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Vitamin D deficiency is increasingly prevalent around the 
world, in both industrialized and developing countries. Epide-
miologic studies suggest that as many as 30% to 50% of children 
and adults worldwide are at risk of vitamin D deficiency.35 Hu-
mans obtain most of their vitamin D from exposure to sunlight 
through UVB radiation; however, dietary or oral supplemen-
tation is an important means of maintaining adequate serum 
vitamin D levels in persons who have limited exposure to sun-
light. Many factors may contribute to widespread vitamin D 
deficiency, including inadequate intake of foods rich in vita-
min D and insufficient exposure to sunlight due to residing at 
higher latitudes where UVB exposure is limited or because of 
increased protection against sun exposure through clothing or 
sunscreen.33,52

Vitamin D is classically known for its role in the regula-
tion of bone metabolism, bone remodeling, and calcium 

homeostasis.19,20,32,33 This role is evidenced by the association 
between prolonged vitamin D deficiency and delayed growth 
and rickets in children32 as well as osteoporosis and osteopenia 
in adults.31 Recently, vitamin D deficiency has been associated 
with a wide range of other diseases including asthma,10 multiple 
sclerosis,30 rheumatoid arthritis,41 type 1 diabetes,43,57 heart dis-
ease,9,13 inflammatory bowel disease (IBD),27,63 depression,5,55 and 
tuberculosis.68 In addition, epidemiologic studies suggest that 
vitamin D deficiency increases the risk of developing and dying 
from several cancers including colorectal, breast, and prostate 
cancers.22,62 This association, along with disagreement regarding 
what constitutes adequate serum levels of vitamin D,34,65 has led 
to an increased interest in studying the effects of both vitamin 
D supplementation and vitamin D deficiency on human health.

In humans, IBD is a risk factor for the development of colitis-
associated colorectal cancer (CAC),66 and epidemiologic evi-
dence suggests that low serum vitamin D increases the risk for 
developing both IBD and colorectal cancer.3,4,22,29 The mecha-
nisms by which vitamin D deficiency influence the risk of CAC 
are unknown and are difficult to study in humans, because of 
complicating factors including genetics, varied environments, 
infrequency of CAC formation in IBD patients, and the long 
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time period between IBD onset and CAC development. Con-
sequently, animal models are important tools for studying the 
effects of vitamin D deficiency in CAC. Therefore to study IBD, 
investigators used mice lacking the vitamin D receptor (Vdr) or 
the enzyme that generates active vitamin D hormone (Cy27b1−/− 
mice) as well as dietary vitamin D deprivation in susceptible 
animals. We recently reviewed and summarized many of these 
IBD studies,53 but the effects of vitamin D deficiency on CAC are 
understudied. Because many of the previously published mod-
els of vitamin D deficiency were either short term14,42 or mul-
tigenerational studies with vitamin D-deficient diets intended 
to produce animals with severe calcium imbalances,14 we tried 
to identify a dietary regime in which we could induce chronic 
vitamin D deficiency for as long as 18 wk without causing cal-
cium imbalances or bone density loss to assess whether there is 
a causal relationship between vitamin D deficiency and CAC 
using an animal model of inflammation-associated colon cancer, 
Smad3−/− mice.

The TGFβ signaling pathway is frequently altered in patients 
with IBD and is one of the most commonly deregulated path-
ways in colorectal cancer.7,26 Smad3−/− (Smad3tm1Par/J) mice74 lack 
the transcription factor SMAD3, resulting in defective TGFβ 
signaling. These mice develop colitis and subsequent colon ade-
nocarcinomas when infected with Helicobacter49 or when treated 
with dextran sodium sulfate (DSS).69 Therefore, Smad3−/− mice are 
a useful tool for mechanistic studies of IBD and CAC. Because 
vitamin D supplementation in DSS- or azoxymethane-induced 
IBD and CAC models is protective,17,21 we hypothesized that 
vitamin D deficiency in Smad3−/− mice treated with DSS would 
increase the risk of CAC. Surprisingly, we found that a vitamin 
D-deficient diet protected mice against DSS-induced colon tu-
mors and that these protective effects may be mediated through 
increased cellular proliferation associated with more rapid heal-
ing after epithelial cell damage induced by DSS treatment.

