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Hypertension has repeatedly been shown to be a leading 
risk factor contributing to global death rates.1,3,6,20,24,32 As much 
as 44% of the world population older than 20 y is hyperten-
sive19 (that is, blood pressure of greater than 140/90 mm Hg). 
The sequelae of chronically elevated blood pressure manifest 
as cerebrovascular disease, cardiac disease, and chronic kid-
ney diseases, imposing an ever-increasing fiscal load on the 
delivery of health care.1,2,35,36 The American Heart Association 
reports that 69% of cases presenting with a myocardial infarc-
tion and 74% of cases with reported chronic heart failure have 
a history of hypertension.1 In the United States alone, the prev-
alence of hypertension were anticipated to increase by more 
than 7% and the incidence of cardiovascular disease by 40.8% 
by the year 2030,12 leading to a projected annual cost estimate 
for the treatment of hypertension alone of more than $US340 
billion.1 However, recent estimates suggest that the prevalence 
of hypertension will rise more rapidly, with the hyperten-
sive population now estimated to increase by more than 8% 
by the year 2030 (bringing the rate to almost 50% of the adult  
population).1

To investigate key regulatory components that influence 
blood pressure, several transgenic hypertensive rat models 
have been developed. One such model are transgenic Cyp1a1–
Ren2 rats, in which hypertension can be induced reversibly by 
diet, without the need for surgical intervention.19 In this line, 
the expression of mouse Ren2 cDNA is under the control of an 

inducible cytochrome p450-1a1 promoter, which is integrated 
into the Y chromosome of Fischer 344 rats19,26 and is therefore 
active only in males. Dietary administration of indole-3-car-
binol (I3C) activates the promoter gene (Cyp1a1) and thus in-
creases the production of Ren2.17,19 I3C is a naturally occurring, 
nontoxic, xenobiotic found in cruciferous vegetables (such as 
broccoli) that acts as a benign inducer with a short half-life. The 
production of Ren2, primarily in the liver, on induction of the 
Cyp1a1 promoter through I3C,18,31 leads to increased circulating 
renin levels, activation of the renin–angiotensin–aldosterone 
system and a consequent increase in blood pressure. After the 
withdrawal of I3C from the diet, the production of mouse re-
nin falls, and blood pressure returns to previous, normotensive 
levels.19This model, therefore, allows inducible and reversible 
hypertension through modulation of the renin–angiotensin–
aldosterone system. Importantly, the extent of hypertension is 
I3C dose-dependent,26,29 allowing tight control of blood pres-
sure. Thus, both the timing of the onset of hypertension and its 
magnitude can be controlled in this unique animal model, in 
which the effect of various antihypertensive treatments can be 
assessed.

Although the transgenic Cyp1a1–Ren2 rat model has been 
used widely to study hypertension and associated organ 
damage during the 2 decades since its creation,10,14,19,26,28,30 no 
information has been published regarding the line’s breeding 
characteristics or reproductive performance (such as breeding 
efficiency and regularity, fertility, and litter size). Similarly, most 
studies using this model focus on acute hypertension, with 
few data in terms of chronic hypertension.13,15,30,31 We therefore 
aimed to outline the breeding performance and productivity of 
transgenic Cyp1a1–Ren2 rats, demonstrate the inducible and 
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reversible dose-dependent hypertension in this model, and de-
scribe the effect of chronic dosing with I3C on inducible hyper-
tension.

Materials and Methods
Animals. The initial transgenic Cyp1a1-Ren2 rat internal 

breeding stock was gifted by Professor JJ Mullins (Centre for 
Cardiovascular Science, University of Edinburgh, United King-
dom). The transgenic Cyp1a1–Ren2 rat colony was held at the 
University of Otago Animal Resource Unit, and animals were 
housed under controlled conditions of temperature (approx-
imately 21 °C) and light (12:12-h light:dark cycle), with food 
(Meat-free Rat and Mouse Diet, Irradiated, Specialty Feeds, 
Glen Forest, Western Australia, Australia) and tap water pro-
vided without restriction. All animals were housed on corn-
cob bedding in standard open-top caging, with ‘paper wool’ for 
nesting and a tunnel provided for enrichment.

