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The scientific study of pain in humans and animals and its 
underlying mechanisms have been the subject of extensive 
research for over 200 y.109 Despite this, theories underpinning 
our current understanding about pain signal transduction and 
related mechanisms were developed only 50 y ago, with Mel-
zack and Wall’s proposal of a gate control theory to describe 
the mechanism of spinal cord transmission and regulation of 
pain signaling (reviewed by82,89). With improved understanding 
about the underlying mechanisms of pain came improved rec-
ognition of pain as a disorder in its own right,113 and a desire for 
human clinicians to improve assessment and treatment of pain 
in their patients.82 Development of assessment methods for pain 
in domestic animals mirrored those in human species, although 
it was not until the late 20th century that pain management of 
veterinary species and research animals were prioritized by vet-
erinarians and regulatory agencies. Today, it is recognized that 
accurate identification and assessment of pain are essential for 
refining care of research animals undergoing painful procedures 
and improving the validity of translational pain research.90,108 
Animal ethics committees and regulatory authorities require 
researchers and laboratory animal veterinarians to assess and 
manage pain in animal subjects. However, even today, this 

is seldom a straightforward task—particularly for research 
rodents.138

Defining Pain and Nociception
Pain and nociception are often confusingly described and 

poorly defined, leading to their incorrect usage or the assump-
tion that they are synonyms. For clarity throughout this paper, 
the definitions of the International Association for the Study of 
Pain54 are used:

Pain: “An unpleasant sensory and emotional experience as-
sociated with actual or potential tissue damage, or described in 
terms of such damage.”

Nociception: “The neural process of encoding noxious stim-
uli.” This process may have autonomic (for example elevations 
of heart rate or blood pressure) or behavioral (for example with-
drawal reflex or more complex nocifensive behavior, such as 
licking or rubbing) consequences. Importantly, nociception can 
occur without the sensation of pain.”

Challenges to Observing and Monitoring Pain 
in Laboratory Rodents

Because animals are nonverbal, assessment of pain involves 
observing surrogate measures of pain and signs of animal well-
being and then making a judgment about the animal’s condition 
based on the interaction between these 2 sets of data. Assess-
ing the presence or severity of pain from only 2 subjective 
measures provides only an approximation of a painful state. 
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Many commonly used measures of pain are indirect, includ-
ing activity, heart rate, blood pressure, and body weight, all of 
which can be altered by factors other than pain, thus confound-
ing their interpretation. Furthermore, many measures require a 
sound knowledge of species-typical behavior for accurate inter-
pretation. Even in humans, the primary factors driving the ex-
perience of pain; that is, motor, sensory, and psychologic, were 
rarely studied or assessed together until recently.13 This means 
that approaches used for the assessment of pain in laboratory 
rodents may be suboptimal, and thus multiple measures of pain 
assessment should be used together to improve accuracy.153

To further complicate monitoring pain in laboratory rodents, 
a significant confounding variable may be the sex of the indi-
vidual who is assessing the animal. Direct exposure of mice 
and rats to men or male scent increased defecation rates in 
control animals of both sexes, as well as decreasing perceived 
pain intensity, as detected by various standard assays, such as 
tail and paw withdrawal tests and von Frey fiber thresholds 
(see Figure 1).131 This sex-based stress-induced analgesia may 
be responsible for conflicting opinions about animal wellbeing 
in studies with painful outcomes.

Finally, because rodents are nocturnal, more accurate pain as-
sessments would be likely if animals were monitored for pain 
during the most active times in their circadian cycle. Nocicep-
tion is most acute in the dark phase of their day/night cycle,20,86 
concurrent with the time of their lowest responsiveness to opiate 
analgesics,105 and peak activity of inflammatory signaling path-
ways, as controlled by their internal molecular clocks.16 Animal 
monitoring and assessment during the dark phase would require 
widespread changes in practice, including housing management, 
and there are practical difficulties in achieving this.

Pain Assessment and Monitoring Methods in 
Laboratory Rodents

Many methods have been proposed for assessing and moni-
toring pain in mice and rats (see Figure 1 for an overview of 
methods), including examining the patient directly and mak-
ing a subjective assessment of animal comfort based upon hair 
coat, posture, general activity level, and degree of alertness.1,65 
Unfortunately, very simple assessment methods may fail to de-
tect subtle changes in animal behavior and comfort, and a non-
standardized approach to pain assessment is likely to result in 
wide variations of opinion between individuals looking at the 
same group of animals. This has been demonstrated to occur 
for larger animals, such as cattle and sheep, and is not expected 
to be any different for much smaller animals, such as mice and 
rats, which are harder to observe.64,140 Handling and restraint 
increase the potential for stress-induced analgesia, so pain as-
sessments that can be conducted with unrestrained animals are 
preferred. However, the question remains: how should the cli-
nician and researcher evaluate pain monitoring methods in the 
face of such a wide array of pain assessment techniques?

Validation of Assessment Methods
Authors of papers that include a pain assessment scale often 

use the term ‘validated’ to claim that the scale can be relied 
upon to measure the outcome of interest. Unfortunately, this 
is often not the case. The scale may have never been formally 
validated, the context (for example, the specific pain model) in 
which it was originally developed may differ from the subse-
quent clinical use, or the scale may have been modified in some 
way by other users, such that the effect(s) of this change on scale 
validity are unknown. In general, pain scale development and 

validation should be viewed as a continuum rather than a dis-
crete process. For example, it is common to assume that a scale 
developed in one strain of mice or rats under specific conditions 
and applied by a particular group of users will perform equally 
well under different circumstances. This assumption that scale 
performance is a fixed property is an oversimplification and 
fails to account for the multitude of factors affecting scale func-
tion, and therefore, makes it difficult to compare studies.

An overview of the key steps in scale validation are briefly 
presented as a background to the discussion of different pain 
assessment methods. The key concepts of scale development 
are validity and reliability. For more in-depth coverage of this 
topic, interested readers are referred to the review by Streiner 
and colleagues.136

A simple definition of validity is: does a scale measure what 
it claims to measure?103,136 It is important to know if the items 
making up a scale are all necessary and important (face and con-
tent validity), how a scale compares to a gold standard should 
one exist (criterion validity), and whether the scale can identify 
meaningful changes (construct validity).