Materials and Methods
Mice and diets. Smad3+/- (129-Smad3tm1Par/J) mice were ob-

tained from The Jackson Laboratory (Bar Harbor ME) and 
bred at the University of Washington to generate Smad3−/− and 
Smad3+/+ (wild type) mice which were subsequently maintained 
as separate lines by using homozygous breeding.49 All mice 
were group-housed (2 to 5 mice per cage) in autoclaved IVC 
(Thoren, Hazleton, PA) with autoclaved corncob bedding (The 
Andersons, Maumee, OH) in an SPF colony free of Helicobacter 
spp. and murine norovirus and screened for pathogens as previ-
ously described.60 Animals were provided with reverse-osmosis 
purified, acidified, autoclaved water in bottles and were fed ir-
radiated purified rodent diets with either 1 IU (5SRH, AIN93M, 
control diet), 0.2 IU (5ACE, low vitamin D diet) or less than 
0.02 IU vitamin D3 per gram diet (5AV4, vitamin D-null diet). 
For the vitamin D-null diet, no vitamin D was added. All diets 
were formulated by Test Diet (St Louis, MO) and based on the 
AIN93M diet, which was formulated for the maintenance of 
rodents’ health.64 Studies to determine the optimal dietary regi-
men to induce chronic vitamin D deficiency were performed us-
ing combinations of all the diets described above. Bone disease 
and IBD–CAC studies were completed with control and vitamin 
D-null diets. Vitamin D levels in the low and null vitamin D 
diets were analyzed by liquid chromatography-mass spectrom-
etry (Covance Madison, WI) and were 0.266 IU vitamin D3/g 
diet and below the limit of detection (<0.02 IU vitamin D3/g 
diet), respectively. Male and female mice (age, 3 to 14 wk) were 
used. Animals of different ages and sex were evenly distributed 
among treatment groups. Animal numbers are described for 

each experiment in the figure legends. All animal procedures 
were approved by the University of Washington IACUC.

Induction of colitis. Animals were fed experimental diets for 
2 wk prior to induction of colitis with DSS (36,000 to 50,000 
MW, MP Biomedicals, Solon, OH). DSS was prepared as a stock 
solution (40%) in autoclaved distilled water and then diluted 
further to a 1.5% solution in autoclaved, acidified reverse-os-
mosis-purified water and placed in autoclaved water bottles. 
Animals were placed on 1.5% DSS in the drinking water for 3 
d, followed by untreated water. This treatment regimen was 
chosen based on our previous studies,69 in which a 7-d treat-
ment time was used to induce colitis and approximately 30% 
cancer incidence. The shorter time frame (3 d compared with 7 
d) was used in the studies presented here because of the concern 
that vitamin D deficiency could exacerbate colitis and reduce 
survival.24,42 Animals were weighed weekly, and health checks 
were performed at least 3 times weekly. Mice were euthanized 
by CO2 asphyxiation and necropsied at designated endpoints 
or when they developed signs of severe disease including 20% 
body weight loss, ulcerated rectal prolapse, diarrhea, hunched 
posture, and dehydration.

Serum vitamin D, calcium, and phosphorus and tissue collec-
tion. For repeated blood sampling, submandibular puncture 
was performed to collect a maximum total volume of less than 
1% of body weight in a 2-wk period. Blood draws ranged from 
50 to 200 µL blood per mouse per time point. At the termination 
of each study, blood was obtained by using cardiac puncture 
immediately after euthanasia by CO2 asphyxiation. Blood was 
placed directly into serum separator tubes (Serum Separator 
Tubes–Gold, BD Biosciences, San Jose California) after collec-
tion. Serum was separated by centrifugation within 2 h of col-
lection and stored at –80 °C until samples were submitted to 
Heartland Assays (Ames, IA) for quantification of 25-hydroxyvi-
tamin D (radioimmunoassay) and calcium and phosphorus lev-
els (colorimetric assays). Mesenteric lymph nodes, cecum, colon, 
and rectum were fixed in 10% phosphate-buffered formalin and 
processed for routine histologic examination. For short-term 
studies (9 and 16 d), the colon was opened longitudinally, and 
feces were removed by gently flushing with PBS. The colon was 
then cut into thirds (proximal, mid, and distal) and fixed in 10% 
phosphate-buffered formalin. After fixation, the sections of the 
colon were cut longitudinally into strips and were embedded on 
edge. For long-term studies, the colon was prepared by using a 
‘Swiss roll’ technique.3 Hindlimbs were fixed in 10% phosphate-
buffered formalin, decalcified, and stained with hematoxylin 
and eosin for routine histologic examination.

Bone mineral density. Bone density was assessed by densitom-
etry in Smad3−/− and wildtype mice after 18 wk of being fed either 
control or vitamin D-null diet. After euthanasia and abdominal 
tissue harvest, bone mineral density was measured by using a 
PIXImus Lunar densitometer (GE Healthcare, Waukesha, WI).