The colony was monitored according to FELASA guide-
lines7 through quarterly serologic testing for specific pathogens  
(Table 1). The testing was performed by Cerberus Labs (Cer-
berus Sciences, Melbourne, Victoria, Australia). Rats were nega-
tive for all agents except Helicobacter spp. and Pneumocystis carinii.

Colony breeding pairs were monitored regularly to assess 
and characterize breeding performance, including recording the 
number of litters, litter size, sex ratio, survival, overall health, 
and behavioral traits. Continuous, inbred (brother–sister) pairs 
were used for breeding. Randomly selected litters were weighed 
daily to obtain a standard weight curve for the colony.

All Cyp1a1-Ren2 rats used for experiments were obtained 
from internal breeding stock and were housed in pairs or in 
groups of 4 rats per cage. All experiments were approved by the 
Animal Ethics Committee of the University of Otago (approval 
no. AEC 51/13), in accordance with the guidelines of the New 
Zealand Animal Welfare Act.25

Experimental protocol. I3C dose–response curve. Standard 
pelleted rat chow (Specialty Feeds) was ground and blended to 
a fine powder. I3C (Chem-Impex International, Wood Dale, IL) 
was added to the powdered diet to produce final concentration 
(w/w) of 0.125%, 0.167%, and 0.25%. Cyp1a1–Ren2 rats housed 
in pairs or triplicates were randomly assigned to a dose group 
at 8 wk of age and allotted 50 g of powdered chow daily per rat. 
Similarly, 8-wk-old female Cyp1a1–Ren2 rats were assigned to 
receive either standard chow or 0.167% (w/w) I3C diet. Food 
was weighed and topped up every morning.

To demonstrate the dose-dependent effect of I3C on blood 
pressure, Cyp1a1–Ren2 rats experienced a 14-d dosage regimen 
using different percentages of I3C: the Cyp1a1 gene inducer. 
Male and female Cyp1a1–Ren2 rats (age, 8 wk; n = 29) were 
randomly assigned to 1 of 3 groups and received I3C (0.125%, 
0.167%, or 0.25% [w/w]) in the diet. Rats were weighed and 
food was replenished daily, with systolic blood pressure (SBP) 
measured every 3 to 4 d. At the end of the 14-d I3C dosing pe-
riod, 6 female rats were euthanized by using halothane. At day 
14 or 18 after SBP recordings, male rats from each group were 
euthanized by using halothane, and tissue (heart and kidneys) 
was harvested for further analyses.

Plasma from cardiocentesis of normotensive male Cyp1a1–
Ren2 rats (maintained on standard chow) and hypertensive 
male Cyp1a1–Ren2 rats (maintained on diet containing 0.167% 
[w/w] I3C) was analyzed for renin by using a commercial in-
house ELISA assay (EndoLabs, Christchurch Hospital, Christ-
church, New Zealand) on day 14.

Chronic elevation of blood pressure. Male transgenic Cyp1a1–
Ren2 rats were maintained on either pelleted standard chow 

(Specialty Feeds) or pelleted standard chow with addition of 
0.167% (w/w) I3C (SF13-086, Specialty Feeds) for 14 wk. All 
animals were housed under controlled conditions in groups of 
4 and had free access to water and food. Rats were weighed and 
food was replenished weekly, with SBP measured every 4 wk. 
At the end of the 14-wk period, rats were euthanized by using 
halothane.

