 wk after inocula-
tion, providing the opportunity to study many aspects of 
HBV pathobiology.18

In addition to HBV, the HDI method has been used to cre-
ate various other disease models, including nonalcoholic fatty 
liver disease,49 hemophilia B,26 and enterovirus 71 infection.31 
Furthermore, the HDI transfection method, originally used in 
mice, has also been used in rats48 and pigs.3

Another advantage of the HDI model is its utility for compar-
ing different HBV genotypes and virus strains in mice, enabling 
rapid in vivo analysis and the basis of persistent HBV expression 
and potential pathogenic mechanisms.32

Limitations and challenges. Constructing the HDI model in-
volves injecting a substantial volume of liquid into the mouse’s 
tail vein, which can potentially cause short-term liver damage,1 
Hepatocyte swelling, formation of hemorrhagic necrotic foci, 
and elevation of alanine aminotransferase have been observed. 
Hepatic injury is most severe 30 min after injection and is 
then repaired naturally by cell proliferation in about 1 wk.21 

However, these effects could complicate the interpretation of 
experimental results.

The process of HDI may be painful for mice, so anesthesia 
or analgesia may be appropriate before HDI. The effect of an-
esthetics or analgesics on the efficiency of transforming rcDNA 
into cccDNA in mouse liver cells has not been studied. The 
efficiency of transformation in mouse liver cells is normally 
low, and anesthetics or analgesics could reduce the transfer of 
cccDNA into the cells, perhaps limiting the study of some HBV 
biologic processes.

Mice are not natural hosts for HBV, and their infection 
rate is considerably lower than that of human HBV patients. 
Consequently, the HDI model cannot fully replicate the entire 
course of human HBV infection and has limitations as a model 
of natural infection.

Summary
The establishment of a useful animal model of HBV infection 

requires high-level and sustained HBV gene expression and 
replication. Among various transfection models, the HDI model 
is widely used. However, this model faces some challenges, 
including liver damage during injection, low cccDNA formation 
efficiency, and the nonnatural host status. In addition, the HDI 
method is stressful for mice, and studies have not determined 
whether the use of anesthetics or analgesics will provide similar 
successful outcomes. However, using mice allows the replace-
ment of primates with a less sentient species for at least some 
types of studies and is much less costly. Institutional ethics 
committees or IACUCs should review this model according to 
their respective regulatory standards, with due consideration 
of the health of hundreds of millions of people who are infected 
with HBV. Addressing the challenges of using HDI to create 
HBV infections in mice is critical to advance HBV research. New 
techniques to improve transfection efficiency and minimize 
pain and trauma in animals will be particularly valuable in the 
future as we strive to increase our understanding of human 
HBV infection.
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Table 4.  Sex effects on HBV HDI model

Sex Mouse strain Age Plasmid Dose
HBsAg expression 

level and persistence Result Reference
Female C57BL/6 6–8 wk AAV8-1.3HBV 5 × 1010 GC < 5,000 IU/mL 

(within 6 wk)
Male HBsAg 
higher than female

39

Male 5,000 < HBsAg <  
20,000 IU/mL  
(within 6 wk)

Female B6-Tg(AAVS1)A1Xob/J 6–8 wk pAAV-HBV 10 μg HBsAg 102–103 IU/mL 46
Male HBsAg 103–104 IU/mL
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