Pathology. Cecum and colon were evaluated for inflamma-
tion, dysplasia, and neoplasia by a board-certified veterinary 
pathologist (PT), who was blind to experimental treatment 
groups. Typhlocolitis scores were assigned by evaluating tis-
sue for severity of mucosal loss, mucosal epithelial changes, 
degree of inflammation, and extent of pathology, as previously 
described.69 Dysplasia was classified according to a previous 
scale,16,69 and only frankly invasive adenocarcinoma scored as 
neoplasia.48,69 The femur and tibia were evaluated for evidence 
of abnormal bone remodeling or osteomalacia.

Evaluation of bromodeoxyuridine (BrdU) incorporation. To 
assess cellular proliferation after DSS administration, mice were 
injected intraperitoneally with BrdU labeling reagent (0.2 mL 
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per animal, Invitrogen, Eugene Oregon) 24 h prior to euthana-
sia. After euthanasia, tissues were collected and processed as 
described earlier. Paraffin-embedded tissues were submitted to 
the Histology and Imaging Core at the University of Washing-
ton (Seattle, WA) for immunohistochemical staining of BrdU. 
Immunohistochemical staining was performed on a Bond Max 
automated immunostainer (Leica Biosystems, Buffalo Grove, IL) 
using associated reagents. Sections were baked for 30 min at 60 
°C and deparaffinized. After antigen retrieval with citrate buf-
fer, pH 6.0 (catalog no. AR9640, Leica) at 100 °C for 10 min and 
blocking with 10% normal goat serum in Tris-buffered saline 
for 10 min, the sections were incubated with rat antiBrdU anti-
body (dilution, 1:2000; catalog no. ab6326; Abcam, Cambridge, 
MA) or rat IgG 2b isotype control (1:1000; catalog no. 553986, 
Pharmingen, San Diego, CA); both antibodies were diluted in 
Bond Primary Antibody Diluent (catalog no. AR9352) and were 
incubated for 30 min at room temperature. Slides were probed 
with rabbit antirat IgG secondary antibody (1:300; catalog no. 
AI-4001, Vector Labs, Olean, NY) for 8 min at room temperature 
and then incubated with antirabbit polymer−HRP–IgG (BOND 
Reagent Detection System, catalog no. DS9800, Leica Biosys-
tems) for 8 min at room temperature. Additional blocking for 
endogenous peroxidase was performed by using a peroxide 
block (3% H2O2; catalog no. DS9800, Leica) for 5 min at room 
temperature, and sections were incubated with 3,3′-diamino-
benzidine for 10 min at room temperature (catalog no. DS9800, 
Bond Mixed Refine DAB Substrate, Leica). Tissues were coun-
terstained with hematoxylin for 4 min followed by 2 rinses in 
water. Slides were then dehydrated through 100% ethanol, 
cleared in xylene, and mounted by using synthetic resin mount-
ing medium and a no. 1.5 coverslip. Colonic epithelial cell pro-
liferation was assessed in 3 segments of the colon (proximal, 
middle, and distal colon). The total numbers of BrdU-positive 
and -negative epithelial cells were manually counted at 20× 
magnification from 7 to 10 randomly selected crypts in a full-
plane section per colon segment to determine the average per-
centage of BrdU-positive epithelial cells per crypt.

Statistical analysis. Prior to statistical analysis, distribution of 
data was assessed for normality. When data were not normally 
distributed, transformation was attempted; when transforma-
tion did not normalize the distribution, nonparametric tests 
were performed. Serum vitamin D, serum calcium, histologic 
scoring, and bone mineral densities were analyzed by using 
either unpaired t or Mann–Whitney U tests. For studies com-
paring more than 2 groups, either parametric one-way ANOVA 
followed by Bonferroni posthoc testing or nonparametric Krus-
kal–Wallis Test followed by Dunn multiple comparison testing 
was used. Cancer and dysplasia incidences were analyzed by 
using the Fisher exact test. Survival was assessed by using a 
log-rank test. All data are presented as mean ± 1 SD. Differences 
with a P value of 0.05 or less were considered significant. All 
statistical analyses were performed by using Prism software 
(version 5.04, GraphPad Software, La Jolla, CA).

Results
Effects of vitamin D-null diet on serum 25(OH)D and serum 

calcium levels in Smad3−/− mice. Chronic severe vitamin D 
deficiency can result in calcium imbalances and bone weak-
ness.2,14,32,33 Because colon tumor development in the Smad3−/− 
mice requires approximately 16 wk, we were concerned about 
inducing severe vitamin D deficiency due to chronically feed-
ing mice a vitamin D-deficient diet. Therefore, we evaluated 
methods to produce a substantial decrease in serum 25(OH)D 
levels without causing severe vitamin D deficiency symptoms. 