Table 1. Results of annual health testing of the Cyp1a1–Ren2 rat 
colony

Organism Status

Bacteria and fungi
Cilia-associated respiratory bacillus Negative
Citrobacter rodentium Negative
Clostridium piliforme Negative
Corynebacterium kutscheri Negative
Helicobacter bilis Negative
Helicobacter ganmani Negative
Helicobacter hepaticus Negative
Helicobacter mastomyrinus Negative
Helicobacter rodentium Negative
Helicobacter spp. Positive
Helicobacter typhlonius Negative
Mycoplasma pulmonis Negative
Pasteurella pneumotropica Negative
Pasteurellaceae group Negative
Pneumocystis carinii Positive
Salmonella spp. Negative
Streptobacillus moniliformis Negative

Streptococcus group A (β hemolytic) Negative

Streptococcus group B (β hemolytic) Negative

Streptococcus group C (β hemolytic) Negative

Streptococcus group G (β hemolytic) Negative

Streptococcus pneumoniae (α hemolytic) Negative

Ectoparasites
Myobia musculi Negative
Myocoptes musculinus Negative
Radfordia affinis Negative

Endoparasites
Aspiculuris tetraptera (pinworm) Negative
Giardia muris Negative
Spironucleus muris Negative
Syphacia muris (pinworm) Negative

Nonpathogenic protozoa
Entamoeba muris Negative
Tritrichomonas muris Negative

Viruses
Adenovirus type 1 Negative
Adenovirus type 2 Negative
Kilham rat virus Negative
Pneumonia virus of mice Negative
Rat coronavirus Negative
Rat minute virus Negative
Rat parvovirus Negative
Rat theilovirus Negative
Reovirus type 3 Negative
Sendai virus Negative
Toolan H1 virus Negative
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Physiologic measurements. All rats were acclimated through 
daily handling and were weighed (to the nearest gram) at 8 
wk of age. Weights were calculated as the gain in weight from 
this start point to account for variability in initial weight. SBP 
was measured in conscious habituated rats by using tail-cuff 
plethysmography (NIBP controller, AD Instruments, New 
Zealand) and recorded (PowerLab 4SP, AD Instruments). Ani-
mals were given 30 min to acclimate prior to the blood pres-
sure recording procedure, and a heat lamp was used to gently 
warm the tail prior to SBP readings. Data were captured and 
analyzed by using Chart (version 7, AD Instruments). A mini-
mum of 10 clear recordings were obtained from each rat during  
each session.

Statistical significance (that is, P < 0.05) was assessed by using 
2-way ANOVA with Bonferroni posthoc analysis (KaleidaG-
raph, Synergy Software, Reading, PA).

Results
Transgenic Cyp1a1–Ren2 rat colony. Compared with outbred 

stocks, inbred strains typically show lower productivity—not 
only in frequency of productive matings but also smaller litters 
and fewer litters during a dam’s lifetime. However, despite be-
ing an inbred strain, many of the reproductive features observed 
in the Cyp1a1–Ren2 rat colony were typical of those in outbred 
strains. Sexual maturity occurred similarly to other common rat 
strains, and first litters typically were born within 1 mo after 
initial pairing of breeders. Decreased breeding performance in 
the Cyp1a1–Ren2 rat colony was due to a slower reproductive 
cycle (average, 28 to 35 d) compared with the typical duration 
(20 to 24 d). However, Cyp1a1–Ren2 rats displayed a normal 
gestational period (20 to 24 d).

Fertility in the colony varied widely during the first few gen-
erations, with some pairs never producing a litter. However, 
careful colony maintenance (for example, culling of nonproduc-
tive pairs) eliminated this infertility within a few generations. In 
addition, Cyp1a1–Ren2 rats in this colony frequently produced 
the first litter within expected timeframes (that is, within 30 d 
of pairing) but then had a long period with no visible concep-
tion (around 50 to 70 d before visible pregnancy), followed by 
regular and efficient production after the birth of the second 
(that is, delayed) litter. This pattern was not restricted to specific 
breeding lines within the colony or associated with any noted 
excessive stress or unusual behavior. This characteristic appears 
to be strain-specific and not one that has been reported previ-
ously for Cyp1a1–Ren2 rats. Despite this reproductive behavior, 
the generation time of these rats was normal, with gestation of 
approximately 3 wk followed by 3 wk to weaning. Surprisingly, 
this colony of inbred transgenic Cyp1a1–Ren2 rats produced lit-
ter sizes comparable to those of outbred, nontransgenic strains, 
with average litters of 12 ± 4 pups.

