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Review Article

A Review of the Effects of Some Extrinsic Factors 
on Mice Used in Research

Alfonso S Gozalo* and William R Elkins

Animals have been used in research for over 2,000 y. From very crude experiments conducted by ancient scholars, animal 
research, as a science, was refined over hundreds of years to what we know it as today. However, the housing conditions of 
animals used for research did not improve significantly until less than 100 years ago when guidelines for housing research 
animals were first published. In addition, it was not until relatively recently that some extrinsic factors were recognized as 
a research variable, even when animals were housed under recommended guidelines. For example, temperature, humidity,  
light, noise, vibration, diet, water, caging, bedding, etc., can all potentially affect research using mice, contributing the  
inability of others to reproduce published findings. Consequently, these external factors should be carefully considered 
in the design, planning, and execution of animal experiments. In addition, as recommended by others, the housing and  
husbandry conditions of the animals should be described in detail in publications resulting from animal research to improve 
study reproducibility. Here, we briefly review some common, and less common, external factors that affect research in one 
of the most popular animal models, the mouse.

Abbreviations and Acronyms: BPA, bisphenol A; EE, environmental enrichment; HSP, heat shock protein; QAC, quaternary 
ammonium compound; RH, relative humidity

DOI: 10.30802/AALAS-CM-23-000028

Introduction
Animals have been used as research subjects for over 2,000 y. 

Between the fourth century BC and the second century AD, 
Greek-speaking scholars such as Aristotle, Herophilus, Erasis-
tratus, and Galen began the systematic dissection of animals 
and comparative investigation of their anatomies.38 From 
those crude beginnings, and after hundreds of years and re-
finements in the conduct of experiments, major advances have 
been achieved in our understanding of biology and medicine. 
However, the housing conditions of the animals that were used 
for the necessary research did not improve significantly until 
less than 100 years ago when guidelines for housing research 
animals became available. In 1963, the Animal Care Panel 
published the first edition of the Guide for Laboratory Animal 
Facilities and Care with recommendations for the care and hous-
ing of mice and other species used in biomedical research.7 The 
effect of the environment as an important research variable was 
not recognized until the 1970s.70,231,238 Much has been learned 
in the last 50 y about the husbandry requirements and care 
of research animals. However, much room for improvement 
remains. Extrinsic factors (i.e., extrinsic environmental factors) 
that are part of management practices can have significant ef-
fects in the animal’s physiology and, consequently, on the data 
being collected from these animals. These extrinsic factors may 
vary among research facilities, within the same facility, within 
the same animal room, and even within the same cage, with 

potentially significant effects on data that contribute to study 
irreproducibility. In 2014, an article titled “NIH plans to enhance 
reproducibility” expressed concerns about animal studies, 
saying “Preclinical research, especially work that uses animal 
models, seems to be the area that is currently most susceptible 
to reproducibility issues. Many of these failures have simple and 
practical explanations: different animal strains, different lab en-
vironments or subtle changes in protocol.”35 That paragraph also 
recognizes “different lab environments” as a possible cause for 
study irreproducibility. In 2020, the ARRIVE (Animal Research: 
Reporting of In Vivo Experiments) guidelines added housing 
and husbandry information to the list of information that should 
be provided when reporting studies that used live animals, as 
follows: “Provide details of housing and husbandry condi-
tions, including any environmental enrichment.”189 However, 
this recommendation is not currently included on the ARRIVE 
Guidelines “Essential List”. In 2022 the NIH hosted a workshop 
to discuss external factors affecting rigor and reproducibility 
of animal-based research. This workshop generated 3 reports, 
one of them focused exclusively on rodents. Various extrinsic 
factors were identified for consideration in research, including 
personnel, caging type, housing density, ambient temperature, 
food and water, bedding, enrichment, cage-change frequency, 
species-specific measures of behavior, the microbiome, lighting, 
vibration, and air.173 A commonly expressed view at this work-
shop was that extrinsic factors in animal research are unlikely 
to be standardized across institutions and laboratories and that 
systematic variation in animal studies (e.g., performing the same 
study on several different mice strains or in different physical 
locations or at different environmental temperatures), along 
with the use of completely randomized and randomized block 
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design, may improve reproducibility between experiments and 
better represent the biologic systems of humans.63,173,201 A recent 
meta-analysis suggests that conventional rodent housing may 
be sufficiently distressing to compromise rodent health, causing 
the rodents to be “cold, rotund, abnormal, male-biased, poorly 
surviving, enclosed and distressed.”26 These possibilities raise 
questions about the validity and use of the data they gener-
ate. Apart from the well-recognized factors that affect animal 
research, we will discuss other less obvious factors in this 
manuscript. The animal research community should be aware 
of these subtle, but important, external factors and how they 
can impact study reproducibility because extrinsic factors (i.e., 
diet, ambient temperature, light) may alter intrinsic factors (i.e., 
microbiome, gene expression, physiology, immunity, circadian 
rhythm), thus supporting the importance of detailed reporting 
of the housing condition that the animals had experienced  
(Table 1). The purpose of this review is to discuss with and alert 
the animal research community about how currently recom-
mended housing practices for mice may influence study results 
and why housing and husbandry practices should be described 
in detail in publications resulting from animal research. Some 
of the factors discussed have been known for years, but little 
attention has been given to others that either are relatively new 
and still not widely recognized by the animal research com-
munity or require further studies to corroborate initial studies.

Temperature
An early publication by the Jackson Memorial Laboratory 

in 1941 recommended housing mice at “approximately 72 °F” 
(22 °C) “at all times” in cages made out of wood to protect them 

from drafts, with woodchips and sawdust as bedding, and with 
a small piece of cotton as nesting material.203 Later, in 1957, the 
Institute for Laboratory Animal Research published tempera-
ture guidelines for housing research mice, recommending mice 
room temperatures be maintained between 21.1 and 26.6 °C.112 
Since then, this guideline has not changed significantly, with the 
most recent version of the Guide for the Care and Use of Laboratory 
Animals recommending housing mice at slight lower tempera-
tures, between 20 and 26 °C, with minimal fluctuation near the 
middle of these ranges; this midrange would be 23 °C, which 
is well below the thermoneutral zone of mice (26 to 34 °C).113 
Following this guideline means that research mice are chroni-
cally subjected to cold stress, which is particularly critical for 
neonates, weanlings, singly housed mice, nude mice, sick mice, 
and mice housed in mechanically ventilated cages.45,46,237

Cold stress is perhaps one of the most important extrinsic envi-
ronmental conditions affecting laboratory mice. Numerous studies 
have shown that chronic cold stress profoundly affects mouse 
physiology, requiring metabolic adaptations that could interfere 
with modeling of human homeostasis and disease. Adaptation 
to chronic cold stress involves marked changes in glucocorticoid 
production and activation of the sympathetic nervous system, 
which in turn affect immune responses to infectious agents, 
cancer, drugs, affects the gut microbiome, breeding, growth, and 
behavioral studies, to name a few.30,46,88,108-111,115,155,196,232,237-239

Several examples illustrate these effects. The survival of male 
C57BL/6 mice housed in climate-controlled chambers with con-
tact bedding and nesting material at 30 °C was 78% after cecal 
ligation and puncture as compared with 40% survival of mice 
housed at 22 °C.30 Another study assessed energy expenditure 

Table 1. Summary of some external factors’ potential effects on mice

Factor Potential Effect on
Temperature Infectious disease, immune system, energy expenditure, brown adipose tissue, thermogenesis, tumor metabolism, 

bone metabolism, core temperature, motor activity, gut microbiome, embryo yield, and heart rate
Relative humidity Cornea’s integrity, aqueous tear production, CD4+ cell infiltration in lacrimal glands, embryo production, time 

to first estrus, and gut microbiome
Air quality Anxiety, pain, depression, immune system, cardiac allograft survival, lipolysis, thermogenesis, blood pressure, 

food intake, behavioral and neural responses, stress responses, abortion, number of offspring born, plasma 
corticosterone, fecal boli, core body temperature, and hematology

Light Disease susceptibility, cancer incidence, retinal abnormalities, acute phase response, inflammation and innate 
immune response in skin and brain, sleep cycle, and circadian rhythm

Noise and  
vibration

Circadian rhythm, cardiovascular and immune systems, behavior, blastocyst production, embryo resorption, 
litter size, and ultrasonic communication

Caging material Body growth and abdominal adiposity, timing to puberty, estrogen receptor expression patterns in vagina, 
mammary gland tissue growth, prostate weight, epididymal weight, daily sperm production, and meiotic effects