Smad3−/− breeders were placed on the low vitamin D diet (0.2 IU 
vitamin D/g diet; containing 80% less vitamin D compared with 
control) after the birth of a litter through weaning of that litter. 
The pups were then weaned onto the low vitamin D diet and 
fed the diet for 6 wk. Unexpectedly, the low vitamin D diet regi-
men did not result in lower serum vitamin D or serum calcium 
levels compared with mice fed a control diet for 6 wk (Figure 1 
A and B).

Because 0.2 IU vitamin D/g diet did not result in the desired 
decrease in circulating serum vitamin D levels, Smad3−/− mice 
were then fed a diet formulated without vitamin D (vitamin 
D-null diet). After 2 wk on the diet, animals fed vitamin D-null 
diet had lower serum 25(OH)D compared with mice fed the 
control diet (Figure 1 C, P < 0.0001). Serum vitamin D levels 
continued to decrease from week 2 to week 4 on this diet, dem-
onstrating that a vitamin D-null diet is required to significantly 
decrease serum vitamin D levels in Smad3−/− mice (Figure 1 C). 
Because our goal was to induce vitamin D deficiency over an 
extended period without causing hypocalcemia complications, 
we then switched animals to a low vitamin D diet after feeding 
the vitamin D-null diet for 4 wk. Surprisingly, serum 25(OH)D 
levels of mice fed low vitamin D diet rebounded within 3 wk 
of switching to low vitamin D diet and reached similar levels 
to those of mice fed a control diet (Figure 1 C). Serum calcium 
levels remained unchanged on both the vitamin D-null and low 
vitamin D diets (Figure 1 D). These data demonstrate that a diet 
deficient in vitamin D is necessary to maintain low serum vita-
min D levels, whereas 0.2 IU vitamin D/g diet (1/5 of control 
level) is insufficient to induce or maintain vitamin D deficiency 
in Smad3−/− mice.

Next we tested whether the vitamin D-null diet can be used 
for a long-term study without causing severe vitamin D defi-
ciency and associated pathology in mice. We hypothesized that 
weanling and young adult animals, which are in rapid phases 
of growth, would be most susceptible to vitamin D deficiency. 
Therefore, 3-wk-old (weanling) and 6-wk-old (young adult) 
Smad3−/− mice were fed the vitamin D-null diet for 18 wk. Blood 
samples were collected at 2- to 3-wk intervals to measure serum 
25(OH)D and serum calcium. Serum 25(OH)D levels were sig-
nificantly lower in mice fed the vitamin D-null diet compared 
with mice fed the control diet after 2 wk on the diets (P < 0.01 
for adults, P < 0.001 for weanlings) and dropped below the limit 
of detection after 9 wk on the vitamin D-null diet (Figure 2 A). 
However, the vitamin D-null diet did not cause changes in se-
rum calcium (Figure 2 B) or body weight (Figure 2 C) compared 
with the control diet throughout the 18-wk experimental period. 
In addition, serum phosphorus levels, measured after 18 wk of 
diet feeding, were not different between groups (Figure 2 D). 
These observations were not specific to Smad3−/− mice, given 
that the vitamin D-null diet also reduced serum 25(OH)D levels 
(P < 0.0001) without causing changes in serum calcium, serum 
phosphorus, and body weight in wildtype mice (Figure 3).

Effect of vitamin D-null diet on bone disease in Smad3–/– and 
wildtype mice. Because vitamin D deficiency can significantly 
increase bone resorption, resulting in the development of rick-
ets particularly in growing animals, mice were evaluated for 
evidence of bone disease through bone mineral density scan-
ning and histology. After 18 wk on the vitamin D-null diet, both 
Smad3−/− mice and wildtype mice showed no evidence of cortical 
bone loss or abnormal bone remodeling according to densitom-
etry (Figure 4 A and B) and no histologic abnormalities (data not 
shown). These data are consistent with our findings that serum 
calcium levels do not change in the Smad3−/− or wildtype mice 
fed a vitamin D-null diet, suggesting that calcium homeostasis 
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can be maintained despite feeding of a vitamin D-null diet for a 
prolonged period (18 wk).