Content validity is concerned with the scale items and 
whether they fully capture the measure of interest. Content 
validity is frequently established through face validity, which 
uses the opinions of experts to determine the scale items. Ini-
tially, it is often useful, to begin with, a large number of poten-
tial items, reducing the list based on discussion and consensus. 
More formal methods to assess utility of potential items include 
evaluating the relationships between items and the effect of item 
omission on scale performance.

Criterion validity is the comparison of a scale with an accepted 
standard. In adult humans capable of verbal communication, 
the self-report is usually considered the ‘gold standard’. In con-
trast, where self-reporting is impossible, such as in animals and 
neonates, it is often argued that criterion validity cannot be per-
formed. Therefore, it is common to employ construct validity as 
a substitute for criterion validity in pain scale development in 
animals.Construct validity is experimental testing of a hypothesis 
based on what is known (or assumed) about a construct like pain, 
anxiety or depression. An example of this is the assumption that 
giving an analgesic will reduce the pain scale score or that pain 
scale scores will increase immediately after surgery and return to 
baseline as inflammation subsides.90 Because construct validity 
is only limited by the number of hypotheses that can be gener-
ated, it should be viewed as an ongoing rather than static pro-
cess. Additional useful components of validity are sensitivity and 
responsiveness. These terms describe the ability of a scale to de-
tect a change, and although they are often used interchangeably, 
sensitivity can be considered detection of any change whereas 
responsiveness is detection of an important or relevant change.75

Reliability is the amount of error associated with a measure-
ment scale; that is, the reproducibility of the results.143 For a scale 
to be useful, this statistical error should be appropriate for the 
encountered range of observations. For example, a weight scale 
for use with cats with accuracy reported to ± 0.1 kg would be ac-
ceptable but would be of no use for weighing rats. Similarly, the 
measurement error of a pain assessment scale should be smaller 
than the range of scores reflecting an important change in pain 
level. This error can be assessed for various situations, including 
differences between different users (interrater reliability), and 
differences within the same user (intrarater reliability). Com-
monly employed measures of reliability are the intraclass corre-
lation coefficient (ICC) and κ coefficient. For both measures, the 
higher the level of correlation observed the better the reliability. 
As reliability decreases, the harder it becomes to detect small 
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differences (the user must decide if these differences are worth 
trying to detect). Therefore, reliability sets the limit for validity, 
and if measurement error is large, it will not be possible to de-
tect important differences. Importantly, reliability does not refer 
to the scale, as in the reliability of the scale, but rather, to the re-
sults obtained with the scale when applied in a given situation.

As this discussion indicates, describing a scale as validated is 
both misleading and an oversimplification. Validity and reliability 
are all limited by the population and context in which the testing 
was performed. Therefore, the best that can be said is that a scale is 
valid for the population studied within a defined context.136

Use of Algesiometry Assays for Assessment  
of Pain

Algesiometry assays are standardized tests of evoked re-
sponse reflexes that can be used as models of nociception in ro-
dents and other species and to determine the potency of a given 
analgesic agent or regimen.8,71 Examples include the tail-flick, 
hot plate, acetic acid writhing, and von Frey tests (see Figure 1). 
During research, these tests are widely used because the assays 
are relatively simple to perform, inexpensive to run, and many 
can be automated.94,107 While they have been used for decades to 

Figure 1. Common methods to assess analgesic efficacy in rodents.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-06-01 via free access



Vol 69, No 6
Comparative Medicine
December 2019

454

assess aspects of nociception,36 these assays likely represent an 
oversimplification of the condition of pain as it is understood 
today. For example, classic algesiometry assays all require the 
observer to remove the mouse or rat from its home enclosure 
and manually restrain them prior to initiating the test which can 
result in stress-induced analgesia. The results from these tests 
are sex- and strain-dependent, and are only effective in reflect-
ing changes in a limited number of chronic pain models, for 
example, paw swelling but not chronic back pain or migraines. 
Likewise, interpretation of the results can be confounded by 
many parameters, such as impaired animal locomotor ability, 
rapid learning of the expected test response by the animal, 
observer sex and its influence on animal behavior,131 and social 
housing conditions and interanimal cues.68

More recently developed tests for assessing spontaneous pain 
in mice and rats are likely to be of increased utility, and many 
of these are discussed in subsequent sections below. These in-
clude behavioral assessments of nonspecific or specific activi-
ties (ethograms), ultrasonic vocalizations, facial expressions of 
pain (that is, pain grimacing), burrowing, open field tests (in 
which more anxiety and less exploration are seen in a number of 
animal models of pain), free-choice thermal preference assays, 
voluntary wheel running tests, conditioned place preference 
tests, and conditioned place avoidance tests (for a review, see 
reference 138 ). While more difficult to design, and interpret, 
these tests are potentially more sensitive and specific measures 
for detecting pain in mice and rats. As novel methods for assess-
ing pain are developed, it will be necessary to characterize their 
relationship with traditional (evoked) measures to determine 
their utility.

Behavioral Assessments of Pain
When implementing any metric for assessing pain in rodents, 

it is imperative to first understand the baseline for the particu-
lar patient population, inclusive of species, strain, sex, age, and 
health status of the animals. Also, factors that could potentially 
confound the assessments chosen should be considered, such 
as the presence of a human observer. Additional confounders 
may stem from the experiment itself, such as residual effects 
of anesthetics or debilitation to motor function or cognition as 
a component of the model. Because of the long list of variables 
that can impact pain assessments, a triangulation approach, us-
ing multiple methods that assess various components of the 
pain experience, such as, evoked, nonevoked, physiologic, clini-
cal assessments may be needed.

Ethogram Assessments
The presence of an observer is an often underappreciated con-

founder to animal welfare assessments. Prey species have a nat-
ural drive to suppress pain behaviors in the presence of another 
animal, especially if it is perceived that it could pose a threat. 
Mice demonstrate the ability to suppress grimacing and guinea 
pigs have been shown to suppress pain-specific behaviors in the 
presence of a human observer.85,102 Therefore, methods that can 
be conducted indirectly, without the presence of a human, such 
as via remote video, can be particularly helpful for pain assess-
ments in rodents.