Bedding Liver microsomes, respiratory system, immune system, gut microbiome, body/organ weight, ghrelin and 
glucose plasma levels, energy content, and disease model phenotype

Diet Gut microbiome, α and β diversity, inflammatory or invasive microbiota, intestinal permeability, proinflammatory 
mediators, immune cell response, influenza infection modulation, colorectal tumorigenesis, inflammatory bowel 
disease, obesity, dermatitis, relative uterus size, embryo yield, and behavior

Water Gut microbiome, motor behavior, neuropathology, diabetes, intestinal mucosal inflammatory cells and expression 
of cytokines and transcription factors, and disease model phenotype

Metal ear tag Auricular chondritis and autoimmunity
Disinfectants Sperm concentration and motility, time to first litter, pregnancy intervals, pups per litter, morbidity in near 

term dams, neural tube defects in fetuses, genotoxicity, allergic responses, immune system, pulmonary disease, 
and gut microbiome

Enrichment Pup weigh and survival to weaning age, behavior, immune system, antitumor immunity, and corticosterone 
plasma levels

Group housing Immune system, body weight, food intake, adiposity, glycemic control, insulin signaling, adipose tissue 
inflammatory response, gene expression, infectious and tumor studies, body temperature, behavior, energy 
expenditure, bone metabolism, sperm count and motility, gonad development, time in estrus, gut microbiome, 
and disease model phenotype

Human handling Corticosterone, glucose, growth hormone and prolactin plasma levels, heart rate, blood pressure, urination/
defecation, behavior, and disease model phenotype
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in C57BL/6J and Crl:NU-Foxn1(nu) nude mice that were 
group-housed in individually ventilated cages (5 mice per cage, 
60 air changes hour) with corncob bedding and cotton nesting 
material at low (21 °C), intermediate (26 °C), and high (31 °C) 
temperatures.45 Energy expenditure was significantly higher in 
mice housed at low temperature as compared with those housed 
at intermediate and high temperatures and was associated with 
a shift in metabolism toward glucose utilization. Brown adipose 
tissue showed significant activation at low and intermediate 
temperatures as compared with 31 °C in both C57BL/6J and 
Crl:NU-Foxn1(nu) nude mice, with Crl:NU-Foxn1(nu) mice 
experiencing greater cold stress than did C57BL/6J mice.45 In an-
other study, male CB17/lcr-Prkdcscid/lcrlcoCrl (Prdkcscid) and 
Crl: Nu-Foxn1Nu (Nu-Foxn1Nu) mice (age, 10 wk) were singly 
housed in individually ventilated cages, with or without shel-
ters, and in static cages with corncob bedding and maintained 
at 20 to 21 °C.46 Those housed in individually ventilated cages 
had histologic signs of cold stress (greater chronic activation 
of brown adipose tissue) and significantly more nonshivering 
thermogenesis, smaller subcutaneous epidermoid carcinoma 
tumors, lower tumor metabolism, and larger adrenal weights 
than did mice in static cages.46 The shelters partially protected 
mice from cold stress. The authors recommend a slightly higher 
macroenvironmental temperature around 24 °C along with en-
riching individually ventilated cages with nesting material or 
translucent shelters.46 Randomly bred ICR/Alb mice, housed 
in shoe-box style polypropylene cages with wood shavings as 
bedding and a cotton square as nesting material were subjected 
to different temperatures and humidity; the study found mice 
maintained at 25 °C attained puberty earlier than mice main-
tained at 20 °C or lower temperatures.55 Another study found 
that the type of bedding material affects thermoregulatory 
stability, core temperature, and motor activity in female CD-1 
mice housed in groups of 4 in standard static cages at ambient 
temperature of 23.5 °C.79 Mice housed with a deep layer of wood 
shavings maintained significantly higher core temperatures 
during the day as compared with mice housed with a thin 
layer of wood shavings and β chips.79 During the night, core 
temperature and motor activity were high in all group, with no 
effect of bedding type. The author concluded that housing mice 
on a deep layer of wood shavings or comparable materials is 
conducive to burrowing, which reduces heat loss.79 In a study 
of female 6-wk-old BALB/cAnNcr that were housed 5 per cage 
in microisolation cages at either 22 to 23 °C or the thermoneutral 
temperature of 30 to 31 °C for 6 wk, the gut microbiome of mice 
housed at 22 to 23 °C had an enrichment of members of the fam-
ily Lachnospiraceae, indicating that adrenergic stress and need 
for energy to support thermogenesis modulates the gut micro-
biome.110 In another study, genetically modified mouse lines 
and wild-type mice with corresponding genetic backgrounds 
(C57BL/6; NMRI) were housed in individually ventilated cag-
ing systems and barrier facilities at 22, 24, and 26 °C; embryo 
yield was significantly higher when donor mice were fed a 
phytoestrogen-poor diet at 24 °C.196 C57BL/6J male mice 3 to 
6 mo old, singly housed at 23 ± 1 °C and Sani-Chips bedding at a 
depth of approximately 1 cm in conventional open-topped cages 
with wire lids and without microisolation lids showed tachy-
cardia that was presumably related to cold stress.31 A recent 
study found small differences in temperature (4 °C) or heat loss 
(individual compared with group housing with cotton squares) 
influence bone growth in 5-wk-old female C57BL/6 J mice.211 
In this study, mice that were individually housed at 22 °C had 
greater body weight and femur size, but dramatically lower 
cancellous bone volume fraction in the distal femur metaphysis. 

The cancellous bone loss was attenuated but not prevented in 
mice housed individually at 26 °C or in group-housed mice at 
22 °C.211 In another study, 12-wk-old male C57BL/6NCrl mice 
were housed individually at room temperatures of 30, 21, or 
4 °C with a cardboard shelter and wood-wool nesting material.64 
Based on high time-resolution calorimetry analysis, mice housed 
at the thermoneutral 30 °C temperature displayed mean diurnal 
energy expenditure rates that were 1.8 times higher than basal 
metabolism, closely resembling the ratio observed in humans 
under normal living conditions. The authors concluded that at 
any temperature below thermoneutrality, mouse metabolism 
exceeded the human equivalent, which has important implica-
tions for study translatability.64

Mice may be kept at temperatures that are below thermoneu-
trality because of concern for heat stress. One study found that 
B6D2F1 and C57BL/6N dams had fewer weaned pups when 
kept at 30 °C than did dams kept at 22 °C, with no differences in 
levels of fecal corticosterone metabolites in dams kept at either 
temperature.133 In another study, 7-wk-old male C57BL/6 mice 
were housed 4 per cage at 22 °C with food available ad libitum, 
at 35 °C for 5 d with food available ad libitum, or at 22 °C with 
5 d of food restriction.167 Mice kept at 35 °C for 5 d had signifi-
cantly higher leptin and adiponectin signaling in white adipose 
tissue, muscle, and liver as compared with the other groups. 
Chronic heat exposure that was independent of food intake 
appeared to be responsible for improving insulin sensitivity 
and glucose uptake in peripheral tissues, probably mediated 
by adipokines. The authors concluded that moderate chronic 
heat exposure could be a potential therapeutic treatment for 
disorders associated with insulin resistance.167 A study to assess 
the effects of chronic heat stress on humoral and cellular re-
sponses of DNA vaccination showed that 6- to 8-wk-old female 
Balb/c mice exposed to a temperature of 38 °C for 2 h per day, 
for 35 d had poorer responses to the vaccination, particularly 
impaired the cell-mediated responses, as compared with mice 
maintained at 24 °C for the same period of time.102 Chronic heat 
stress significantly lowered levels of IgG2a, T cell proliferation, 
expression of interferon-γ in CD4+ and CD8+ cells, and cytotoxic 
T-lymphocyte responses.102 Another study found that chronic 
heat stress (37 and 40 °C) adversely affected testicular structure 
and spermatogenesis and caused inflammation leading to tes-
ticular interstitial fibrosis in 8- to 10-wk-old male Swiss mice 
as compared with a control group housed at 25 °C.175 Short, 
repeated exposure of male C57/BL6J mice (aged 8 to 16 wk) to 
a high ambient temperature (40 °C and 40% relative humidity 
[RH]) induced acute kidney injury that was ameliorated by pre-
vious repeated sessions of exposure to mild heat (38 °C and 40% 
RH).81 In another study, male C57BL/6 mice (12 wk of age) were 
placed in a temperature-controlled chamber at 43 °C and 60% 
± 10% humidity for 15 min a day for 7, 14, 21, and 42 d.179 The 
study showed that repeated heat exposure augmented oxidative 
stress, endoplasmic reticulum stress, and apoptosis pathways in 
the cerebellum.179 Three-week-old female ZCK mice that were 
continually exposed to 25 °C and 50% humidity for 1, 3, or 6 
wk or to daily 9- min exposure to 39 °C at 50% humidity for 1, 
3, or 6 wk. The repeated heat exposure reduced whole-body 
and ovarian growth but had little effect on the ovarian index 
(ovary wet weight in mg/body weight in g × 100%, ±SE); acute 
heat exposure did not alter whole-body or ovarian weight. The 
authors hypothesized that chronic and acute exposure to heat 
impaired ovary function by causing the dysfunction of granu-
lar cells.16 In another study, adult male and female CD-1 mice 
were housed for 5 d at 37 °C, and core temperature, heart rate, 
and activity were monitored telemetrically; heat shock proteins 
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(HSPs) were measured in brain and lung by western blotting.24 
The study showed that female mice exposed to this condition 
maintained a core temperature that was 1.2 °C lower than in 
age-matched males (38.3 ± 0.6 and 39.5 ± 0.7 °C, respectively), 
experienced less weight loss (1.5 ± 0.5 compared with 4.5 ± 2.0 g), 
and had greater survival (16/16 compared with 13/21).24 After 
5 d of moderate heat exposure, HSP72 is increased 2.1-fold in 
brain and lung and 5-fold in male mice as compared with 1.3- 
and 1.5-fold in female mice.24 In another study, female BALB/c 
mice, 8- to 10-wk-old, were placed in an incubator for 21 d and 
exposed to a temperature of 38 ± 1 °C for 4 h; mice in the control 
group were kept at 24 ± 1 °C to simulate room temperature.119 
The heat-exposed mice showed a reduced local immune re-
sponse in the respiratory tract, with reductions in the number 
of pulmonary alveolar macrophages and more lesions in the 
nasal mucosa, trachea, and lungs as compared with mice kept 
at 24 °C. Chronic heat exposure retarded dendritic cell matu-
ration and reduced the mRNA levels of IL-6 and IFN-β. After 
infection with H5N1 virus, the mortality rate and viral load in 
the lungs of the chronically heat-exposed mice were higher than 
those of the control group. The authors concluded that chronic 
heat exposure can suppress local and innate immunity in the 
respiratory tract and consequently promote the virulence in 
H5N1-infected mice.119 These examples show that housing mice 
above their thermoneutral zone can have deleterious effects.