Effect of vitamin D deficiency on DSS-induced IBD and cancer 
in Smad3−/− mice. Using the vitamin D-null diet, we sought to 
determine whether chronic vitamin D deficiency exacerbated 
DSS-induced colitis and CAC in Smad3−/− mice. Mice were 
placed on either control or vitamin D-null diet for 2 wk prior 
to treatment with DSS and were followed afterward for 16 wk, 
which is sufficient time for CAC development in this model.69 
Therefore, at the time mice were treated with DSS, mice should 
have had 1.5- to 3-fold lower serum 25(OH)D levels compared 
with mice on control diet (Figures 1 C and 2 A). Unexpectedly, 
as assessed by survival, dysplasia, and tumor incidence, the 
severity and incidence of disease were lower in mice fed the 
vitamin D-null diet compared with mice fed the control diet. 
Survival was significantly (P = 0.009) improved in animals 
treated with DSS in drinking water and fed the vitamin D-null 
diet (Figure 5 A) compared with DSS-treated mice fed the con-
trol diet and was not significantly different (P = 0.2337) from 

vitamin D-deficient Smad3−/− animals given water only. Along 
with improved survival, the incidence of invasive colon carci-
noma was significantly lower (4.4-fold, P = 0.0007, Figure 5 B) in 
DSS-treated mice animals fed a vitamin D-null diet compared 
with those fed a control diet. In addition, typhlocolitis scores 
in DSS-treated mice were significantly (P < 0.001) lower in mice 
fed the vitamin D-null diet compared with those fed the control 
diet (Figure 5 C). Finally, the incidence (31% compared with 
61%, P = 0.0014) and severity (P < 0.01) of colonic dysplasia in 
DSS-treated mice were lower in mice fed the vitamin D-null diet 
compared with those fed the control diet (Figure 5 D).

To determine whether the protective effects of vitamin D-de-
ficiency against DSS-induced colitis and CAC were associated 
with the roles that vitamin D plays in cell cycle regulation and 
epithelial cell proliferation,8,37,61 we examined colonic inflamma-
tion and epithelial cell proliferation in DSS-treated Smad3−/− mice 
during the early inflammatory phase after DSS treatment. Two 
specific time points were chosen for the evaluation of typhloco-
litis: 9 d after DSS treatment, when clinical disease peaks, and 16 d 

Figure 1. Low vitamin D diet does not decrease serum vitamin D or serum calcium levels in Smad3−/− mice. Serum 25(OH)D and calcium were 
evaluated in 2 dietary regimens involving low vitamin D diet. In one regimen, (A) serum 25(OH) D and (B) serum calcium were measured after 
animals were fed control (n = 4) or vitamin D low (n = 5) diet for 6 wk starting at weaning. In the other regimen, (C) serum 25(OH)D and (D) 
serum calcium were measured at weeks 2, 4, 5, and 7 from study initiation in mice that received vitamin D-null diet for 4 wk and then were 
switched to low vitamin D diet compared with those on control diet for the duration of the study. δ indicates the time point at which mice on 
vitamin D-null diet in the null→low diet treatment group were switched to the low vitamin D diet. Mean and SD are indicated on dot plots. 
Error bars on bar graphs are SD. *, P < 0.05; †, P < 0.01; ‡, P < 0.001; §, P < 0.0001 (Student’s t test) between groups are indicated. Comparisons 
were made between control compared with null→low group and also between null→low diet groups before and after the diet switch at 4 wk.
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afterward, when healing from the DSS-induced damage should 
be evident.69 DSS-treated mice demonstrated higher typhlocolitis 
scores (not significant) compared with animals maintained on 
no-DSS water regardless of the diet at day 9 after DSS (Figure 6 
A). However, at day 16 after DSS treatment, typhlocolitis scores 
were significantly lower in DSS-treated mice fed vitamin D-null 
diet compared with DSS-treated control-diet fed animals (Figure 
6 B, P < 0.05). These data suggest that regardless of diet, mice de-
velop similar degrees of typhlocolitis initially after DSS treatment, 
but the inflammation resolves more quickly in animals fed the 
vitamin D-null diet. To determine whether typhlocolitis resolves 
more quickly due to changes in epithelial cell proliferation, we 
evaluated epithelial cell proliferation by BrdU uptake. Mice fed 
vitamin D-null diet had a higher incidence of epithelial cell pro-
liferation, demonstrated by increased BrdU staining at 16 d after 
DSS treatment (Figure 6 C, P = 0.0257) as compared with mice 
fed control diet. These data suggest that the decreased colitis and 
cancer in Smad3−/− mice fed vitamin D-null diet could be due in 
part to increased epithelial cell proliferation, resulting in faster 
reepithelialization of the colon after DSS treatment.