Understanding the impact of anesthetics and analgesics on pain 
assessments is also critical for accurate identification of unallevi-
ated pain. Depending on the species of the patient, anesthetic and 
analgesic drugs may suppress or enhance measurements of post-
procedural pain. For example, buprenorphine can cause sedation 
resulting in a decrease in ambulation in guinea pigs, and hyper-
activity in mice; in both instances behaviors observed in pain-free 

mice, such as rearing and grooming, are reduced.23,49,79,84,102,119,151 
Interestingly, buprenorphine does not influence mouse grimace 
scores, whereas isoflurane can increase grimace scores in both 
mice and rats, due to unknown mechanisms.84,85 Given the vary-
ing direct effects of anesthesia and analgesia on pain assessments, 
it is helpful to understand the half-life of administered drugs and 
what effects they will have on the assessments used. Comparing 
known effects of anesthetics and analgesics on the postproce-
dural condition can highlight pain-specific changes in behaviors. 
If evaluating change from baseline or change from an anesthesia/
analgesia condition, a smaller change indicates fewer differences 
between the nonpainful and potentially painful conditions and 
therefore better pain control.

Ethograms capture 2 major types of nonevoked responses 
useful for pain assessment: loss of normal behaviors, such as 
rearing and ambulation, and presence of new pain-specific be-
haviors, such as back-arching (Figure 2 A), writhing (Figure 2 
B), weight shifting and staggering.120-123,150,151 General ethograms 
are available for use, or custom ethograms can be created for a 
particular patient population or model system by crafting clear, 
detailed descriptions for all behaviors for inclusion in the as-
sessment.35,41 Normal behaviors generally occur with greater fre-
quency and may be easier to score using automated software.151 
However, new pain-specific changes in behavior, such as in-
creased paw licking in certain cancer pain models in mice,5 may 
be subtle, performed quickly, and occur more fleetingly, lending 
themselves more to manual scoring.35,123

In some cases, a surrogate indicator can be used to assess ani-
mal wellbeing or pain. Nesting behavior and burrowing are ex-
amples of surrogate behaviors that can be used when assessing 
pain in mice. Grooming is another surrogate behavior that can 
be used to indirectly assess painful states. This can be achieved 
through the Grooming Transfer Test (Figure 3).104 The Grooming 
Transfer Test takes advantage of the fastidious nature of mice 
and their highly patterned grooming behavior. A nontoxic, inert 
powder that fluoresces under black light is suspended in min-
eral oil and applied to the top of a mouse’s head. As the mouse 
grooms, they transfer the fluorescent signal to additional body 
locations, the cage environment, and nesting material. Eventu-
ally, the mouse’s normal grooming behavior will completely 
remove the oil/powder suspension. This behavior is conserved 
across inbred and outbred mice, is performed by both males 
and females, and allows for individual assessment of mice, even 
when socially housed. The Grooming Transfer Test exhibits con-
struct validity as grooming behavior is delayed after abdominal 
surgery and is restored with appropriate analgesia.104

While general activity evaluations and formal behavioral 
scoring have significant potential to uncover both known and 
novel expressions of pain in mice and rats, these techniques 
are laborious to conduct and require training of observers to 
ensure intra- and interrater consistency. Observations must be 
conducted and acted upon in real-time to be useful for effec-
tive analgesia administration. For these reasons, open field tests 
(OFT) have also been explored for assessing analgesia efficacy in 
mice18 and rats.106 OFT can examine aspects of mobility, anxiety 
and exploration behaviors in a relatively short period of time, 
and observation collection and processing can be automated. 
This test has only been studied for a limited number of painful 
conditions in rodents, and thus is currently of limited utility for 
widespread clinical assessment of pain.

Conditioned Place Preference Test
The conditioned place preference test (CPP) is unlikely 

to be used for spontaneous pain assessment in rodents on a 
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day-to-day basis within vivaria; however, it has been used to 
demonstrate analgesic efficacy in models of rodent pain. In this 
assay, 2 outer chambers that are distinguishable by visual or 
olfactory cues are linked by a neutral middle chamber. Animals 
are preconditioned with free access to all 3 chambers, and then 
provision of an analgesic is paired with a particular chamber. In 
pain models using both mice and rats animals, strong prefer-
ence can be seen for the chamber in which the analgesia was ad-
ministered.50,66,137 This model is based on positive reinforcement, 
a system that requires that the animal have intact contextual 
memory of the reward.

Conditioned Place Aversion Test
The conditioned place aversion test (CPA) is similar to the 

CPP test, but uses a neghative stimulus rather than a reward. 
This test has been used for models of pedal inflammation in 
rodents.156 The test paradigm consists of a similar 3-chamber set-
up with visual cues except for the floor of the chambers consists 
of mesh. At regular intervals, von Frey fibers of a diameter to 
invoke a noxious stimulus in an animal with pedal inflamma-
tion, are poked through the mesh into the animal’s paw in one 
of the outer chambers. Over time, the animal learns to avoid the 
chamber in which they receive the stimulation to the inflamed 
paw.9 This mechanical hypersensitivity and chamber aversion 
are partially or completely abolished after administration of 
an efficacious analgesic agent. As with the CPP Test, this assay 
requires an intact memory, and the test is only useful for very 
specific models of pain in rodents.

Burrowing Behaviors
The vast majority of pain assessment assays in laboratory ani-

mals continue to rely on evoked responses; therefore, exploring 
the relationship between these assays and burrowing behavior, 
a nonevoked response, is valuable in terms of characterizing 
what different endpoints may be measuring and providing an 
indication ofthe validity of an endpoint compared with the hu-
man experience, and their temporal relationship. Unfortunately, 
few studies have directly compared these measures.52,69,95,126,128

