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Animal models are commonly studied in the preclinical 
setting to investigate human diseases. A goal of translational 
research is the efficient transfer of relevant findings from the 
animal model to the human condition.5 However, differences in 
markers or techniques between animal models or between ani-
mal and human studies can introduce new sources of error and 
limit the reproducibility of a study’s findings. If the tools and 
techniques applied in preclinical studies were similar to those 
of clinical studies, the results might be more translatable, thus 
maximizing the immediate relevance and clinical significance of 
the preclinical work.42,43

In pathology studies, labeling techniques are used to iden-
tify specific cellular and tissue markers.11 In animal models, 
it is not uncommon to use labeling techniques (for example, 

immunohistochemistry) that are model-specific rather than di-
rectly translatable. However, optimized and validated immu-
nohistochemical techniques that are applicable across species 
might be advantageous not only for potential significance and 
translation but also for cost efficiency in the laboratory.11,30,36

Inflammation is a common and critical component of many 
diseases7,31 and is morphologically characterized by the presence 
of immune cells at histopathology. Macrophages are important 
immune cells that are quiescent residents in tissues and become 
activated through different pathways to mediate host defense 
and inflammation.32 A wide variety of markers have been used 
to identify macrophages across species, but these often do not 
overlap in function or specificity between species. For example, 
F4/80 has been used as a marker for murine macrophages for 
decades, but humans lack this marker, and the homolog of this 
molecule—EGF-like module-containing mucin-like hormone 
receptor 1—is restricted to eosinophils, not macrophages.14,16 
Identification of immunostaining techniques that have both a 
common marker or labeling technique (or both) would be use-
ful for translational investigations.31 In the current study, we 
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evaluated whether allograft inflammatory factor 1 (AIF1) was 
an effective marker for detecting macrophages in experimental 
tissues from common laboratory animal species.

Materials and Methods
Tissues. All tissues (Table 1) were collected from animals eu-

thanized under approval of the University of Iowa IACUC. All 
IACUC-approved animal protocols were performed in accor-
dance with the Animal Welfare Act,3 Animal Welfare Regula-
tions,4 the Guide for the Care and Use of Laboratory Animals,19 and 
the AVMA Guidelines for the Euthanasia of Animals (2013 edition).2 
Pig tissues were acquired from archival formalin-fixed, paraffin-
embedded blocks from IACUC-approved studies. All other tis-
sues (mouse, rat, and ferret) were harvested immediately after 
euthanasia by the IACUC-approved investigators and fixed in 
10% neutral buffered formalin. In an effort to apply 3Rs prin-
ciples (replacement, reduction, and refinement), these supple-
mental tissue samples were collected from healthy animals that 
were euthanized for other studies and included both naïve and 
experimental animals. Rodents were housed in a nonbarrier 
facility with quarterly health surveillance using dirty-bedding 
sentinels. Sentinels were consistently negative for adventitious 
agents. This strategy allowed for animal tissues to be shared 
(with investigator permission) and used in multiple studies, 
thereby reducing animal use; this process provided a broad va-
riety and number of background strains for rodent tissues (Table 
1). Because of the diversity of sources (age, sex, and so forth), we 
focused our evaluation to the species level.

The collection and use of human lung tissue was approved 
by the Institutional Review Board (University of Iowa); these 
de-identified samples were collected from archival formalin-
fixed, paraffin-embedded tissue blocks. From these samples, 
regions of inflamed and noninflamed lung were identified. As 
an additional experiment, we evaluated AIF1 immunostain-
ing of alveolar macrophages in a model of early hypertension; 
differences in the immune response of hypertensive compared 
with normotensive rats have been reported.13 We collected lung 
tissues from male Wistar Kyoto (WKY) rats and Spontaneously 
Hypertensive Rats (SHR; age, 2.5 mo), because SHR develop 
spontaneous systemic hypertension, whereas WKY rats do not.17