To date, the colony of Cyp1a1–Ren2 rats at the University of 
Otago has produced only 2 cases of birthing defects. In both 
cases, pups were born with microphthalmia (microeye), and 
their lineages were removed from the breeding colony. No 
strain-specific behaviors have been distinguished within the 
Cyp1a1–Ren2 rat colony, nor are any specific behaviors docu-
mented for this transgenic strain. No data available suggest that 
Cyp1a1–Ren2 rats experience any adverse effects due to the ge-
netic manipulation itself.

Standard growth curve of Cyp1a1–Ren2 rats. Prior to wean-
ing, pups showed a steady and rapid daily weight gain. All 
pups were weaned at 21 d of age, and a small reduction in the 
rate of weight gain was noted during the 2 to 3 d after wean-
ing but quickly reverted to a steady gain. Weight records were 

continued in male Cy1a1Ren2 rats maintained on normal pel-
leted chow until 24 wk of age (Figure 1). Rats maintained steady 
and strong growth until 8 wk of age (mean ± 1 SD, 232 ± 19 g),  
which then continued at a slower rate until 24 wk of age  
(443 ± 22 g).

I3C dose curves. Weight. Female Cyp1a1–Ren2 rats, which 
lack the transgene, showed a steady weight gain on standard 
powdered chow from day 0. Female Cyp1a1–Ren2 rats placed 
onto a diet containing 0.167% (w/w) I3C showed an initial de-
lay in weight gain when compared with females on standard 
chow, and this delay continued until day 14 (16 ± 5 g compared 
with 22 ± 4 g, respectively; Figure 2). Male Cyp1a1–Ren2 rats 
maintained on chow containing either 0.125% or 0.167% (w/w) 
I3C showed a weight gain from day 0, similar to that of male 
rats fed standard chow (Figure 3). In contrast, male Cyp1a1–
Ren2 rats fed the highest dose (0.25% w/w I3C), failed to 
show a gain in weight over the 14-d dosing period (-2.8 ± 9.5g,  
Figure 2). Following removal of the I3C from the diet on day 14 
and returning to normal chow, rats increased weight.

Blood pressure. Female and male Cyp1a1–Ren2 rats main-
tained on the standard diet were shown to have a SBP of 111 ± 
7 mm Hg. Similarly, female rats maintained on an I3C dose of 
0.167% were recorded to have a mean SBP of 109 ± 7mm Hg ( 
Figure 3). After 14 d on a dietary dose of 0.125% I3C, male 
Cyp1a1–Ren2 rats had an increase in SBP to 140 ± 6 mm Hg, 
which was significantly (P > 0.01) higher than in normotensive 
males. After 14 d on a diet containing 0.167% I3C, male rats had 
a SBP of 165 ± 15 mm Hg, which was significantly (P > 0.01) 
higher than both normotensive male rats and male rats on 
0.125% I3C. Animals maintained on the highest dose (0.25% 
I3C) had a SBP of 202 ± 20 mm Hg (Figure 3), again significantly 
(P > 0.001) higher than all other groups. By 4 d after the return 
to standard rat chow, SBP in all groups had returned to the nor-
motensive range (107 ± 5 mm Hg; Figure 3).

Plasma renin in hypertensive animals (maintained on 0.167% 
[w/w] I3C diet) was significantly (P < 0.01) elevated after 
14 d compared with normotensive animals (22 ± 4 and 11 ±  
3 nmol/L, respectively).

Chronic elevation of blood pressure in Cyp1a1–Ren2 rats. 
Feeding I3C to male transgenic Cyp1a1–Ren2 rats led to a steady 
increase in SBP over time (Figure 4). In contrast, male Cyp1a1–
Ren2 rats maintained on normal chow showed no increase in 
SBP over the 14 wk. After the initial 2 wk of dietary dosing with 
0.167% (w/w) I3C, SBP rose to 159 ± 10 mm Hg (giving similar 
results to the I3C dose curve, Figure 3). Furthermore, SBP rose 
to 173 ± 11 mm Hg after an additional 4 wk and to 196 ± 19 mm 
Hg after 3 mo (Figure 4).