An important appeal of burrowing as an outcome measure of 
pain is that it requires simple equipment and is relatively easy 
to implement. Observations are easily performed in the home 
cage, reducing potential interference from stress, and meth-
ods employing latency to begin burrowing, burrowing dura-
tion and total volume displaced have been described.3,29,52,58-60 
Of these, the measurement of the total volume displaced is the 
most common. Burrowing represents a goal-directed behavior 
that laboratory mice and rats are motivated to perform, and the 
technique can be applied as a research tool, as well as for clini-
cal assessment.29,30,32,34,129,131 While it can be used to specifically 
assess pain,3,12,46,52,59,61,69,95,111,124-126,128,130,145,147 reductions in burrow-
ing activity can also identify the influence of a range of factors, 
not all of which may be associated with pain, such as cogni-
tive dysfunction, anxiety, systemic bacterial and viral infections, 
and inflammation.24,27,29,31-34,47,55,57,98,144 As such, burrowing may 
be viewed as a surrogate measure of pain in rodents, and also 
as a reflection of instrumental activities of daily living (IADL), 
an outcome used in humans to reflect the impact of disabili-
ties such as pain on day-to-day activities (for example, general 
mobility, care of others, maintaining the living space).88 Factors 
other than pain that result in a reduction in burrowing behav-
ior have been better characterized in mice and these include 
neurodegenerative disease, anxiety, and systemic infection or 
inflammation, thus interpretation of changes in burrowing be-
havior needs to be case-specific.24,27,29,32,33,39,47,60,78 In addition, the 
assessment of burrowing can be confounded by variations in 
housing, including type of flooring,7 familiar surroundings,60 
presence of conspecifics,58 diet,70 and estrous cycle.19 Further, 
strain differences exist in mice, with reduced burrowing be-
havior observed in CBA, 129-substrains and Egyptian spiny 
mice (Acomys cahirinus).29 In rats, scoring of burrowing behavior 
has been employed successfully in Hooded Lister, Wistar and 
Sprague–Dawley strains.3,29,52,69

Burrowing is reduced in a wide range of pain models in rats 
and mice, including laparotomy,4,58-60 colitis and mucositis,57,74,144 
neuropathic pain,3,52,69,95,124 inflammation,3,46,95,130,139,144,147 and ar-
thritis.12,125,126 In addition, many of these studies have confirmed 
responsiveness, showing either an improvement or return to 
baseline burrowing behavior following the administration of 
antiinflammatories and analgesics.

Detailed information regarding burrowing tube dimensions, 
construction, substrate, and test paradigm are readily avail-
able.3,28,29,126,147 In rats, gravel is most commonly used, though 
sand has also been reported (Figure 4).125,147 In mice, earth, sand, 
bedding, and food pellets have been used.28,29 In both mice and 
rats, individual variability in burrowing behavior exists, and 
this is an important fact to consider in its evaluation.3,28,29 Under 
experimental conditions, burrowing behavior can be encour-
aged with social facilitation, pairing good and poor burrowers 
to encourage burrowing behavior.3,28,29,147 In tracking individual 
changes, animals could serve as their own controls.

While burrowing behavior has been useful for experi-
mental studies of pain and analgesia efficacy in mice and 
rats, there are important considerations in applying it to a 

Figure 2. Examples of pain-associated behaviors demonstrated after a lapa-
rotomy in an adult male Sprague–Dawley rat. (A) Back arch—this behavior 
is described as a vertical cat-like stretch upward. (B) Writhe - this behavior 
is described as the contraction of the abdominal muscles (arrow).
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more clinical setting. These include individual variability 
in the propensity to burrow, the current reliance on indi-
vidual testing, and occasional failure of the assay. In a re-
cent international, multicenter randomized, blinded study 
(8 different laboratories across 4 countries) of burrowing in 
rats (adult Sprague–Dawley and Wistar strains) that used a 

well-characterized model of inflammation (Complete Freund 
adjuvant injection into a paw), the ability to reproduce the 
expected inflammation-induced suppression of burrowing 
varied considerably between centers.147 The underlying rea-
sons are unknown, but this suggests that more investigation 
of the technique is needed.

Figure 3. The Grooming Transfer Test allows indirect assessment of a mouse’s grooming behavior. If grooming well, the mouse will transfer the 
fluorescent signal from the top of their head to additional body locations, and in time, completely groom away from the signal. The latency to 
progressive grooming scores is increased in mice with unalleviated postlaparotomy pain. Reproduced with permission from AALAS.51
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Ultrasonic Vocalization
Ultrasonic vocalization (USV) has been suggested as a means 

of going beyond simple evoked reflex measures to reflect an 
integrative behavioral pain response. Rodents are capable of 
producing USV, defined as vocalizations at frequencies greater 
than 20 kHz. These vocalizations are used for communication, 
but are also triggered by drugs producing either a negative or 
a positive affective state.10,11,149 These USV are typically catego-
rized into 2 distinct frequency bands centered approximately at 
22 kHz (generally associated with negative situations) and 50 
kHz, which are associated with positive situations.10,99,142,149 Spe-
cifically, noxious or painful stimuli have been associated with 
the 22 kHz band.14,62,67

Although initial promising results documented USV in re-
sponse to electrical shocks to the tail in rats62 and an arthritis 
model in which Freund adjuvant was injected into into tail,14 re-
cent studies have revealed several important concerns and poten-
tial limitations with USV as an outcome measure. These include 
variable correlation with traditional evoked reflex responses in 
rats and mice,142 a lack of specificity and sensitivity for emission 
of USVs in mice,146 a failure of USV emissions to identify likely 
chronic pain states63,142 and a confound of the presence or absence 
of a conspecific on the expression of USVs.14,63

Employing 3 well-characterized models of inflammation 
(formalin injection in the hind paw), neuropathy (partial sci-
atic nerve ligation) and referred pain (bladder inflammation 
following instillation with turpentine and olive oil), Wallace 
and colleagues did not find any correlation between USV and 
withdrawal responses evoked by thermal (heat and cold) or 
touch (von Frey filament) stimuli.142 These experiments were 
performed in male Wistar rats (partial sciatic nerve ligation), 
female Wistar rats (bladder inflammation) and male Wistar rats 
and C57BL/6 mice (formalin test). The expression of USV was 
limited to the initial presentation of the testing chamber during 
habituation, before model induction. After this, no USV were 
recorded either at baseline or following model induction de-
spite predicted withdrawal responses occurring. These findings 
indicate failure to achieve adequate construct validity. In a study 
of weanling mice (male and female, 21 to 28 d old, B6;129S6-
Stat5b) undergoing tail snipping or ear notching for DNA test-
ing, Williams and colleagues found the incidence of USV to be 
highly variable, with 65% of animals not vocalizing in response 
to either procedure.146 Furthermore, of the mice that did produce 

USV, audible vocalizations (less than 20 kHz) occurred concur-
rently in all but one animal. This suggests that during these po-
tentially painful procedures, USV could not be reliably elicited 
and was not superior to monitoring audible vocalizations alone. 
Testing an acute (carrageenan injection into the hind paw) and 
2 chronic (Freund adjuvant injection into the base of the tail and 
diabetic neuropathy induced with IP streptozotocin) pain mod-
els in male Sprague–Dawley rats, Jourdan and colleagues found 
a nonsignificant tendency to reduced USV in painful animals 
when in the presence of another rat, but no USV when animals 
were tested alone.63 These findings highlight the critical role of 
experimental design in affecting results and study interpretation.