Immunohistochemistry. Immunohistochemistry for AIF1 (pre-
viously known as ionized calcium-binding adapter molecule 1, 
IBA1; or IFNγ-responsive transcript 1) was performed as previ-
ously validated for the detection of microglia in the brains of 
humans and pigs.30 Briefly, formalin-fixed, paraffin-embedded 
tissues were sectioned (thickness, approximately 4 µm), placed 
on glass slides (Superfrost Plus, Fisher Scientific, Pittsburgh, 
PA), baked (60 °C, 60 min; Isotemp Oven, Fisher Scientific), and 
hydrated through a series of xylene and alcohol baths. Heat-
induced epitope retrieval was performed in a citrate buffer bath 
at pH 6.0 (125 °C, 5 min; model DC2002, Decloaking Chamber, 
BioCare Medical, Concord, CA). Slides were incubated in pri-
mary rabbit antiAIF1 polyclonal antibody (dilution, 1:1000; cata-
log no. 019-19741, AntiAIF1/IBA1, Wako Chemicals, Richmond, 
VA) for 1 h room temperature. After washing, the secondary 
reagents (Rabbit Envision HRP System, Dako, Carpinteria, CA) 
were applied according to instructions. Chromogen (DAB Plus, 
Dako) was applied to tissues for 5 min (room temperature), 
followed by DAB enhancer (Dako) for 3 min, and then coun-
terstain (Surgipath Hematoxylin, Leica Microsystems, Wetzlar, 
Germany) for 1 min. Finally tissues were dehydrated through a 
series of alcohol and xylene baths and coverslipped.

For all samples, tissue morphology was examined by 2 
reviewers (KMD and DKM), one of whom is a veterinary 

comparative pathologist (DKM). For semiquantitative and 
quantitative evaluation of tissues, we followed key principles 
for scoring of tissues, such as evaluating immune cells.31 All 
scores were determined by the same reviewer, to decrease in-
terobserver variation, and masking was performed by using the 
postexamination method.12

Staining (that is, brown coloration) intensity of AIF1 in the 
spleen was evaluated by using a semiquantitative scoring sys-
tem: 0, absence of brown staining; 1, mild brown staining that 
did not obstruct viewing of the blue cytoplasmic counterstain; 
2, moderate, distinct brown staining that partially obstructed 
viewing of blue cytoplasmic counterstain; and 3, strong, robust 
dark brown staining that completely obstructed viewing of the 
blue cytoplasmic counterstain. Splenic red and white pulp were 
graded separately for AIF1 staining intensity and compared. 
This staining intensity assessment was adapted from previously 
described approaches and methods.1,28 For the evaluation of the 
hypertensive model, lung data for WKY (n = 3) and SHR (n = 
3) rats were digitally collected from 2 random fields (magnifica-
tion, 100×) for each animal. A masked observer ranked these 
images (n = 12) from least (1) to most (12) activated according 
to macrophage activation based on morphology. Specifically, 
activated alveolar macrophages were examined for larger nuclei 
and cytoplasm and for cytoplasmic foamy change as compared 
with quiescent cells; ranked scores (n = 2 per animal) were aver-
aged for each animal for subsequent statistical analysis. Quan-
titative evaluation of macrophage diameter was made for each 
digital image, and these results were pooled for each animal. 
Scoring data were analyzed (Prism, GraphPad Software, San 
Diego, CA) by using a Wilcoxon matched-pairs signed rank test 
for splenic samples and unpaired t-tests for lung samples. Re-
sults were considered significant at a P value less than 0.05.

Results
Liver samples across species showed multifocal, moderate to 

robust, AIF1 immunostaining in scattered interstitial cells con-
sistent with resident hepatic macrophages (Kupffer cells; Fig-
ure 1 A). Hepatocytes were negative for AIF1 immunostaining 
across species. Lung specimens had moderate to robust AIF1 
immunostaining in scattered interstitial macrophages, but AIF1 
immunostaining was often weak to moderate in most alveolar 
macrophages (Figure 1 B). In spleen (Figure 1 C), moderate to 
robust AIF1 cellular immunostaining was detected in the red 
pulp, with infrequent immunostaining in the white pulp. This 
relative distribution between red and white pulp macrophages 
is expected.49 Comparison of immunostaining intensity showed 
that AIF1 immunostaining was significantly (P < 0.05) more ro-
bust in red pulp compared with white pulp macrophages of 
mice and rats, but the difference did not reach statistical signifi-
cance in ferrets or pigs (Figure 1 D).