Discussion
Vitamin D deficiency has been associated with an increased 

risk for IBD and colorectal cancer in human epidemiologic stud-
ies3,4,22,29 and in animal models.6,11,38,42 Animal models have been 
useful for investigating the role of vitamin D in IBD because 
mechanisms behind the associative studies in humans cannot be 
assessed precisely under controlled genetic and environmental 
conditions. Furthermore, in animal models, it is easier to mod-
ify and monitor vitamin D intake and to determine whether the 
changes result in altered vitamin D status by analyzing serum 
and tissues. This situation allows investigators to determine how 
variations in systemic vitamin D over time (and under different 
stages of disease development) can impact disease outcomes.

To investigate the role of chronic vitamin D deficiency on 
IBD/CAC, we investigated diets containing various levels of 
vitamin D in Smad3−/− mice, a model of IBD–CAC. Our goal 
was to achieve significantly decreased levels of serum vitamin 
D without causing hypocalcemia and associated bone disease. 
For this purpose, we measured 25(OH)D, which is the prod-
uct of the first of 2 hydroxylation steps needed to generate 

Figure 2. Vitamin D-null diet significantly decreases serum vitamin D levels without altering serum calcium, weight gain, or serum phosphorus 
in Smad3−/− mice. (A) Serum 25(OH)D and (B) serum calcium in Smad3−/− mice fed control diet (n = 5, 6-wk-old mice) or vitamin D-null diet (n = 5, 
3-wk-old mice [weanling] and n = 5, 6-wk-old mice [adult]). Body weight was measured weekly and (C) average body weight (in grams) is plot-
ted for each group. (D) Serum phosphorus was measured after 18 wk on diet (n = 4 per group). Error bars are SD. One-way ANOVA (parametric) 
followed by a Bonferroni post hoc test for multiple comparisons. †, P < 0.01; ‡, P < 0.001; §, P < 0.0001 compared with control.
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the biologically active form of vitamin D, 1,25-dihydroxyvi-
tamin D.12,73 The active form is not suitable as a predictor of 
overall vitamin D nutritional status as its production is tightly 
regulated20 and its half-life is relatively short (4 to 20 hr). We 
found that decreasing the dietary vitamin D level to 1/5 that 
of the control diet, AIN93M, did not change serum vitamin 
D levels in mice. AIN93M diet, which has been determined 
to be sufficient to support growth and maintenance of health 
of rodents,64 contains 1 IU vitamin D/g diet. Therefore, we 
next tested a vitamin D-null diet that was identical in formula-
tion to AIN93M except that vitamin D was removed from the 
vitamin mixture added to the diet. This vitamin D-null diet 
decreased serum vitamin D levels in Smad3−/− mice without 
causing deleterious effects involving bone and calcium homeo-
stasis up to 18 wk.

We were surprised to find that in our hands, the low vitamin 
D diet (0.2 IU vitamin D/g) was not effective at inducing vita-
min D deficiency despite similar regimens being used in other 
models.23,51 One group has demonstrated that feeding adult FVB 
mice diets containing either 0.25 or 0.05 IU vitamin D/g were ef-
fective at significantly reducing serum 25(OH)D levels by 4 wk 
on the diet compared with mice fed a control level of vitamin D 

(1.5 IU/g), with serum 25(OH)D levels remaining steady from 
approximately 1 mo after diet change until as long as 4 mo.51 
Similar results were observed in C57BL/6 mice.23 In contrast, we 
did not observe decreased serum 25(OH)D levels in mice fed a 
0.2 IU vitamin D/g diet even after 6 wk on diet. Furthermore, 
our ‘low vitamin D’ diet increased serum 25(OH)D in mice that 
had previously been fed a null diet to levels similar to those 
of control diet-fed mice (Figure 1 C). Several differences might 
explain the discrepancies between our studies and others.23,51 
Although all of the diets were custom-made, purified diets, they 
were all prepared by different manufacturers with slightly dif-
ferent nutrient compositions. In addition, the analysis of the 
dietary vitamin D concentration as well as the serum 25(OH)D 
concentrations were performed by using different methodolo-
gies, thus making direct comparisons between the studies dif-
ficult. Also, our studies used mice on a 129 background whereas 
the other studies used mice on FVB and C57BL/6 backgrounds. 
There are few data comparing vitamin D absorption and me-
tabolism across different strains of mice; however, it is known 
that differences in mouse strain can affect serum analytes even 
in age- and sex-matched healthy mice.58 Together, our data em-
phasize the importance of verifying vitamin D concentration 