Some studies suggest mice, like humans, may adapt to living 
in calid environments.209 For example, male CD-1 mice weigh-
ing 30 to 35 g housed in standard cages with bedding and a 
plastic igloo were continuously exposed to mild hyperthermia 
(ambient temperature approximately 37 °C that caused ap-
proximately 2 °C increase in core temperature) for 5 d and were 
then exposed to a thermal stress (42 °C ambient temperature for 
40 min) and compared with control mice that had no previous 
acclimation to mild hyperthermia before exposure to thermal 
stress.209 The acclimated mice showed slower warming during 
thermal stress, more rapid cooling during recovery, greater 
activity during thermal stress, and some of the features of ac-
quired thermal tolerance, including higher baseline expression 
of HSPsp72 and HSP90 in lung, heart, spleen, liver, and brain, 
and a blunted incremental increase in HSP72 expression after 
acute thermal stress. The authors suggest that continuous 5-d 
exposure of CD-1 mice to mild hyperthermia induces a state 
that resembles the physiologic and cellular responses of human 
acclimation to heat.209

An extensive review of the effects of temperature, humidity, 
air changes, and caging on different species of research animals 
included recommended temperatures that required minimal 
metabolic adaptation.237 The recommended temperature for 
minimum metabolic adaptation of a single mouse in a static cage 
with free air exchange is 31 to 34 °C for a hairless mouse and 26 
to 31 °C for an albino mouse.237 These temperature ranges will 
decrease if the cage system has limited air exchange and contains 
multiple mice. The ranges may also require extension to provide 
warmer conditions for mice with disturbed thermoregulation 
due to diminished heat production due to sickness or recovery 
from anesthesia or increased heat loss due to, for example, 
mechanically ventilated cages. In the latter case, thermoneutral 
conditions can be reestablished by increasing the ambient tem-
perature. Keeping mice at 20 to 22 °C will cause mice to undergo 
cold adaptation.237-239 However, these recommendations may 
not be considered despite the potential effects of chronic cold 
exposure on mice and the research they are used for. The Guide 
for the Care and Use of Laboratory Animals currently states “Ani-
mals should [rather than must] be housed within temperature 

and humidity ranges appropriate for the species, to which they 
can adapt with minimal stress and physiologic alteration”.113 
The Guide recommends a macroenvironment temperature of 
between 20 and 26 °C for mice, with minimal fluctuation near 
the middle of these ranges (i.e., 23 °C); however, many institutions 
keep rodent rooms around 21 to 22 °C.45,144,221 The Guide also 
says, “animals should be provided with adequate resources 
for thermoregulation (nesting material, shelter) to avoid cold 
stress.” Again, the word “should” is used. The Guide does not 
mandate the use of nesting material, shelters, or other sources 
to protect mice from cold stress, leaving to the individual in-
stitutions or investigators the decision of whether steps will be 
taken to prevent cold stress in mice.88 The temperature in an 
individually ventilated cage is usually 1 or 1.5 °C warmer than 
the room temperature if the cage holds 5 mice that have bed-
ding and nesting material, although the use of nesting material 
and shelters attenuates but does not completely counteract the 
effects of low intracage temperature.46,73-75 In addition, some 
inbred and genetically modified mice strains do not build or 
poorly build nests, contributing to the potential need to protect 
them from cold stress.6,53,71,151 One group reported that up to 
10 g of nesting material may be needed for mice to build a nest 
that will alleviate thermal distress under temperatures of 20 to 
24 °C.73-75 Commonly used commercially available mice nesting 
material such as cotton squares weigh between 2.2 and 2.6 g, 
meaning that depending on the number of mice in a cage, 4 or 
more cotton squares may be required to allow mice to build 
a nest that will provide thermal regulation. Institutions that 
report the use of cotton squares usually provide one per cage, 
which is not sufficient for allowing mice to build nests that will 
efficiently mitigate cold exposure.45,71,80,225,244,245 The microenvi-
ronmental cage temperature is further influenced by the caging 
system used and husbandry components that include bedding 
substrates, enrichment devices and materials, number and age 
of the mice, cage density, light exposure, and the mouse’s phe-
notype.88 As described above, cold stress in research mice may 
go beyond what could be defined as “minimal stress and physi-
ologic alteration”. The most common reason for keeping rodent 
facilities at low temperatures is to provide human comfort and 
to avoid the high cost of maintaining facilities at relatively 
warm temperatures.144 However, the cost savings obtained 
by keeping rodent facilities at relatively cold temperatures is 
likely negligible relative to the costs of conducting preclinical 
research in a potentially compromised animal and generating 
data that may not be reproducible or translational.67 Numerous 
studies indicate that currently recommended environmental 
temperatures for mice should be revised to move closer to the 
species-specific lower limit of the thermoneutral zone and to 
provide enough bedding and nesting material for behavioral 
thermoregulation.64,115,127,155,237-239

Relative Humidity
Current guidelines recommend housing mice at a RH between 

30% and 70%.113 Extremes of RH (<30% or >70%) are known 
to significantly affect animal physiology and metabolism and 
predispose to health problems.48,125,139,144 In general, a RH be-
tween 30% and 70% is considered adequate for research mice, 
but the effects of subtle shifts in RH may not be easily detected 
on routine health checks and may have or not affect the study 
and/or animal well-being. For example, eye desiccation stress 
can occur in more C57BL/6J mice housed in mechanically 
ventilated cages with 43.5% RH than occur in mice housed at 
53.9% RH.259 At 43.5% RH, aqueous tear production is reduced, 
and corneal permeability and irregularity increase.259 Histologic 
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examination of the low-humidity mice revealed desquamation 
of corneal basal epithelial cells, reduced goblet cell density in 
conjunctival epithelia, elevated CD4+ cell infiltration of lacrimal 
glands, and displacement of keratin-14-positive limbal epithe-
lial stem cells on the ocular surface.259 Some studies suggest 
that a very narrow range of RH is best for embryo production 
in C57BL/6N, FVB/N, NMRI, 129 S6, and a few other mice 
strains, with decreases in production occurring when the RH 
decreases below 40% or increases above 45%.51,213 On the other 
hand, ICR/Alb female mice housed at 60% RH attained first 
estrus significantly earlier than did mice that were housed at 
30% RH.55 To further complicate effects of RH, a recent study 
found short-term exposure to high RH alters the gut microbiota 
of 8-wk-old male BALB/c mice.253 These effects may or not be 
important depending on the type of research being conducted. 
Variation in RH could contribute to variability in vision studies 
or may be significant to investigators trying to rescue a line that 
breeds poorly. Clearly, further studies are required to determine 
possible subtle effects of RH on mice.