Discussion
A persistent difficulty in the investigation of hypertension is 

the availability of appropriate models that reproduce the clinical 
situation. In humans, elevation of blood pressure occurs slowly 
and insidiously, whereas most animal models of hypertension 
involve an intervention that produces a rapid elevation in blood 
pressure. The development of Cyp1a1–Ren2 transgenic rats in 
which blood pressure can be manipulated by a dietary additive 
has made possible the investigation of hypertension under con-
trolled settings.19 In contrast to other genetic and transgenic hy-
pertensive rat models (including Spontaneously Hypertensive 
Rats,4,9,21 Dahl salt-sensitive rats,11,21 and transgenic m(Ren2)27 
rats),5,23 hypertension in Cyp1a1–Ren2 transgenic rats can be 
induced at any chosen age or time, allowing tailoring of experi-
mental design and exploration of the effect of hypertension over 
time and on animals of different ages. In addition, this model 
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permits dose-dependent titration of hypertension, which en-
ables the investigation of a broad range of elevated blood pres-
sures, from prehypertension to malignant hypertension, simply 
by adjusting the level of I3C in the diet. In contrast to other hy-
pertensive rat models, Cyp1a1–Ren2 rats have a relatively slow 
ramping of blood pressure, which is more closely related to the 
development of hypertension in the clinical setting. This incre-
mental development of hypertension consequently provides a 
more realistic model in which to study the effects of increased 
pressure on vascular structure and function.

The experiments reported here verified the absence of any ef-
fect of I3C (inducer) on blood pressure in female rats lacking the 
Ren2 gene. When male Cyp1a1–Ren2 rats received I3C in the diet 
for 2 wk, SBP was elevated in a dose-dependent fashion, with 
higher doses of I3C leading to higher levels of SBP (Figure 3).  
These results are similar to previous findings,29 although, in con-
trast, our animals fed a diet containing I3C at 0.167% (w/w) 

showed no growth retardation. When I3C-treated male Cyp1a1–
Ren2 rats returned to normal chow, their SBP returned to nor-
motensive values within 48 h, consistent with other published 
studies.13,18,30

A previous study29 showed that the addition of 0.125% (w/w) 
I3C in the diet, male Cyp1a1–Ren2 rats achieved a stable mean 
arterial pressure of approximately 170 ± 5 mm Hg after 6 wk 
on the diet. Similarly, a later study30 showed a continued rise 
in mean arterial blood pressure up to 28 d after the commence-
ment of I3C, although this progression was far slower than that 
seen in the first 2 wk. In contrast an earlier study,29 we noted no 
plateau in blood pressure during the 14-wk time frame, and SBP 
continued to rise from 173 ± 11 mm Hg after 1 mo to 196 ± 19 
mm Hg after 3 mo on the I3C diet (Figure 4). Interestingly, the 
diet-manipulated animals (maintained on 0.167% [w/w] I3C) 
showed no adverse phenotypic features related to their elevated 
blood pressure, such as lethargy, hunched posture, piloerection, 
and lower body weight gain, as have previously been reported, 
albeit associated with an I3C dose of 0.3% (w/w).18,27,29

Correct establishment and management of a rodent colony 
are essential, and knowledge of commonalities and deficiencies 
of a strain can be critical to maintaining a good colony and there-
fore also good research stock. Generally, laboratory rats become 
sexually mature between 5 and 10 wk of age;22,33 consequently, 
breeding animals are often paired at approximately 10 wk  
of age to obtain the maximal reproductive performance.33,34 
Typically laboratory rats breed for 5 to 8 mo, producing 5 to 
6 litters,16 but this number can be reduced or extended due to 
strain-specific characteristics or mutant phenotypes that affect 

Figure 2. Weight gain from day 0 of transgenic Cyp1a1–Ren2 rats 
maintained on different doses of dietary indole-3-carbinol (I3C). At 
day 14, dietary I3C was removed and normal chow administered. The 
number of animals in each experimental group is given in parenthe-
ses. Data are shown as mean ± 1 SD.