A few tissue changes and lesions were discovered inciden-
tally during the study and provided an opportunity to observe 
patterns of AIF1 immunostaining in these situations. A papil-
lary adenoma in the lung of a mouse had scattered robust AIF1 
immunostaining in macrophages within the tumor (Figure 2 
A). A rat lung contained a focal region of inflammation with 
the margination of AIF1+ cells along the vessel wall (Figure 2 
B). In another rat lung, a lymphoid aggregate consistent with 
inducible bronchus-associated lymphoid tissue was detected 
near a branching airway.33 A few macrophages within this tissue 
were moderately to robustly positive for AIF1 (Figure 2 C). In a 
rat liver, a focal chronic lesion had expansion and effacement 
of sinusoids due to AIF1+ macrophages and tissue remodeling 
(Figure 2 D).
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Because we observed robust AIF1 immunostaining in macro-
phages of the inflamed rat lung, we examined samples of non-
inflamed and inflamed human lung tissue to determine whether 
AIF1 immunostaining was similar between these conditions 
(Figure 3 A and B, respectively). In noninflamed lung (Figure 3 
A), AIF1+ macrophages had similar localization patterns (inter-
stitium and alveolar macrophages) as in samples from animal 
models (Figure 1 B), but the inflamed lung had robust AIF1 im-
munostaining in intralesional macrophages and along airspaces 
(Figure 3 B).

We then tested AIF1 in a rat model of hypertension. Immu-
nocytochemistry of alveolar macrophages obtained through 
bronchoalveolar lavage of SHR and WKY rats did not show any 
staining or morphologic differences (data not shown). How-
ever, AIF1 immunostaining (Figure 3 C and D) of WKY alveo-
lar macrophages showed mild to moderate immunostaining 

in a diffuse cytoplasmic pattern, whereas SHR alveolar macro-
phages were often increased in size (cytoplasm and nuclei) with 
central pallor (that is, lack of immunostaining) in the relatively 
foamy cytoplasm. Evaluation of macrophages for morphologic 
evidence of activation and size revealed increases (P < 0.05) in 
both parameters in SHR compared with WKY rats (Figure 3 
E, F). The unusual eccentric immunostaining of alveolar mac-
rophages in the hypertensive rats may reflect early activation 
associated with the initiation of phagocytosis or membrane ruf-
fling34,35 or might represent different subtypes of macrophage 
activation.18