Air Quality
Depending on geographic location and proximity to heavily 

industrialized areas, air quality can vary markedly. Most animal 
facility HVAC systems use external air and may recirculate part 
of the internal air to save energy. Pollutants in external air, apart 
from those that can be eliminated by mechanical filtration, are 
difficult to control and may or not have an affect in mice. One 
study found that aged AKR/J mice had more cardiac alterations 
when exposed to real-world air pollution at concentrations that 
mimic human exposure as compared with AKR/J mice exposed to 
filtered air.197 The effects of common pollutants that are generated 
by the mice themselves or from their waste (i.e., CO2, ammonia, 
and allergens) are well known, and husbandry practices have 
been developed to limit their effects. Other less studied organic 
volatile compounds may be ubiquitously present in an animal 
facility and may affect both the mice and the research. Personnel 
wearing perfumes, fragrances, or deodorants in the animal facility 
cause confounds in study results. Essential oils, commonly used 
in colognes, perfumes, and fragrances, are used in aromatherapy 
because of their purported medical properties. For example, 
aromatherapy improves cognitive dysfunction in male SAMP8/
TaSlc mice, has antianxiety effects in male Swiss mice, has sedative 
effects and reduces hyperalgesia in female Swiss mice, reduces 
pain and stress-induced immunosuppression in male ddY, male 
CD-1 Swiss, female OF1, and female C57BL/6J mice, reduces 
depression-like behaviors in male ICR mice, alters the immune 
response of female BALB/c and C57BL/6J mice, and prolongs car-
diac allograft survival in male CBA mice.25,52,54,68,69,120,142,180,187,215,234  
Olfactory stimulation with the scent of grapefruit oil increases the 
activity of sympathetic nerves that innervate white and brown 
adipose tissues, the adrenal glands, and the kidneys, and decreases 
the activity of the gastric vagal nerve in rats and 6-wk-old-male 
Jcl:ICR mice, resulting in increased lipolysis, thermogenesis, and 
blood pressure and a decrease in food intake.172 In contrast, the 
olfactory stimulation of lavender oil decreases blood pressure, 
thermogenesis, and body temperature by reducing brown adipose 
tissue-sympathetic nerve activity in rats and Jcl:ICR mice.172 Be-
havioral and neural responses to the irritant allyl isothiocyanate, 
present in cruciferous vegetables, were effectively mitigated by 
olfactory costimulation with phenlyethyl alcohol or lavender oil 
in male C57BL/6N mice.186

Mice, like other animals, seem to discriminate certain odors 
emitted by humans that are related to different emotions.  
The physiologic processes associated with an acute psychologic 

stress response in humans produce changes in the volatile 
organic compounds emanating from breath and/or sweat and 
can be detected by dogs.42,248 Mice and other animals appear 
to recognize chemical signals associated with stress in humans 
and other animals; this recognition results in physiologic and 
behavioral reactions that indicate induced stress in response 
to the stress odor of humans and other animals.2,27,42,50,77,116,254 
For example, 6- to 8-wk-old male C57BL/6J mice defecated 
more in the presence of the stress odor than the nonstress 
odor in sweat.50 Cat urine odor increased the proportion of 
miscarriages in female CrlFcen:CF1 mice, whereas the odor 
of unfamiliar male mice reduced the mean number of pups 
born per female.2 A study using 4-wk-old male C57BL/6J mice 
found the injection of LPS altered the odors that mice used for 
inter- and intrasexual communication; the odors of healthy 
mice living with LPS injected mice more closely resembled the 
odors of sick as compared with healthy mice.77 The authors 
suggest that the odors of sick (LPS-injected) cage mates in-
duced physiologic changes in the healthy mice, and that these 
physiologic changes may resembled the alterations induced by 
LPS.77 Another study reported that axillary secretions of men 
but not of women likely triggered stress-induced analgesia 
in CD-1 and C57BL/6J mice.220 Baseline pain latencies or 
thresholds in 3 different acute pain assays were significantly 
higher when testing was performed by a man rather than a 
woman, indicating a possible analgesic effect associated with 
men.220 In addition, exposure to men in the absence of pain 
increased plasma corticosterone levels and fecal boli; core body 
temperature increased more rapidly when male researchers 
were taking rectal temperatures as compared with females. 
The authors concluded that, although brief, stress caused by 
male researchers may exert a common confound in animal 
research.220 This study was conducted by directly exposing 
mice to odors that they may not encounter under normal con-
ditions in an animal facility. However, these organic volatile 
compounds may persist in the environment even after the 
person leaves the room, potentially exposing mice to its disrup-
tive effects. For this reason, personnel should avoid wearing 
perfumes, fragrances, or deodorants in the animal facility, and 
the potential effect of male experimenters should be considered 
when designing studies. Another study found that oxygen in 
the air in individually ventilated cages was 2.5% less than in 
the ambient environment when male C57BL/6J mice were 
housed 4 per cage, resulting in chronic low-grade hypoxia and 
hematologic and behavioral changes.254

Light
Light is another important extrinsic environmental condi-

tion. A recent excellent review of vivarium lighting discussed 
how different types of light, intensity, duration, wavelength, 
caging material, and cage position in room and rack affect light 
exposure and consequently metabolism and susceptibility to 
disease.43 The review also discusses the effect of light contami-
nation on cancer incidence and other types of studies.43,44 An 
early study found female BALB/c mice develop retinal atrophy 
due to exposure to vivarium lighting.83 The study reported 
that at 33 mo of age, retinal atrophy affected 30% of the mice 
housed on the top shelf, followed by 12% on the next shelf, 
and fewer than 1% of those housed on lower levels.83 BALB/
cJ mice housed under normal vivarium lighting conditions 
can exhibit profound retinal abnormalities, including retinal 
infoldings, autofluorescent inflammatory cells, and photore-
ceptor degeneration.17 Advanced age and top row illuminance 
results in significant photoreceptor cell loss as demonstrated by 
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decreased thickness of the outer nuclear layer. These changes 
are preceded by retinal infoldings and the presence of auto-
fluorescent inflammatory cells in the outer retina. The authors 
of the review suggest that these changes are early indicators 
of light toxicity in BALB/cJ mice and recommend vivarium 
lighting should provide approximately 30 lx about 1 m above 
floor level, which provides enough light for investigators and 
husbandry staff to perform their duties.17 They further indicate 
this illuminance level should translate into external and internal 
cage illumination intensities of approximately 10 to 15 and 
approximately 0.5 to 1.5 lx, respectively, and that prolonged 
exposure to other sources of light such as cage change stations 
or safety cabinets should be avoided.17 A more recent study 
found that fluorescent light induced transcriptional changes 
of the acute phase response signaling pathway and modu-
lated inflammation and innate immune responses in skin and 
brain of hairless mice.22 The authors of that study suggested 
cellular perception of oxidative stress promotes the induction 
of primary upstream regulators IL-1B and TNF, with skin and 
brain developing inflammatory and immune responses.22 Most 
research rodents are nocturnal; the light phase in an animal 
facility corresponds to their resting phase. Most of the hus-
bandry and research work (health checks, animal treatments, 
cage changes, experimental manipulation, animal transfers, 
rack movement, nearby use of autoclaves, cage wash, etc.) is 
performed during the light phase. The constant activity near 
or in the animal rooms may disrupt the sleep cycle of mice 
potentially affecting the circadian rhythm.147 Numerous stud-
ies indicate that most biologic functions are linked to circadian 
rhythms, and circadian disruption profoundly affect both the 
animal’s physiology and research data.5,32-34,43,59,85,103,150,153,235

Mice and rats are often thought to be functionally blind under 
red light, based on the fact that they are dichromats that pos-
sess UV and green cones but not red cones. However, a recent 
study found that rats retain visual capacity under red light; 
the inability to see the color red does not necessarily rule out 
vision based on red light absorption.177 Reverse light cycles 
with low-pressure sodium lights, whose wavelength spectrum 
(589 nm) is not visible to rodents, but can be seen by humans, 
should be used in rooms housing rodents so routine husbandry 
activities may be performed during the dark phase of the light 
cycle, when rodents are active.160