Figure 3. Vitamin D-null diet significantly decreases serum vitamin D levels without altering serum calcium, weight gain, or serum phosphorus 
in wildtype mice. (A) Serum 25(OH)D and (B) serum calcium in wildtype mice fed control (n = 5, 5- to 8-wk-old mice) or vitamin D-null diet 
(n = 6, 5- to 8-wk-old mice). Body weight was measured weekly, and (C) average body weight (in grams) is plotted for each group. (D) Serum 
phosphorus was measured at 18 wk after diet initiation. Error bars indicate 1 SD. †, P < 0.01 (Mann–Whitney U test); §, P < 0.0001 (Student t test) 
compared with control.
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in the diet as well as verifying serum vitamin D status in each 
animal model to ensure that the intended effects of the dietary 
treatment are reached within a study.

Other published studies using vitamin D-deficient diets are 
either short-term14,42 or multigenerational studies with vitamin 
D deficient diets intended to produce animals with severe cal-
cium imbalances.14 In our studies, we found that a vitamin D-
null diet can be used to induce chronic vitamin D deficiency for 
as long as 18 wk without causing calcium imbalances or bone 
density loss. It is likely that sufficient dietary calcium (0.5%) 
in our diet compensated for the decreased calcium absorption 
typically seen with decreased serum vitamin D levels, because 
it has been shown that providing increased calcium in the diet 
can maintain normal calcium levels in mice lacking vitamin D 
receptor signaling in the gastrointestinal tract.45 Our data agree 
with the findings in a recent report that a vitamin D-null diet 
could be used to induce chronic vitamin D deficiency in geri-
atric mice without causing serum calcium imbalances or osteo-
malacia.71 In that report, the authors suggest that their findings 
in geriatric mice might differ depending on the age and growth 
rate of the mouse; however, our data in young mice showed that 
a vitamin D-null diet can be used to induce chronic vitamin D 
deficiency in this age group of mice.

DSS is commonly used to model IBD, because it effectively 
induces colitis in a variety of mouse strains50 by directly dam-
aging the colonic epithelium resulting in mucosal erosions 
and loss of epithelial cell barrier function.15,18,69 Our previous 
work demonstrated that Smad3−/− mice are more susceptible to 
DSS-induced colitis compared with wild type mice, likely due 
in part to impaired mucosal healing and abnormal epithelial 
proliferation.59,69 This situation, combined with immune ab-
normalities in Smad3−/− mice,49 likely leads to the development 
of chronic inflammation, predisposing these animals to de-
velop subsequent inflammation-associated colon cancer.69 Un-
expectedly, we found that vitamin D-deficient Smad3−/− mice 
treated with DSS had improved survival, decreased dysplasia, 
and significantly fewer colon tumors compared with control 

diet-fed animals, thus contrasting with previously published 
studies in other strains of mice. Others have demonstrated that 
vitamin D deficiency exacerbates DSS colitis in C57BL/66,42 and 
Il10−/− mice.11 In addition, vitamin D receptor (Vdr)−/− mice are 
more susceptible to DSS-induced colitis,25,40 whereas expres-
sion of transgenic VDR in epithelial cells of Vdr−/− mice par-
tially rescued the mice due to decreased rates of epithelial cell 
apoptosis.46 In a study evaluating colitis and CAC, Vdr−/− mice 
developed increased colon tumor burdens compared with 
wildtype controls after treatment with azoxymethane com-
bined with multiple rounds of DSS.17 However, not all studies 
demonstrate an exacerbating effect associated with vitamin D 
deficiency. Recent work28 indicates no differences in histologic 
or endoscopic disease between vitamin D sufficient or defi-
cient C67BL/6 mice after treatment with DSS. The differences 
between our findings and those just outlined could be due 
to differences in the background strain of the mice used, DSS 
concentration, duration of treatment, or the use of the Smad3−/− 
model with dysregulated TGFβ signaling that can intersect 
with VDR signaling. Compared with these other studies, we 
used a lower concentration of DSS for a shorter duration be-
cause we have found that Smad3−/− mice have high suscep-
tibility and mortality to DSS-induced damage.69 In addition, 
vitamin D deficiency may influence IBD–CAC variably even in 
the same mouse model when different inflammatory triggers, 
such as DSS compared with Helicobacter infection, are used for 
colitis induction. We previously used a vitamin D-null diet in 
the Helicobacter-induced colitis and CAC in Smad3−/− mice and 
observed that disease neither exacerbated or improved by vita-
min D deficiency.54 Interestingly, recent work in a spontaneous 
colon cancer model, F344-ApcPirc/+ rats, found protective effects 
associated with vitamin D deficiency, noting a decreased inci-
dence of colon tumors in vitamin D-deficient rats.36 However, 
vitamin D deficiency had no effect on tumor incidence in ACI 
× F344-ApcPirc/+ rats.36 Future studies are needed to help un-
derstand mechanisms behind the variable effects of vitamin 
D deficiency on IBD/CAC by closely evaluating the systemic 