Discussion
We examined whether AIF1 could be used as a macro-

phage marker across species. Using an immunohistochemistry 

Table 1. Origins of tissue samples for AIF1 immunostaining

Species Background No. of animals Sex Age Tissues evaluated

Mouse CD1 2 F 10 mo liver, spleen, lung
Mouse 129a 2 F 5 mo liver, spleen, lung
Mouse 129a 2 M 5 mo liver, spleen, lung
Mouse C57BL/6a 2 M 4 mo liver, spleen, lung
Mouse C57BL/6a 2 F 4 mo liver, spleen, lung
Mouse C57BL/6a 2 F 10 mo liver, spleen, lung
Mouse C57BL/6a 2 M 10 mo liver, spleen, lung
Mouse C57BL/6J 2 F 17 mo liver, spleen, lung
Mouse C57BL/6J 2 M 17 mo liver, spleen, lung
Mouse BALB/c 1 F 11 mo liver, spleen, lung
Mouse BALB/c 1 M 11 mo liver, spleen, lung
Rat Fischer 344 1 M 6 mo liver, spleen, lung
Rat Sprague–Dawley 2 F 5 mo liver, spleen, lung
Rat WKY 2 F 9 mo liver, spleen, lung
Rat WKY 1 M 7 mo liver, spleen, lung
Rat WKY 1 M 9 mo liver, spleen, lung
Rat SHR 2 F 9 mo liver, spleen, lung
Rat SHR 1 M 7 mo liver, spleen, lung
Rat SHR 1 M 9 mo liver, spleen, lung
Rat WKY 1 M 2.5 mo lung
Rat WKY 1 M 2.5 mo lung
Rat WKY 1 M 2.5 mo lung
Rat SHR 1 M 2.5 mo lung
Rat SHR 1 M 2.5 mo lung
Rat SHR 1 M 2.5 mo lung
Rat LE 2 F 17 mo liver, spleen, lung
Rat LE 1 M 22 mo liver, spleen, lung
Rat LE 1 M 18 mo liver, spleen, lung
Ferret Wild type 2 F 6 mo liver, spleen, lung
Ferret Wild type 1 M 22 mo liver, spleen, lung
Ferret Wild type 1 M 11 mo liver, spleen, lung
Pig Wild type 1 F 30-36 h liver, spleen, lung
Pig Wild type 1 F 3 mo liver, spleen, lung
Pig Wild type 1 M 30-36 h liver, spleen, lung
Pig Wild type 1 M 24 h liver, spleen, lung
Human Wild type 1 F 16 y lung
Human Wild type 1 F 17 y lung
Human Wild type 1 M 5 y lung
Human Wild type 1 M 25 y lung
aAnimal was on the respective background with genetic modifications.
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Figure 1. (A through C) AIF1 immunostaining (brown) in tissues and (D) scoring. (A) In liver, AIF1 immunostaining is seen in scattered intersti-
tial cells consistent with Kupffer cells. (B) In lung, AIF1 immunostaining is moderate to robust in scattered interstitial macrophages, with weak 
to moderate staining in alveolar macrophages. (C) In spleen, AIF1 immunostaining in macrophages is prominent in red pulp, with fewer stained 
cells in the white pulp. DAB chromogen and hematoxylin counterstain; magnification, 100×. (D) Ordinal scoring and Wilcoxon matched-pairs 
signed rank analysis of AIF1 immunostaining intensity in splenic macrophages reveals more intense staining in red pulp than white pulp in 
mice (n = 20, P = 0.0002) and rats (n = 15, P < 0.0001); but differences in ferrets (n = 4) and pigs (n = 4) did not achieve statistical significance.
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technique validated in humans, we demonstrated appropriate 
anatomic immunostaining across 4 laboratory animal species 
and 3 organs, thus confirming our initial hypothesis. In addi-
tion, we had the opportunity to demonstrate AIF1 immunos-
taining of macrophages within several incidental tissue changes 
and pathologic lesions in sections. Finally, we tested AIF1 im-
munostaining in a rat model of hypertension and identified 
phenotypic differences in alveolar macrophages. Our combined 
results suggest that AIF1 is a useful marker for the identification 
of activated macrophages.

Historically, AIF1 has primarily been applied as a marker 
of microglia of the nervous system in multiple species.6,8,21,23,41 
In contrast, AIF1 has been used infrequently to detect macro-
phages in other tissues. For example, AIF1 expression has been 
observed in monocytic cell lines20 and in activated macrophages 
after cardiac transplantation of rats and humans.47,48 More re-
cently, AIF1 has been used for macrophage identification in 
ferret inflammation,10 rat uveitis,9 pig lung,29 mouse testis,25 
brain development of NHP,46 histiocytic sarcoma of rabbits,22 
cutaneous disorders of dogs and cats,38 activated microglia in 
medicinal leeches,8 and peripheral blood monocytes in humans 
with rheumatoid arthritis.37 Although these previous studies 
indicated that AIF1 might have the potential for macrophage 

identification across species, our current work demonstrates 
and validates the use of this marker in 4 common laboratory 
animal species. Of note, in many of the previous publications 
regarding this protein, AIF1 was called ionized calcium-binding 
adapter molecule 1 or even IFNγ-responsive transcript 1, but 
AIF1 is currently the preferred nomenclature for the marker 
(www.genenames.org).