Noise and Vibration
Noise and vibration generated during normal facility op-

eration hours can disrupt rodent circadian rhythms.9,14,188,200 
Noise and vibration can alter reproduction, cardiovascular 
function, and immune function in mice and may elicit be-
havioral reactions consistent with a fear response.9,72,114,170,255 
Noise from ventilated racks has been linked to decreased 
blastocyst production in female C57BL/6 mice.255 Auditory 
stress also causes higher rates of resorption of C57BL/6 mouse 
embryos and reduction of litter size.114 Ultrasonic noise has 
been less studied. However, we know that mice can hear ul-
trasonic noises that are beyond the hearing range of humans 
and may not be measured in animal facilities.91,171 Mice use 
ultrasonic vocalization to communicate, including courtship, 
and environmental ultrasonic noise may interfere with this 
communication.91,171,188 The sound of metal impacting metal 
impact, as commonly occurs in animal facility operations, 
can reach intensities that allow to be easily audible to mice in 
cages on individually ventilated racks, potentially exposing 
the mice to a substantial amount of noise across a wide range 
of frequencies that they can hearr.180

Caging Material
Polycarbonate and polysulfone cages and water bottles made 

of these materials are commonly used in animal research facili-
ties. Caging material has long been recognized as affecting study 
results.49 Several studies have shown that autoclaving of these 
cages promotes the leaching of chemicals, principally bisphenol 
A (BPA), a monomer with estrogenic activity.99,106,132,138 The 
monomers hydrolyze and leach from these cages and bottles 
under high heat and alkaline conditions, and the amount of 
leaching increases as a function of use of the item.138 Exposure 
to low, environmentally relevant levels of BPA have a significant 
effect on reproductive function in female and male rodents 
(accelerated growth and timing of puberty, altered estrogen 
receptor expression patterns in the vagina, increased prolifera-
tion of mammary tissue, increased prostate weight, decreased 
epididymal weight, and decreased daily sperm production).174 
Considerable amounts of BPA (approximately 0.15 μg/L) are 
leached from polycarbonate bottles during the first 24 h of stor-
age after being washed using an alkaline base detergent in an 
automated cage washing system, allowed to air dry, and then 
filled with water.95 Bisphenol F is increasingly being used as a 
substitute for BPA in the manufacturing of polycarbonate cages 
and water bottles and consumer products. Exposure of rats to 
bisphenol F showed significantly increased body growth and 
abdominal adiposity, which are risk factors for cardiometabolic 
disease.233 BPA and its substitutes also affect reproductive or-
gans, and their effects on aquatic species is a global concern.41 
Currently, few data are available on chemical damage and 
BPA release from polysulfone and polyetherimide, the 2 other 
common used thermoplastics that have a BPA component and 
are used in caging. Although these polymers are considered 
to be stable in comparison with polycarbonate, the finding of 
passive migration of small amounts of BPA from new polysul-
fone caging at room temperature in a neutral solution suggests 
that further research is warranted.99 One study found housing 
129S1/SvimJ and C57BL/6J mice in damaged polysulfone cages 
exposed them to bisphenol S that had harmful effects similar 
to those of BPA.80,96

Bisphenol analogs released from damaged polysulfone cages 
elicit meiotic effects in 129S1/SvimJ and C57BL/6J mice, and 
these persist in males for several generations, suggesting that 
bisphenols as a class should be considered germline toxicants.96 
Meiosis is both a sensitive indicator of environmental toxins and, 
because recombination directly affects the amount of genetic 
diversity in a population, it is also considered an evolutionary 
driver.96 Exposure to common replacement bisphenols induces 
germline effects in both sexes of 129S1/SvimJ and C57BL/6J 
mice and may thereby affect subsequent generations.96 Thus, 
exposure to chemicals that influence recombination are cause 
for concern. Polypropylene cages and glass water bottles do 
not leach BPA.

Bedding
Softwood beddings has long been known to induce 

drug-metabolizing enzymes in liver microsomes of mice and 
rats.230 Softwood bedding comprised of either red cedar, white 
pine, or ponderosa pine induced 3 drug-metabolizing enzymes 
in liver microsomes of 10 inbred and 2 outbred strains of adult 
male and female mice (mice strains/stock not defined). The 
induction was reversed when the mice were removed from 
the softwood bedding and placed on hardwood bedding com-
prised of mixture of beech, birch, and maple.230 Hardwood 
and corncob beddings, which are commonly used beddings in 
bedding for research rodents, contain high concentrations of 
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endotoxins.60,159,206,246 The potential effect of endotoxin exposure 
from bedding should be considered when conducting studies 
that involve LPS or assess respiratory or immunologic end  
points.28,60,104,206,210,246 In addition, dust levels can be higher in 
hardwood beddings.104,246 Studies in rodents show that repeated 
airway exposure to wood dust can elicit lung inflammation, 
which is accompanied by induction of several proinflammatory 
cytokines and chemokines.104

Corncob bedding contains high fungal spore loads and are 
a risk for fungal infections in immune compromised rodents 
because the fungal spores remain in corncob bedding even after 
autoclaving.206,210 Corncob bedding also contains estrogenic 
compounds.224 A study in mice of both sexes, spanning a wide 
variety of ages, genotypes, and genetic backgrounds, including 
CD1, Balb/c, C57BL/6, and 129, found that paper beddings 
contain significantly lower levels of endotoxins and dust and 
are preferable when endotoxins and dust are a concern, such as 
during immunologic, respiratory, or inhalation studies.185,224 In 
addition, male C57BL/6J and C57BL/6NRj and female Crl:CD1 
(ICR) and C57BL/6NCrl mice on calorie restriction consume 
bedding and feces, which affects body and organ weight, ghrelin 
and glucose levels in plasma, energy content in gastrointestinal 
tract, gut microbiota, cecal content metabolites, and rodent 
phenotypes.4,58,84,134

The type of bedding used to house C57BL/6 mice can mark-
edly affect the dynamic range of mechanical and thermal 
behavioral tests in normal mice and those with tissue injury, 
with aspen wood chip bedding producing the lowest mechanical 
thresholds of the beddings tested.166 The type of bedding used 
should be carefully considered if animals will be tested using 
behavioral somatosensory assays.166 Another study found male 
C57BL/6J and ICR mice prefer cloth to paper or wood chips as 
bedding material and prefer the environment to be the same 
color as their fur, which may be related to animal welfare.126 
Thus, the type of bedding used can have major effects on study 
results and should be carefully selected to minimize study 
interference.

Diet
Apart from cold stress, diet may be one of the most important 

external factors affecting research mice. Research animal diets 
are manufactured with ingredients that are not usually found 
in the species’ natural diets. Wild mice fed a standard research 
rodent diet showed a significant change in the gut microbiota 
within 2 wk, with a reduction in microbiota diversity over 
time, whereas male C57BL/6 mice 10 to 12 wk of age fed a wild 
mice diet (a mix of commercial wild bird seed and freeze-dried 
mealworms) showed an increase in gut microbiota diversity.198 
Alpha and Beta diversity in the research mice was significantly 
lower than that of wild mice, with Helicobacter species as the 
predominant enriched taxa in feces from wild mice and mem-
bers of the family Muribaculaceae predominant in research 
mice.23,198 In addition, the Muribaculaceae species found in 
research rodents had higher potential to be inflammatory or 
invasive as compared with the Muribaculaceae species found 
in wild mice.23 The composition of the intestinal microbiota can 
also affect intestinal permeability, production of inflammatory 
mediators, and responses of immune cells in extraintestinal 
sites.57,241 One study showed that C57BL/6NTac, C57BL/6J, 
and C57BL/6NCrl mice reconstituted with natural microbiota 
had less inflammation and greater survival after infection with 
influenza virus and improved resistance against mutagen/
inflammation-induced colorectal tumorigenesis.204 Gut micro-
biome variation can also occur within the same mouse strain 

depending on the source of the mice because animal husbandry 
may differ between institutions.57,137,202,225

Food colorants are sometimes used by commercial rodent diet 
vendors to distinguish special diets from each other. A recent 
study found that the common food colorant Red 40 can trigger 
the development of inflammatory bowel disease-like colitis in 
transgenic mice with increased IL-23 expression.90 Increased 
IL-23 expression led to generation of activated CD4+ T cells that 
expressed interferon-γ and could induce colitis when transferred 
to Rag1−/− mice exposed to Red 40. The induction of colitis was 
dependent on commensal microbiota that promoted the azo 
reduction of Red 40 and generation of a metabolite, 1-amino-
2-naphthol-6-sulphonate sodium salt.90 Researchers should be 
aware of possible side effects of food colorants when conducting 
studies. A commercially available amino acid–defined rodent 
diet with high folate was found to be deficient in vitamin K, 
which resulted in anemia, gastric hemorrhage, and mortality 
in male INS-GAS mice on an FVB/N background that had 
been fed the special diet and treated with antibiotics to pre-
vent Helicobacter pylori–induced gastric carcinogenesis.195 The 
study showed that antibiotic treatment reduced the abundance 
of menaquinone producers in the orders Bacteroidales and 
Verrucomicrobiales, resulting in reduced enteric production 
of vitamin K.195 This study highlights the role of diet and the 
microbiome in maintaining vitamin K homeostasis.