A possible explanation for some of the observed differences be-
tween studies is difficulty in separating responses to pain from dis-
tress or anxiety.67,96 In studies that have reported USV, the numbers 
of animals that emitted vocalizations were low, suggesting, as that 
it is not a sensitive indicator of nociception or pain.62,146 However, 
an important consideration when interpreting USV studies is the 
central role of vocalization in communication and the impact of 
single compared with group housing.10 The tendency to vocalize 
may be linked to the presence of conspecifics, a situation that is 
seldom present during experimental testing but may occur during 
assessment of pain in colony conditions with social housing.14,63

Physiologic Assessments of Pain in Laboratory 
Mice and Rats

Body Weight Changes. Reductions in body weight and growth 
rate are commonly used as indicators of pain and distress and as 
humane endpoints in research rodent studies.15,27,53,76,92,93,100,101,136 
While loss of body weight may reflect behavioral changes associ-
ated with pain, it is a nonspecific indicator that can also reflect com-
promised wellbeing, malaise and adverse environmental or social 
conditions.27,53,100,101,118,135 Weight loss due to reduced body mass 
(rather than dehydration) may also occur with chronic disease 
states that may or not be painful, such as cancer or infection.101,115,118

In experimental models when changes are slow and progres-
sive, the number of consecutive days of ongoing weight loss or 
a weight loss maintained for several days may be a more sen-
sitive measure of deterioration than absolute weight change 
alone.115,148 An upper limit of 15% to 20% is often cited as an end-
point for weight loss;91,148 however, a recent evaluation of 90 rat 
toxicity studies from 13 pharmaceutical companies and contract 
research organizations found that the maximum tolerated dose 
(defined as when dosing had to be stopped or animals were lost 
through death or euthanasia) was exceed in 12/13 studies in 
which a 20% weight loss was allowed. As a result, the authors 
suggested using a weight loss threshold of greater than 10% to 
trigger a decision regarding study continuation.17

 An elegant study that combined several approaches to assess 
pain and wellbeing (conditioned place preference, automated 
behavior identification, evoked response [heat], weight loss) in a 
mouse model (female, C3H/HeN) of bladder cancer showed that 
weight loss of approximately 5% was closely and significantly as-
sociated with increasing preference for the morphine-associated 
CPP chamber.118 Importantly, the link between weight loss and 
morphine seeking occurred well before animals approached the 
typical 15% to 20% weight loss range applied in many studies.

Thus, in consideration of this work, particularly where more 
specific and sensitive measures of pain are available, weight 
loss should not be used as the sole measure of pain, but may be 
used to complement other assessments as a global reflection of 
deterioration of animal welfare.92 Furthermore, where weight 
loss is used, consideration should be given to the appropriate 
change for the model used.

Figure 4. Burrowing behavior in an adult female Sprague–Dawley 
placed in a burrowing tube with 2-5 mm gravel.
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Alterations in the Hypothalamic-Pituitary-Adrenal Gland Axis. 
With acute stress, including acute pain, the hypothalamic-pitu-
itary-adrenal gland axis (HPA) is activated, releasing stress hor-
mones that then induce increases in heart rate, respiratory rate 
blood pressure, and body temperature.4,21,56,110,114 However, the 
HPA axis and associated physiologic changes are impacted by 
many other factors, which can make it challenging to use as a sin-
gle measure for pain assessment. Stress from handling or restraint 
(when necessary for some forms of algesiometry testing) also sig-
nificantly stimulates the HPA access and can either conceal or 
exacerbate changes attributable to pain.118,121 Similarly, other vari-
ables that can cause significant and persistent perturbations in 
heart rate and blood pressure include routine cage changes, social 
housing, various experimental manipulations, and the provision 
of in-cage resources, such as running wheels.1,43,65,127,133 Therefore, 
remote assessment of variables such as heart rate, respiratory 
rate, body temperature, and blood pressure is preferable, when-
ever possible. This can be achieved through telemetry, and some 
physiologic parameters, such as respiratory and heart rates, can 
even be measured by automated ‘smart caging’.44,77 Assessment 
of these physiologic variables should never be used alone when 
attempting to assess pain in mice and rats.

Facial Grimace Scales for Assessment of Pain in Rodents. The 
use of grimace scales in mice, subsequently described in numer-
ous species, was introduced in 2010.68 This work and the subse-
quent description of the Rat Grimace Scale (RGS) demonstrates 
many of the features expected in validation studies (Figure 5).132

Both the mouse grimace scale (MGS) and RGS show construct 
validity and reliability. Construct validity was most comprehen-
sively demonstrated in the MGS using responses to analgesia, 
different levels of pain (by generating dose-response curves dur-
ing induction of pain models) and following temporal changes as 
models progressed. For the RGS, construct validity was shown 
with temporal changes in RGS scores over time (predicted in-
crease followed by decrease in scores as induced inflammation 
resolved) and an analgesic dose-response curve. Content (face) 
validity is grounded in the proposal by Darwin (first published 
in 1872) that facial expressions revealed emotions in humans and 
animals, with overlap across the species.25 Furthermore, as gri-
mace scales have been developed in other species, similar facial 
features have proved to be robust as signalers of pain.

Grimace scale interobserver reliability has been rated as 
‘good’ to ‘very good’ by several research groups, indicating that 
error associated with the scale is small for differences between 
treatments typically examined in these studies.68,103,118,132 Impor-
tantly, reliability is not uniform across features included in facial 
expression evaluation. For example, reliability associated with 
scoring whisker shape and position is frequently low.103 It is un-
clear if this represents inherent difficulty in scoring whiskers or 
difficulty in collecting images of sufficient quality to be scored.72 
Linked to interobserver reliability, though seldom directly ad-
dressed, is the question of observer training. The overwhelming 
majority of MGS and RGS papers are from research groups with 
the time and personnel to invest in achieving proficiency in use 
of the MGS and RGS, though substantial variability between ob-
servers in this setting has been reported.87 Therefore, while some 
studies have supported the use of naïve observers, it is largely 
unknown how these scales might perform in the hands of casual 
users, such as animal care staff or clinical veterinarians.117 One 
study investigating the role of training has shown that the com-
bination of practice scoring images alongside structured discus-
sions is more effective than practice scoring alone.155 This may 
explain why adoption of the MGS and RGS by the laboratory 
animal veterinary community has been limited.