Figure 4. Vitamin D-null diet does not alter bone density in Smad3−/− or wildtype mice. Total body bone mineral density (BMD) scanning was 
performed after euthanasia of Smad3−/− and wildtype mice at 18 wk after diet initiation. (A) Smad3−/− mice fed control diet (n = 5, 6-wk-old mice) 
or vitamin D-null diet (n = 5, 3-wk-old mice [weanling] and n = 5, 6-wk-old mice [adult]) and (B) wildtype mice fed control (n = 5, 5- to 8-wk-old 
mice) or vitamin D-null diet (n = 6, 5- to 8-wk-old mice). Error bars indicate 1 SD. No significant differences according to Kruskal–Wallis testing.
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compared with localized effects of dietary vitamin D insuf-
ficiency over time.

Our data suggest that decreased dietary vitamin D leads to 
an increase in colonic epithelial cell proliferation after DSS in-
jury that compensates for the impaired mucosal healing pres-
ent in the Smad3−/− mice and provides protection from future 
CAC in this setting. Similarly, others have shown that Vdr−/− 
mice have increased colonic epithelial cell proliferation,37 and 
increased epithelial proliferation promotes wound repair after 
DSS colitis.39,72 In addition, in vitro assays have demonstrated 
that increased concentrations of 1,25-dihydroxyvitamin D are 
effective at decreasing the proliferation of multiple cell types, 
including epithelial cells, fibroblasts, keratinocytes, and pros-
tate cells.8,61 Therefore, it may be possible that colonic epithe-
lial cells in vitamin D-deficient Smad3−/− mice proliferate faster 
after DSS treatment due to reduced levels of active vitamin 
D. Although vitamin D has been shown to directly regulate 
genes involved in cell cycle regulation and cell proliferation, 
including p21waf1, p27, and p53,67 other factors could interact 
with or act independently of vitamin D signaling to influence 
cell division rates in colonic epithelium, such as response to 
calcium levels,1 response to epithelial damage or wound repair 

or barrier defects,47,70 increased apoptosis,56 and increased ex-
posure to cytokines that encourage or discourage epithelial 
cell proliferation.44,56 Future studies comparing the presence 
of apoptotic cells compared with actively dividing cells and 
analyzing the expression of tight junction proteins and inflam-
matory mediators in response to vitamin D deficiency at early 
time points during disease development would aid in under-
standing how vitamin D deficiency could influence colitis and 
CAC in our model.

Although the protective effect of decreased vitamin D and 
increased proliferation of the epithelium associated with de-
creased tumor incidence may be specific to Smad3−/− mice, it 
does raise intriguing possibilities of targeting vitamin D meta-
bolic pathways or VDR signaling to modulate IBD and CAC, 
given that the TGFβ pathway is commonly mutated in patients 
with IBD as well as colon cancer.7 Our findings suggest that tar-
geted or localized vitamin D deficiency by blocking VDR signal 
or preventing synthesis of active vitamin D in the colon could 
potentially be useful to prevent or treat inflammation-associated 
colon cancer. Identification of the protective mechanisms at play 
in vitamin D deficiency in our model could potentially provide 
new therapeutic targets for IBD and CAC.

Figure 5. Vitamin D-null diet protects against DSS-induced colitis and colon cancer in Smad3−/− mice. Smad3−/− mice were fed vitamin D-null or 
control diet and treated with DSS in drinking water (n = 58 mice per group) or with untreated water (n = 20) and followed for disease devel-
opment until 16 wk after initial DSS treatment, a duration sufficient for CAC development in this model. (A) Survival was compared through 
log-rank testing. Cecum and colon were assessed histologically at endpoint for evidence of (B) neoplasia, (C) typhlocolitis, and (D) dysplasia. 
Typhlocolitis and dysplasia scores were compared through Kruskal–Wallis testing followed by Dunn posthoc testing for pairwise comparisons. 
Means are indicated on dot plots; error bars on bar graphs indicate 1 SD. Dysplasia incidence and neoplasia incidence were compared through 
Fisher Exact testing. †, P < 0.01; ‡, P < 0.001; §, P < 0.0001.
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