The amount and type of fat in rodent diets is also important. 
The American Institute of Nutrition Ad Hoc Writing Committee 
on the Reformulation of the AIN-76A Rodent Diet recommends 
an n-6:n-3 ratio of 1 to 6:1 but no more than 7:1.199 However, 
because they use vegetable oils as main source of fat, most com-
mercial rodent diets have a higher n-6:n-3 ratio, which is known 
to promote inflammation and allergies.36,117 The common practice 
of feeding mice ad libitum usually results in overeating and obe-
sity, further promoting a proinflammatory state, chronic diseases, 
and a shorter life span.10,89,94,219 A high n-6:n-3 ratio in rodent 
diets may contribute to the etiology of ulcerative dermatitis in 
female C57BL/6J mice.82 A recent study compared the effects of 
different sources of dietary fatty acids (canola, fish, and soybean 
oils) on gene expression in liver of pigs and found that up to 148 
differentially expressed genes were associated with metabolism, 
metabolic and neurodegenerative disease pathways, inflamma-
tory processes, and immune response networks.61 Similar studies 
are required in mice. Mice are omnivorous, which means that 
they eat both plant and animal matter. The main components of 
the diet of wild Mus musculus were seeds of foxtail grass (Setaria 
spp.) (20%), lepidopterous larvae (14%), corn (13%), miscellane-
ous vegetation (8%), wheat seeds (7%), and smaller amounts of 
various weed seeds and other insects.243 Studies in other parts 
of the world have found similar diets for feral Mus musculus diet 
that reflect available foods in each season and habitat and are 
composed mainly of grass seeds, cereal grains, nonseed plant 
tissue (green leaf and stem tissue was found in large quantities 
in mouse stomachs only when seeds and grains were scarce), 
and invertebrate tissue consisting mainly of insects, particularly 
lepidopteran larvae (caterpillars).21,143,216 Setaria spp. are annual 
grass plants whose seeds have a high nutritional value and health 
promoting properties in mice.260 The seeds have a high linoleic 
acid (n-6) content but their total fat content is low, around 4%, 
with crude protein close to 11%.149,260 Edible Lepidoptera gener-
ally have a high fat content (between 13% and 33%), high levels 
of n-3 alfa-linolenic acid (up to 45% of the total fatty acids), and 
lower levels of n-6 (4% to 20%) and a protein content between 
13% and 74%, depending on species and stage of development.207 
Therefore, the n-6:n-3 fatty acid ratio in the natural diet of feral 
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mice is most likely lower than the ratio found in commercial 
rodent diets. In addition, the fatty acid profile of insects is very 
different from the fatty acid profile of vegetable oils, although the 
significance and/or role of these less studied insect fatty acids 
in mice is unknown.

Another common ingredient in commercial rodent diets is 
soybean meal. Soy, which provides the main source of pro-
tein in commercial rodent diets, contains phytoestrogens that 
are known to increase the relative uterus size in females and 
produce smaller embryo yields as compared with mice fed a 
phytoestrogen-poor diet.196 Several studies show that dietary 
phytoestrogens modulate cell-mediated immunity and type I in-
flammatory responses, may be a factor in disease resistance and 
susceptibility, and may affect behavior.40,86,87,146,252,258 Soy-free 
diets have been suggested as an alternative for studies in which 
phytoestrogens would be a confounding factor.154

In summary, commercial rodent diets change the natural 
gastrointestinal microbiome, thereby affecting multiple meta-
bolic processes, and may be responsible for some spontaneous 
diseases or phenotypes, contributing to study irreproducibility. 
Further studies are required to evaluate the possible contribu-
tions of commercial rodent diets to allergic, autoimmune, or 
neoplastic diseases commonly seen in research mice, and their 
possible effects on research by modulating the immune system. 
The diet and gut microbiome composition should be reported in 
materials and methods sections because they can have a major 
effect in study results.

Water
Drinking water is also an important extrinsic factor in animal 

studies. Often unreported, or not reported in detail, drinking 
water can be a significant source of variability in animal research 
depending on geographical location of the animal facility and 
the treatment method used to inhibit bacterial growth.15 Mu-
nicipal tap water, hyperchlorinated, acidified, autoclaved, UV 
sterilized, reverse osmosis, etc., are all used as drinking water 
for animals used in research, potentially affecting the gut mi-
crobiome and altering the animal’s phenotype, in particular, 
for studies involving motor behavior, neuropathology, and 
diabetes.15,122,135,218,242,250 The pH of drinking water affected 
the acquisition of microflora and the overall composition of 
the gut microbiome in NOD mice, with those drinking acidi-
fied water showing more inflammatory T cells and relatively 
greater expression of inflammatory cytokines and transcription 
factors in the intestinal mucosa as compared with mice receiving 
autoclaved neutral water.218,250 Moreover, the effects of acidified 
drinking water on the behavior and gut microbiota of 129S6/
SvEv mice depends on the acid used for acidification.242 Mice 
that received acidified drinking water from weaning did not de-
velop the impairment in pole climbing ability shown in a mouse 
model of infantile Batten disease.135 Histopathologic analysis 
of the brains showed that acidified drinking water reduced the 
amount of lysosomal storage material and astrocytosis in the 
striatum and somatosensory barrelfield cortex and attenuated 
microglial activation in the thalamus; marked changes in gut 
microbiota indicated a potential contribution of gut bacteria to 
the therapeutic effects of acidified water.135 Investigators should 
report in detail the source and treatment provided to the drink-
ing water to facilitate reproducibility of animal studies.

Ear Tags
Metal ear tags are commonly used to individually identify 

mice and other research species. These ear tags are composed 
of a nickel-copper alloy called “monel metal.”In addition to 

nickel and copper, they also contain smaller amounts of iron 
and manganese.129 Mice, rats, and guinea pigs commonly 
develop auricular chondritis in association with the use of 
metal ear tags.129-131,161 Studies in C57BL/6 mice suggest that 
the auricular chondritis is a result of metal ions released from 
the ear tags;129 tagged ears showed a visible increase in thick-
ness of the pinnae and increased concentrations of copper and 
iron as compared with untagged ears.129 Histologically, severe 
chondritis with extensive granulomatous inflammation, newly 
formed cartilage nodules, and osseous metaplasia with cellular 
infiltrates (CD4 T lymphocytes, macrophages, neutrophils, and 
mast cells) and expression of Th1 cytokines (IFN-γ, TNF-α, and 
IL-2) in the tagged ear.129 Subsequent cellular interactions (CD4 
T cells, macrophages, fibroblasts, and mast cells, mediated by 
cytokines such as TNF-α and IFN-γ) caused an autoimmune 
response that may lead to the progression of auricular chondritis 
as an autoimmune disease.129,161 In humans, nickel is the most 
common allergen in patients with allergic contact dermatitis 
and atopic dermatitis.227 Recently, ear tags made of aluminum 
and stainless steel were introduced into the market with the 
manufacturer claim that they do not cause allergic reactions in 
rodents. These materials should be used with caution because 
aluminum is known to cause contact dermatitis in humans, and 
stainless steel contains nickel, which appears to be the main 
cause of allergic reactions observed in human patients with 
stainless steel implants.124,158,178 Such effects can clearly interfere 
with both research and animal well-being, and alternative means 
of identification should be considered.