A comparison between grimace scales and a standard/tra-
ditional assessment method has been evaluated with both the 
MGS and RGS.26,68,98,134 In these cases, mechanical hypersensitiv-
ity testing with von Frey filaments has been performed with 
interesting results. With the MGS, in an inflammation model 
(zymosan injection into the hind paw or ankle joint), an anal-
gesic effect of acetaminophen could be detected; however, the 
same dose of acetaminophen (300 mg/kg, SC) did not signifi-
cantly reduce mechanical hypersensitivity.68 In the case of the 
RGS, the duration of mechanical hypersensitivity resulting from 
inflammation (induced with intraplantar injections of CFA or 
carrageenan) was considerably longer-lasting than that of fa-
cial expression changes26 Interestingly, the findings of the RGS 
study mirror a report of the experiences of a pain researcher 
who inadvertently self-injected CFA into a finger.45 In this case, 
the pain experience was relatively short-lived (subsiding at 48 
h) compared with the presence of mechanical hypersensitivity 
(42 d). Similarly, in a model of induced orofacial pain, mechani-
cal hypersensitivity persisted beyond the changes in RGS.2,134 
Taken together, these findings raise important questions about 
the relevance of traditional hypersensitivity testing, particularly 
in light of the relative unimportance and infrequent occurrence 
of hypersensitivity in human chronic pain states.90,108 There have 
been limited comparisons of facial grimace scales to behavior-
based systems of pain assessment, with a study in mice under-
going vasectomy surgery showing strong correlation between 
the MGS and a suite of behaviors altered in the presence of 
pain.72 In contrast, in a rat model of mucositis induced with IP 
5-fluorouracil, an ethogram consisting of writhing, twitching, 
and back-arching showed increased frequencies of these behav-
iors in the presence of mucositis, without concurrent changes in 
the RGS.145 This finding suggests that this that more research is 
needed for reliable conclusions to be drawn.

One of the major challenges in providing analgesia to labora-
tory rodents is the identification of efficacious doses of analgesic 
drugs.37 Grimace scales have been applied to reevaluate commonly 
used analgesics.81,132 These studies have shown that historic dosing 
strategies may not provide adequate analgesia in the models and 
strains studied. More research is needed in this area to gather per-
form confirmatory studies that show the effectiveness of grimace 
scales alongside other methods of pain assessment.

The application of MGS and RGS to chronic and neuropathis 
pain and the role of confounding factors during their appli-
cation have not been resolved. After the development of the 
MGS, it was assumed that grimace scales could not accurately 
detect chronic pain states,68 and this assumption has continued 
as scales were developed for other species. The basis for this 
assumption was the absence of changes in MGS scores in 2 well-
characterized chronic pain models, spared nerve injury and 
chronic constriction injury. Subsequently, others have reported 
that chronic pain may be identified using grimace scales in other 
models, notably colitis (dextran sodium sulphate-induced), cer-
vical radiculopathy (surgical compression model), neuralgia 
(chronic constriction injury of the infraorbital nerve), orofacial 
pain (movement or load-induced), spinal cord injury (cord im-
pact model) and migraine (nitroglycerin-induced) in rats and 
mice.2,6,48,74,80,112,134,152 These data suggest that limiting application 
of the MGS and RGS to acute pain may be premature.

Collection of images for grimace scoring and later assess-
ment has limited use where a quick evaluation to guide clini-
cal decision-making is desired. Two potential solutions to 
shorten the process while maintaining scoring integrity are 
real-time and automated scoring.73,132,141 The feasibility of real-
time scoring, where the observer assigns a score based on 
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direct observation of the animal, has been shown with the 
RGS.73 Scores based on continuous or discrete observations 
over periods as short as 2 min were able to identify predicted 
differences as a result of analgesic treatment. Importantly, the 
presence of the observer did not affect the RGS. Most recently, 
Tuttle and colleagues have shown machine learning to be a 
promising means of automated scoring.141 Following training 
a neural net with close to 6000 images, automated scoring 
was able to identify pain and no-pain states with an accu-
racy (compared with human-generated scores) of 83 to 93%. 
Critically, confidence associated with scores (as determined 
by the neural net) was greatest with images representing 

the greatest changes in MGS, at either extremity of the scale. 
Further work is required to improve machine-based scoring 
across the encountered spectrum of images.

A key step in adoption of the MGS and RGS as tools for rapid 
evaluation of animals and facilitating decisions about care is de-
velopment of an intervention threshold. One has been derived 
for the RGS (greater than 0.67/2, sensitivity; 85%, specificity; 
89%).103 An intervention threshold identifies the score above 
which a rat is more likely to be painful and the score should be 
viewed as a guide for rescue analgesic treatment rather than an 
absolute rule. Increasing the threshold will increase specificity at 
the expense of sensitivity and vice versa.103