Figure 3. Systolic blood pressure (SBP) in transgenic 8-wk old Cyp1a1–
Ren2 rats maintained on different dietary doses of indole-3-carbinol 
(I3C) for 14 d. On day 14, rats were returned to standard chow. Data 
are shown as mean ± 1 SD. The number of animals in each experimen-
tal group is shown in parentheses.

Figure 1. Standard weight curve for normotensive male Cyp1a1–Ren2 
rats maintained on normal chow until 24 wk of age. Data are shown 
as mean ± 1 SD (n = 43).
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fertility. In addition, interstrain differences can influence litter 
size, although 10 to 14 pups is common and expected.22

The performance (or productivity) of a colony is tradition-
ally defined according to the fecundity of the breeder females 
(although reproductive failures may be due to the female, the 
male, or both). Because mating usually occurs within 24 h of 
placing sexually mature rats together,34,37 with pregnancy visible 
and fetuses palpable often by day 14 and litters typically born 
by day 23 (ranging from 21 to 25 d),34,37 a general rule is that if 
no visible signs of pregnancy are noted within 60 d from pairing 
or the birth of the previous litter, the breeding pair is considered 
nonproductive and is removed from the colony.22,33,34 Assess-
ment of breeding performance also considers hybrid vigor, litter 
size, strain-specific genetic mutations or transgenes (such as 
reduced fertility, effects of mammary gland function, or lethal 
embryonic effects) as well as behaviors (such as high aggression 
or poor mothering instincts). This practice helps to ensure that 
peak breeding efficiency is sustained, expected reproductive 
characteristics of the strain are maintained, and breeders are 
assessed sufficiently to select appropriate replacement stock. 
This continuous evaluation will identify reproductive problems 
before the colony is in reproductive crisis.22,33,34

Cyp1a1–Ren2 rats proved to be efficient and good breed-
ers, comparable to common outbred laboratory rat strains. 
However, we noticed several characteristics while breeding 
this unique transgenic strain. First, despite being an inbred 
transgenic rat model, Cyp1a1–Ren2 rats produced large lit-
ters (that is, 10 to 16 pups). These litter sizes were much larger 
than reported for Fischer 344 rats (the background strain for 
Cyp1a1–Ren2 rats) from both Envigo (worldwide) and Janvire 
Laboratories (France, Europe), which both report an average 
litter of fewer than 8 pups. Although this characteristic is not 

undesirable, it is unusual and therefore should be noted. Second 
(and more important to the management of the colony) was 
a prolonged reproductive cycle (that is, 28 to 35 d) compared 
with other laboratory rat strains. Furthermore, we observed re-
peatedly that, after the birth of the first litter, dams seemed to 
‘skip’ either the second or third litter, resulting in periods of 60 
to 70 d with no visible pregnancy. However, after this litter-free 
spell, rats produced efficiently from then on. Despite all efforts 
to remove this lag period, it appears to be a strain characteristic 
of the transgenic Cyp1a1–Ren2 rat. Further investigation is re-
quired to document these findings; regardless, breeding pairs 
of Cyp1a1–Ren2 rats should be afforded more than 60 d before 
being removed from the colony.

The development of transgenic Cyp1a1–Ren2 rats19 has al-
lowed increased control of the study of hypertension. Because 
the breeding characteristics of these transgenic animals have not 
been published previously, here we report that these rats breed 
surprisingly well despite being an inbred and transgenic strain. 
In addition, we showed that Cyp1a1–Ren2 rats maintained on 
decreased titrated doses of dietary I3C can tolerate prolonged 
periods of sustained hypertension but without the ill effects re-
ported by others.15,29 Given that hypertension repeatedly has 
been shown to be a major risk factor contributing to global 
death rates,1,8,20,24 animal models such as Cyp1a1–Ren2 rats may 
hold key components to therapeutic developments targeting hy-
pertension, and further research to clarify the dose-dependent 
response, especially long-term, in this model is needed.
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