Disinfectants
Quaternary ammonium compounds (QACs) are commonly 

used as surface disinfectants in animal facilities. Generally 
considered safe and used in many household products, the 
safety of QACs has become debatable because of a report that 
described reduced reproductive performance in mice coincident 
with the introduction of a disinfectant containing both alkyl 
dimethyl benzyl ammonium chloride and didecyl dimethyl 
ammonium chloride.105 That report described the serendipi-
tous discovery that mice exposed to QACs (ADBAC, n-alkyl 
dimethyl benzyl ammonium chloride, and DDAC, dodecyl 
dimethyl ammonium chloride) in food showed reduced fertil-
ity.105 Further studies showed these 2 quaternary ammonium 
compounds were present in caging for several months after the 
cessation of disinfectant use.163 The investigators reported that 
exposure of C57BL/6J and CD-1 mouse breeding pairs to the 
disinfectant for 6 mo was associated with reduced fertility and 
fecundity: male mice exhibited declines in both sperm concen-
tration and motility; female mice spent significantly less time 
in estrus and showed longer times until the first litter, longer 
interpregnancy intervals, fewer pups per litter, fewer pregnan-
cies, and significant morbidity in near-term dams.162,163 These 
disinfectants have also been associated with changes in sterol 
and lipid homeostasis and neural tube defects in C57BL/6J and 
CD-1 mice neonatal brain.92,100 In humans and female BALB/cJ 
mice, chronic exposure to QACs increases the risk of developing 
asthma and chronic obstructive pulmonary disease.18,56,141,165 
In addition, mixing QACs exponentially potentiates allergic 
responses in the lungs of female BALB/cJ mice.141 QACs can 
also alter rhe immune responses of female BALB/cJ mice, male 
C57BL/6J mice, and other mammals.1,140,191

Both alkyl dimethyl benzyl ammonium chloride and dide-
cyl dimethyl ammonium chloride have been shown to induce 
moderate but significant genotoxic effects in eukaryotic cells at 
concentrations that can be found in wastewaters, indicating that 
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their release into the environment may cause genetic damage 
in exposed organisms.62 Another research group reported that 
the use of didecyl dimethyl ammonium chloride was associated 
with an increase in chromosomal abnormalities in a nonhuman 
primate colony.47 Human exposure to QACs has increased since 
the start of the COVID-19 pandemic, and recent studies show 
the levels of QACs in human blood are significantly higher 
than those present before the pandemic; the detection of QACs 
in human breast milk led to concerns about early exposure of 
nursing infants through breastfeeding.261,262 The disinfectant 
manufacturing industry claims these 2 QACs are safe in rats, 
rabbits, and humans.97,98,152 However, an extensive literature 
supports the fact that QACs persist in the environment and can 
be toxic to humans and many other vertebrate and invertebrate 
species.18,47,56,62,92,100,101,105,118,128,140,141,162,163,165,184,191,256,262 Mouse 
breeding facilities should consider the potential effects of these 2 
specific compounds on their animal colonies and possibly their 
workers after prolonged exposure. Other, less toxic, commonly 
used disinfectants were found to affect the gut microbiota of 
female C57BL/6N mice and should also be carefully evaluated 
before use and described in publications.214

Environmental Enrichment
Environmental enrichment (EE) that allows species-specific 

behaviors is necessary for psychologic well-being and also 
promotes physical activity.181,226 EE that promotes normal 
species-specific behavior is recognized as important for neuro-
science research but that is not always the case for other areas 
of research.8,20,66,76,78

Using cages that are larger than recommended does not ap-
pear to significantly improve mouse well-being as compared 
with housing density.168,244 One study found that larger cages 
did not improve reproductive performance in C57BL/6 mice.244 
Another found that C57BL/6J and BALB/cJ mice housed at 
higher than recommended density from weaning to 5 mo of age 
had significantly reduced growth rates, increased adrenal gland 
size, higher concentrations of fecal corticosterone metabolites, 
and increased anxiety and barbering.176 In contrast, another 
study housed 5 strains of mice (129S1/SvImJ, A/J, BALB/
cByJ, C57BL/6J, and DBA/2J) at the density recommended by 
the Guide and at densities that were approximately 2, 2.6, and 
3 times greater; these mice were evaluated throughout 3- and 
8-mo periods for health and well-being and found that housing 
density had no significant effect on the outcome measures.113,168 
Among 27 traits measured, kidney weight, adrenal weight, and 
heart rate decreased in mice that were housed more densely, but 
values remained within normal physiologic ranges.168

Housing density and the availability of materials that will 
allow the animals to perform the species-specific behavior 
appear to be more important to the animals than cage size. A 
study housed breeding trios of C57BL/6Tac mice in 2 different 
sizes of cages (“standard” and “large,” with 82 and 124-sq-
in floor space, respectively).244 Half of the cages of each size 
contained 4 enrichment items (cotton square, plastic tunnel, 
nylon rings, and running wheel), whereas the other cages had 
no enrichment. Pups raised in large cages weighed less than 
those raised in standard cages. Male pups born in enriched 
cages showed more anxiety-like behavior and less exploration 
than did males born in nonenriched cages. Although being 
raised in enriched or large cages did not clearly improve pups’ 
performance in behavioral tests, enrichment (regardless of cage 
size) did significantly benefit reproductive performance; pups 
from nonenriched cages weighed less than pups from enriched 
cages, and fewer survived to weaning age.244 Another study 

found providing a shelter to group-housed male BALB/cJ 
mice increased longevity and maintained low levels of aggres-
sion, whereas adding a running wheel increased aggression 
as compared with the shelter alone.222 The authors suggested 
shelters should be considered as routine EE for group-housed 
BALB/cJ males.222 Another study found that providing either 
a paper shelter and rolled paper bedding or an igloo with an 
exercise wheel in addition to the shelter in addition to cotton 
nesting material shortened the interlitter interval of BALB/
cAnNCrl mice and increased the number of pups weaned in 
129S2/SvPasCrl mice.245 Another study found that EE provided 
by placing a mouse igloo in the cage activated antitumor im-
munity in 6-wk-old female B6C3F1 transplanted with a tumor 
cell line derived from an ovarian granulosa cell tumor from the 
same mouse strain.223 Another study tested the effect of 2 types 
of EE, nesting material and shelter, on aggressive behavior in 
male BALB/cAnNCRLBr mice after cage cleaning and after a 
1 h of isolation.229 Nesting material reduced aggressive behavior, 
whereas a shelter increased aggressive behavior as compared 
with control housing. Furthermore, mice with shelters gained 
less body weight, drank less, and showed higher corticosterone 
levels, while those with nesting material ate less. The authors 
concluded that the availability of nesting material reduces ag-
gression in male BALB/cAnNCRLBr mice and therefore may be 
beneficial to their physical health and psychologic well-being.229

Some research suggests that rodents maintained under 
vivarium housing conditions are not physiologically or psycho-
logically normal;156,181 they are often metabolically morbid (that 
is, sedentary, obese, and glucose intolerant and suffer from pre-
mature death).8,156,257 Mice housed under standard laboratory 
conditions are sedentary, have continuous access to food, and 
have no environmental stimulation.156 Under these conditions, 
the mice progressively gain weight during their adult life and 
have elevated levels of energy regulatory hormones and factors 
such as glucose, insulin, triglycerides, low-density lipoprotein, 
cholesterol, and leptin.156 Metabolic disruption and obesity also 
contribute to activation of inflammatory processes in metaboli-
cally active sites such as adipose tissue, liver, and immune cells, 
resulting in increased circulating levels of proinflammatory 
cytokines and other inflammatory markers that contribute to ac-
celerated aging and a shorter life span.156,257 Obesity also affects 
the gut microbiome.123 An animal in this condition may be a use-
ful good model for overweight and sedentary human subjects 
but may be inappropriate as a model for humans with normal 
weight.156 On the other hand, exposure to EE improves immune 
function and decreases oxidative-inflammatory processes of im-
mune cells, particularly affecting in older mice and extending 
lifespan as compared with mice housed without enrichment.8 
Concerns have been raised that EE could introduce variability 
into study outcomes, but using a metabolically morbid animal 
could also confound some studies, particularly those involv-
ing neurologic, immunologic, infectious disease, and tumor  
research.123,156,157,228,257

Choosing the most beneficial EE requires careful considera-
tion. EE should promote normal species-specific behavior and 
physical activity, be selected with consideration of the mouse 
strain and sex, and be reported in detail in research publications 
to help increase study reproducibility.226