Figure 5. The Rat Grimace Scale (A) Rat depicted with ‘pain’ (left) and with ‘no pain’ (right). The ‘pain’ rat has 1) folded ears that are angled 
away from the front of the face, 2) partial eye closure, 3) a flattened and elongated nose and 4) whiskers that are bunched together and directed 
away from the face. The ‘no pain’ rat has 1) rounded ears that face forward, 2) no eye closure, 3) a rounded nose and cheeks and 4) whiskers 
that are fanned and droopy at ends. (B) Image depicts the face of a normal male Wistar rat with no pain. Its eyes are round and open. Its ears are 
rounded, facing forward and roughly perpendicular to the top of its head. Its nose and cheeks are rounded with an evident bulge and crease be-
tween the nose and cheeks. Lastly, the whiskers are spread apart and droop downward at the ends. (Action unit scores—Eyes: 0, Ears: 0, Nose/
cheek: 0, Whiskers: 0). (C) Image depicts an adult male Wistar rat grimacing with orbital tightening, nose/cheek flattening with only a slight 
crease between the nose and cheeks and straightened whiskers that are pulled toward the cheeks. Its ears are curled and slightly rotated out-
wards. (Action unit scores—eyes: 1, ears: 1, nose/cheek: 1, whiskers: 1, overall score of 1 [from average of 4 action units]). (D) Image depicts an 
adult male Wistar rat grimacing with an overall score of 2. It has a tightly closed eyelid. Its nose and cheeks are flattened with the nose appearing 
elongated. The nose and cheek flatten with no crease evident between them. The whiskers are straightened, bunched together and horizontal to 
the cheeks. Its ears are rotated outwards and curled inwards. (Action unit scores—eyes: 2, ears: 2, nose/cheek: 2, whiskers: 2). (E) Image depicts 
an adult male Wistar rat grimacing with an overall score of 1.75. Its eyelids are tightly closed. The ears are curled and rotated away from the front 
of the rat’s face. Its nose and cheeks are flattened with no crease evident between them. The whiskers are straight and pulled toward the cheeks. 
(Action unit scores—eyes: 2, ears: 2, nose/cheek: 2, whiskers: 1). Illustration by Dr Vivian SY Leung.
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Limitations in the use of the MGS and RGS are still being de-
fined. In addition to their roles in identifying chronic pain (as 
described above), exposure to general inhalant anesthetics tempo-
rarily inflates RGS scores and should be considered when assess-
ing animals in the early postoperative period.83 Olfactory cues, 
such as exposure to clothing worn by men, can result in stress-
induced analgesia and a consequent reduction in the MGS.131

Use of Nest-Building Behaviors to assess Pain in Laboratory 
Rodents. Nesting behavior is a major evolutionary driver for most 
rodents, particularly mice. Evaluations of mouse health and well-
being through nest-building have been in continual evolution 
for at least a decade. The advantage of this approach is that it is 
easily incorporated into standard husbandry practices and takes 
advantage of an animal engaging in intrinsically motivated be-
havior. It may, therefore, be more sensitive to subtle aspects of the 
pain experience and may better reflect pain as it affects quality 
of life.104 In its first iterations, evaluations of cage structure were 
used, assessing if the mice engaged in organizing their cage space 
to include a dedicated sleeping area separate from their toilet 
area.4 Next the focus shifted to the complexity of the nest with 
scores ranging from zero, for an unmanipulated compressed cot-
ton square, to a score of 5, if a bowl with well-defined walls was 
built.60 The type and amount of nesting material which would 
optimally allow for the construction of a complete nest followed, 
facilitating a progression of nest scoring (Figure 6).51 A complete 
nest has a full dome that encloses the center of the nest and al-
lows the mouse to create a warm, dark, microenvironment that 
can be up to 10 °C degrees warmer than the rest of the cage envi-
ronment.42 Mice that underwent surgery had significantly lower 
nest scores than those that underwent sham procedures or had 
surgery with adequate pain management.60

Whereas all of these nesting and cage organization assess-
ments were valuable steps in the evolution of cageside pain 
assessments in mice and added a quantitative component to 
otherwise qualitative measures, they were also relatively sub-
jective. Therefore interobserver reliability could be problematic. 
In addition, while the mice may have had effective analgesia 
in the immediate postoperative period, subsequent changes in 
their pain state may go unrecognized because the nest com-
plexity or cage structure score does not change once the nest is 
formed. Therefore, the next iterations of nest assessments cor-
rected for these limitations by creating on-demand assessments 
of nest consolidation. In the time-to-integrate-to-nest or TINT 
test, mice are given a small piece of nesting material in the op-
posite end of the cage from their existing nest which they must 
retrieve, and then return the piece to their nest and integrate it. 
This was found to occur in 9 of 10 mouse strains within 10 min 
after the provision of the new nesting material. The likelihood 
of a negative TINT (taking greater than 10 min to retrieve) was 
significantly increased after having undergone a painful pro-
cedure.116 The benefit of this approach is that the mice can be 
recovered in their home cage with an existing nest, supporting 
positive welfare in the postprocedural time period. In addition, 
TINT can be assessed on demand and in repetition, so the arc 
of recovery or absence of effective analgesia can be assessed 
over time. However, this method is assessed in a binary fash-
ion, making it difficult to create a gradient with which to assess 
relative analgesic efficacy. So, while it is a good initial tool for 
identifying which cages require additional veterinary attention, 
it may not reveal smaller changes in pain severity or alleviation. 
The zone clearance test is a similar assessment of how quickly a 
mouse will retrieve pieces of nesting material around the cage.97 
Using this test, a mouse can retrieve 6 pieces of cotton nesting 
within 100 min at baseline, but likely fails this test after a painful 

procedure. However, normal retrieval and consolidation be-
havior is observed once analgesia is provided. The benefit of 
this assessment is that a greater range of scores are possible, al-
lowing for a greater ability to tease apart differences in efficacy 
between analgesic regimens, as well as differences in the re-
sponse to treatment. The challenge is that this method requires 
mice to recover from a procedure in a cage without an existing 
nest, and importantly, requires that the mouse chooses to build 
their nest in a corner such that they are clearing zones as they 
gather the nesting material. However, dependent on a number 
of caging and animal factors, mice may choose to build a nest 
in a location other than the corner, significantly reducing the 
number of zones cleared, even if the mouse is clearly exhibiting 
nest consolidation behavior. As published, this test would be 
used for a one-time assessment as it requires starting without an 
existing nest; this limits its use at multiple time points without 
significantly altering the home-cage environment.

The most recent iteration of nest consolidation tests combines 
the strengths of the prior 2 assessments, TINT and zone clear-
ance, by allowing mice to recover in a home cage with an exist-
ing nest and facilitates on-demand assessment that allows for 
minimal disturbance and longitudinal assessment while also 
providing more sensitivity in scoring to allow for gradations of 
scores.104 In addition, this new assessment allows the nest to be 
built anywhere in the home cage, rather than only in corners. 
The Nest Consolidation Test requires mice be provided 4 pieces 
of cotton nesting material to be placed either in the 4 corners of 
the cage if no nest is already present in the home cage, or on the 
opposite end of the cage from an existing nest (Figure 7). The 
mice are then timed for how long it takes to retrieve the pieces 
of nesting material and consolidate by moving the pieces at least 
half of the cage length and/or width to be joined with another 
piece of nesting material or within one inch of the existing nest. 
This test was found to identify postprocedural pain in males, 
females, inbred and outbred mice, and was minimally impacted 
by anesthetics and analgesics. It not only identified unalleviated 
postoperative pain but could differentiate between different 
analgesic regimens allowing for better drug discrimination than 
traditional measures of mechanical threshold and clinical mea-
sures such as body weight loss. One important consideration 
for all nesting assessments for pain in mice is that to assess indi-
vidual animals, they must be singly housed.104 Single housing of 
animals that could otherwise be socially housed is not desirable 
as it can contribute to unnecessary stress in a recovering animal.