Our present study has several limitations and advantages to 
acknowledge. One potential limitation is that we focused on 
only 3 tissues from 4 species of laboratory animals. As such, we 
cannot state with confidence that using the marker in other tis-
sues or other laboratory animal species might be as successful in 
achieving similar sensitivity and specificity patterns. The selec-
tion of the evaluated tissues was advantageous, given that they 
frequently had macrophages in anatomically discreet regions, 
such that we were able to show not only positive immunos-
taining here but also lack of staining in sites and cells that we 
expected to be negative (for example, hepatocytes), thus further 
validating the immunohistochemistry technique. Another ad-
vantage is that we assessed multiple rodent strains in the study, 
thereby suggesting common utility across several rodent strains 
and genotypes. The selection of a polyclonal primary antibody 
that was validated in human tissue was advantageous and 

Figure 2. AIF1 immunostaining (brown color) in (A through C) lung and (D) liver. (A) Several AIF1+ macrophages (arrows) within a papillary 
adenoma of a mouse lung. (B) Several AIF1+ cells (arrows) marginated along the vessel wall in a rat lung. (C) Scattered AIF1+ macrophages (ar-
rows) within inducible bronchus-associated lymphoid tissue localized at the junction of a branching airway in a rat lung. (D) Several AIF1+ mac-
rophages (arrows) in a chronic lesion of a rat liver. DAB chromogen and hematoxylin counterstain; magnification: 200× (A through C), 100× (D).
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supported increased likelihood of marker detection across sev-
eral species, and the required antibody dilution mitigated issues 
regarding nonspecific background staining. The prospective 
use of AIF1 in the same platform (that is, technique) across spe-
cies offers cost savings to the research laboratory and facilitates 

increased importance and immediacy of translation for studies 
in animal models of human disease.

With the ever-widening application of genetically modified 
mice and other laboratory animal species, it is increasingly 
useful to have validated immunohistochemical markers for 

Figure 3. AIF1 immunostaining and scoring. (A and B) Immunostaining of AIF1+ macrophages in human lungs that (A) lacked inflammation or 
(B) had focal inflammation shows enhanced AIF1+ macrophages within and around airspaces. (C and D) Lung samples from (C) WKY rats had 
alveolar macrophages with relatively uniform moderate cytoplasmic AIF1 immunostaining. In contrast, (D) SHR alveolar macrophages were 
larger, with preferentially eccentric cytoplasmic AIF1+ immunostaining. DAB chromogen and hematoxylin counterstain; magnification: 200× 
(A), 100× (B), 400× (C and D). (E) Semiquantitative rank scores for features of macrophage activation (for example, enlarged nucleus, increased 
foamy cytoplasm), P = 0.028 (unpaired t-test) between rat lines. (F) Quantitative scoring of macrophage diameter, P = 0.0016 (unpaired t-test) 
between rat lines.
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humans that function across laboratory animal species.40,50 Mice 
likely will continue to be used extensively in translational re-
search, because they provide a wide range of genetic models, 
have a short life span and high reproductive fecundity, and are 
inexpensive to house. However, some of the challenges and 
pitfalls in translating mouse research studies to humans have 
garnered increased attention recently. Most notable is the recog-
nition that murine models may not accurately demonstrate the 
relevant human pathology (such as for cystic fibrosis, Alzheimer 
disease, and Huntington disease).15,24,26,39,44,45,51 As such, because 
of promising advances in the genetic modification of nonmu-
rine species, large animal models are increasing in use for many 
diseases, thus widening the scope of animal models.27,42,43 The 
validated and common platform of the immunostaining pro-
tocol for AIF1 makes the marker more useful and attractive for 
animal models in translational research.
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