Group Housing
Mice are social species and as such the Guide recommends 

social housing for mice.113 Social isolation is known to be 
deleterious to the health of social species.29,37,169,183 A change 
from group housing to single housing induces stress and mild 
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immunosuppression in adult CD1 male mice; therefore, if mice 
need to be separated for experimental reasons, this factors 
should be considered.183 Social isolation promotes weight gain, 
increases food intake, increases adiposity, impairs glycemic con-
trol, reduces insulin signaling, exacerbates systemic and adipose 
inflammatory responses, and induces a molecular signature 
characterized by downregulation of several genes involved in 
energy balance, stress response, and neural inflammation in the 
hypothalamus in young C57BL/6 and BALB/c male mice.194 
One study placed a perforated transparent wall that allowed 
visual, acoustic, and olfactory contact between mice in a cage to 
separate paired female C57BL/6JRj mice; separating the pairs 
increased nesting and burrowing behavior as compared with 
singly housed mice but locomotor activity decreased; this was 
considered by the authors to be a short term stress response.93 
Male Brs3tm2Rei/6J that were singly housed at 23 °C had lower 
body temperatures and unchanged metabolic rates as compared 
with group-housed mice.217 In contrast, singly housed female 
Brs3tm2Rei/6J mice increased their metabolic rates and main-
tained a body temperature similar to that of group-housed 
mice.217 Another study found that single housing negatively 
affected trabecular and cortical bone in adult male, but not fe-
male, C57BL/6J mice.169 Another study found that the duration 
of social deprivation affects free-choice morphine consumption 
in C57BL/6J mice.37 Single housing after weaning increases 
cellular apoptosis, myelination defects, synaptic protein loss, 
IL-1β expression, activation of the NFκB pathway, and microglial 
activation in the hippocampus and medial prefrontal cortex in 
male CD1 mice as compared with group-housed mice.29 Male 
B10.BR mice, a model of spontaneous ankylosing enthesopathy, 
do not develop the condition when singly housed.240 Another 
study found that progesterone receptor-expressing neurons in 
the ventromedial hypothalamus are critical for causing territo-
rial aggression in male 129/SvEvTac mice.251 These neurons 
can drive aggressive displays in solitary males independent 
of pheromonal input, gonadal hormones, opponents, or social 
context. However, these neurons cannot elicit aggression in so-
cially housed male mice that intrude in another male’s territory 
unless their pheromone sensing is disabled.251

In contrast to the benefits of social housing, group-housed 
mice, particularly males, often fight, in some cases causing in 
extensive damage. Fighting is more common in some mouse 
strains than others, but it can seriously affect research in which 
it occurs. In addition to fighting, which alone can cause stress 
and immune alterations, the resulting skin trauma causes nu-
merous physiologic changes.65,164 Male mice are territorial by 
nature, and they do not usually share a nest box.39 However, 
under crowded conditions, mice form a social order with ter-
ritories occupied by breeding pairs and groups of subordinate 
males.39 Group-housed low-ranking ddY and C57BL/6 male 
mice have low sperm count and motility or are sterile.136,148,236 
Chronic social defeat stress induces behavioral changes, gonad 
atrophy, and reduced semen quality in male C57BL/6 mice.148 
Obviously, such mice are poor breeders. Even when fighting 
does not occur and a hierarchical order is established, dominant 
and subordinate male mice show profound differences in the im-
mune response.11,12 One study found that dominant male CD-1 
mice shift toward an adaptive compared with innate immunity 
phenotype, whereas subordinate males have higher concen-
trations of plasma corticosterone than do dominant males.145 
Dominant mice show a relatively higher expression of specific 
genes involved in urine production and catabolic processes, 
whereas subordinate mice show relatively higher expression of 
genes promoting biosynthetic processes, wound healing, and 

proinflammatory responses.145 In addition, subordinate male 
CD-1 mice show relatively higher expression of genes facilitat-
ing oxidative phosphorylation and DNA repair; corticosterone 
was negatively associated with genes involved in lymphocyte 
proliferation and activation.145 Chronic social defeat in male 
C57BL/6 mice induces behavioral changes and reduced richness 
and diversity of the gut microbiota, with distinct shifts at the 
level of operational taxonomic units across phyla.19 Defeated 
mice also exhibit sustained alterations in dendritic cell activa-
tion, and transient elevations in numbers of IL-10+ T regulatory 
cells.19 Another study reported that dominant and subordinate 
male BALB/c mice show increased serum corticosterone and 
proinflammatory cytokines during social interactions, but their 
response to pain is affected with social status.3 Repeated social 
defeat enhances neuroinflammatory responses and causes pro-
longed sickness after innate immune challenge in adult male 
C57BL/6 mice.249 Subordinate 6-wk-old male OF1 mice showed 
high levels of interleukin-6 and interleukin-1β expression in 
several cerebral structures and low expression of tumor necrosis 
factor-α in the prefrontal cortex.121 Social stress in 6- to 8-wk-old 
male C57BL/6 mice, in the absence of any immune challenge, 
activates dendritic cells, increases cytokine secretion in response 
to Toll-specific stimuli, and renders dendritic cells glucocorti-
coid resistant.192 Social disruption results in the generation of 
immunogenic dendritic cells that can enhance adaptive immu-
nity to influenza A/PR/8/34 infection in 6- to 8-wk-old male 
C57BL/6 mice.193 Subordinate adult male C57BL/6 mice have 
decreased basal neutrophil oxidative burst, NK cell activity, and 
resistance to B16F10 tumor growth.190,208 Group-housed female 
mice also establish social hierarchies, using fighting, chasing, 
and mounting behaviors to establish social relationships.247 One 
study found that dominant 7-wk-old female CD-1 mice had 
prolonged estrus cycles as compared with subordinate females, 
whereas subordinate females had significantly higher levels of 
basal corticosterone than did dominant females.247 Subordinate 
female CD-1 mice also had elevated hypothalamic expression of 
genes that are known to modulate social behavior moderated 
by the action of estrogen.247 Housing mice in groups should 
be carefully evaluated and monitored based on the sex and 
behavioral characteristics of the strain and should be described 
in detail when reporting studies.

Human Handling
An external factor that has been known for many years but 

has received little attention by the scientific community is the 
effect of human handling on mouse well-being. For example, a 
1990 publication suggested acclimation of animals to handling 
and experimental procedures will produce animals that are 
easier to handle and that react to the experimental stimulus 
rather than to the handler, thus producing higher quality and 
more robust data.205 Another group suggested that routine 
laboratory procedures commonly performed in animals such 
as handling, blood collection, and orogastric gavage could be 
stressful.13 Another study reported that BALB/c, C57BL/6, 
and CD-1 mice of both sexes that were handled by the tail, 
with the body weight supported on the hand or arm, showed 
the least voluntary interaction with the handler.107 By contrast, 
voluntary interaction was longer in all tunnel-handled mice and 
in cupped CD-1 mice and female BALB/c mice. As compared 
with tunnel or cup handling, tail handling also induced more 
urination and defecation during handling, a higher frequency 
of stretched postures, and fewer entries into the open arm 
on an elevated plus maze, suggesting stress and anxiety. The 
authors suggested that using tunnels to handle mice provides 
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an alternative means to accustom mice to being picked up.107 
Another study found that frequent handling of male and 
female C57BL/6NCrl mice by the tail reduced burrowing 
and increased despair-like behavior (measured as immobile 
behavior in forced-swim test) in male mice, whereas females 
seemed unaffected.212 Instead, females exposed to a low fre-
quency of handling showed an increase in fecal corticosterone 
metabolites; this effect was not detected in males.212 Another 
study found that the handling method can affect the phenotype 
in mice used to model disease.182 Picking up mice by the tail, 
with a tunnel, or with open hands was associated with more 
severe symptoms in a mouse model of glomerulonephritis as 
compared with unhandled mice. Female mice handled by their 
tails showed more severe symptoms of glomerulonephritis 
symptoms than did the control group.182 In addition, plasma 
corticosterone was higher in C57BL/6 and BALB/c mice in the 
tail-handled mice group as compared with control mice. The 
authors concluded that handling causes stress in mice that can 
alter disease phenotype in mice.182

Conclusions and Recommendations
The reproducibility of published results is a major issue in 

the scientific community. Investigators, animal care person-
nel, and institutional animal care and use committees should 
be aware of the effects of external factors on animal physiol-
ogy when designing and interpreting experiments. For these 
reasons, publications should include detailed descriptions of 
the animal husbandry conditions so that other research groups 
can replicate the conditions, leading overall to improved study 
reproducibility. Table 2 lists what we recommend as the mini-
mum information for Materials and Methods sections when 
describing mouse husbandry. The list includes and comple-
ments recommendations of the ARRIVE Guidelines,189 the 
Guide for the Care and Use of Laboratory Animals,113 the 2022 NIH 

“Rigor and Reproducibility of Animal Studies: Extrinsic Factors 
Workshop,”173 and a 2020 article titled “Micro- and Macroen-
vironmental Conditions and Stability of Terrestrial Models.”144 
In addition, some extrinsic factors merit further study and may 
require modifications to current housing guidelines for mice 
and, possibly, other research animal species.
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