Recommendations for Ongoing Monitoring of Pain in Labora-
tory Rodents. If it is unclear whether pain or a confounder is 
underlying the pain assessment score, a tried and true approach 

Figure 6. When given the appropriate amount and material, mice can 
build a full domed nest and a nest complexity score can be assigned. 
Reproduced with permission from AALAS.51
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in both human and veterinary medicine is to assess the response 
to analgesia (assuming that an effective dose of analgesic is 
administered).40 Assessing animals before and after analgesic 
administration or comparing animals that received different 
agents or routes can often reveal whether the analgesic regimen 

is effective (Figure 8).22 With this approach, it is important to 
understand the direction in which the chosen assessment pa-
rameter will change if pain is alleviated. For example, for paw 
withdrawal in response to mechanical pressure, one would ex-
pect latency to increase if the animal becomes more comfortable. 

Figure 7. The Nest Consolidation Test allows mice to retrieve one of 4 pieces of nesting material, either with or without an existing nest. The 
pieces must be consolidated to within a specific distance of one another or within the existing nest. The nest can be built anywhere in the home 
cage. Reproduced with permission from AALAS.104
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In contrast, with nest consolidation scoring, alleviation of pain 
will be expected to shorten the latency to nest consolidation 
as the animal becomes more comfortable and regains normal 
behavior.

Assessments should be made starting from before pain is 
anticipated to begin, allowing the observer to identify when 
the pain starts. This facilitates early treatment and minimizes 
the period of untreated pain. Once pain is present, the observer 
should estimate the length of time that the pain is anticipated to 
continue – whether it is acute with a rapid recovery or the start 
of a long-term disease process, like arthritis or tumor induction 
and progression.

Once pain is present, the frequency of assessments should be 
tailored to match the expected duration of analgesic therapy. In 
human medicine, pain is expected to lessen within 30 min of 
analgesic drug administration.38 In veterinary patients, this may 
not be likely in all situations because of analgesic pharmacoki-
netics,40 but is a useful rule of thumb to consider when treating 
animals. Thus, assessments should be made before and after the 
provision of an analgesic to ensure that the agent is achieving 
the desired effect, and to provide additional analgesic if needed. 
Assessments should be repeated, based on the known pharma-
cokinetics of the drug to determine if pain has returned, and 
whether additional doses or different therapies are required. 
In human medicine, to be considered clinically useful, a mini-
mal 33% change in an outcome measure is sought after treating 
patients with additional rescue medication for acutely painful 
conditions.38 This clinical cut-off point was developed recogniz-
ing that there are no objective measures of painful experiences 
in human patients and individuals show wide variability in re-
sponse to interventions. While a worthy goal, the utility of a 
clinical cut-off point is untested in veterinary medicine.

Analgesic therapy for laboratory rodents must be performed 
with a clear goal in mind. Dynamic pain occurs only when the 
animal is engaged in a particular behavior or when it adopts 
a particular body posture. Dynamic pain is often less severe 
and may affect more of the nonevoked measures of pain, such 
as nest building and grooming. Less potent analgesics,40 lower 
doses or shorter regimens of analgesic may be sufficient to al-
low an animal to be engage in these higher-level, spontaneous 
behaviors. Alternatively, static pain occurs when the animal is 

at rest. Static pain is likely to prevent even basic maintenance 
behaviors, such as eating and drinking. While it may not be pos-
sible to alleviate all pain, goals for analgesic therapy should be 
to prevent static pain at a minimum, while helping the animal 
to return normal spontaneous behavior. This allows them to 
create and maintain a microenvironment that further supports 
recovery, such as normal nesting, burrowing and social behav-
iors with cagemates. Static pain conditions may require more 
potent analgesics, higher doses, and a longer course of therapy 
to maintain the animal in a comfortable state.

Conclusions
The search for novel measures to assess pain in laboratory ro-

dents that do not rely on traditional evoked-response reflex test-
ing is important for the evolution of translational pain research 
and for enhancing laboratory animal welfare. Many advances 
have occurred in rodent pain assessment techniques, but addi-
tional work is needed to understand the range of circumstances 
for which each test is useful. Future work should focus on the 
development of additional nonevoked cageside measures of 
pain that do not require handling or even the presence of an 
observer to aid in accurate identification of rodents in need of 
veterinary care. For mice, facial grimacing, nest building, and 
grooming have served this need under some experimental con-
ditions. However, these evaluations should be more broadly 
implemented in formal clinical pain assessments, through in-
stitutional training programs for animal ethics committees, re-
search groups, and technical personnel. Unfortunately, these 
approaches have not been widely tested for other laboratory 
rodents, although alternate assays, such as analysis of burrow-
ing behavior, may be appropriate. Identifying behaviors that 
these species will readily engage in, that are significantly al-
tered by a painful stimulus, and that can be restored by analge-
sia must be developed. Advancements in technology, such as 
home cage ethogram analysis, automated facial grimace analy-
sis, and smart cage read-outs of animal physiology and activ-
ity may also assist with discovery of new or more efficacious 
analgesic treatment regimens for different rodent conditions. 
However, even if better assessment tools can be developed, a 
major challenge remains: how to provide individualized animal 

Figure 8. The postsurgical rat on the left (A) received a single analgesic, carprofen, whereas the rat on the right (B) that underwent the same 
procedure received multimodal analgesia: carprofen and tramadol. When comparing the 2 animals it is clear that the animal that received mul-
timodal analgesia is more alert, paying attention to the observer, and in addition, its fur is lying flat, and its eyes are wide open, all indicating 
this animal is more comfortable than the rat that only received only carprofen. Reproduced with permission.22
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assessments and pain mitigation when large numbers of rodents 
are on study at any given time. This ethical issue merits further 
consideration by the community at large.
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