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Heart rate (HR) is determined by the rate of sinoatrial nodal 
discharge and autonomic tone influence.14 Therefore, parasym-
pathetic and sympathetic nervous impulses are responsible 
for decreases and increases in HR, respectively.23 When vagal 
centers in the medulla oblongata are stimulated, acetylcholine 
binds to receptor sites present in the sinoatrial node, decreasing 
the discharge rate. Similarly, the stimulation of sympathetic cen-
ters in the spinal cord produces norepinephrine, which binds to 
β1 receptors sites at the sinoatrial node, increasing HR.14 The au-
tonomic influence determines the adaptive circadian variations 
of HR, due to the prevailing balance of the autonomic impulses 
in the heart.21

The oculocardiac reflex (OCR) is the heart’s physiologic re-
sponse to traction applied to extraocular muscles or digital 
compression of the eyeballs.2,8 This vagal maneuver is obtained 
through the indirect stimuli of the ophthalmic branch of the 
trigeminal nerve, causing negative chronotropic and inotropic 
responses in healthy subjects. The reflex, primarily described 
in human beings, has recently been characterized in conscious 
dogs and rabbits.38

Congestive heart failure (CHF) is a syndrome to which most 
cardiovascular disorders tend to evolve in advanced conditions. 
In CHF, as a result of structural, neural, and electrophysiologic 
remodeling, HR undergoes a sustained increase in response to 

autonomic imbalance.37 Due to a slight fall in systemic arterial 
pressure because of a failing heart, vagal restraint on HR is re-
duced, from either decreased stretching or diminished function 
of arterial baroreceptors. In addition, levels of circulating cacthe-
colamines are elevated in heart failure syndrome, which in turn 
increase sympathetic activation.1 This dysregulated autonomic 
tone leads to increases in resting HR, which is known to influ-
ence the prognosis of CHF.11

Sustained sympathetic activation and parasympathetic with-
drawal have been characterized in numerous cardiovascular 
diseases, and the imbalance is considered an aggravating factor 
in circulatory failure.7,12,25 Numerous measures of autonomic 
function have been proposed, especially in light of their value 
in determining prognosis in structural cardiac diseases and as-
sessing safety in pharmacology studies.5,30 Through surgical 
and pharmacologic means, many researchers have focused on 
documenting the precise mechanisms of impaired autonomic 
function in CHF.9,15,26,33 Nevertheless, the exact role played by the 
autonomic imbalance in the progression of cardiac diseases—
and that of disease progression in autonomic imbalance— 
remains unclear. Therefore, in the current investigation, we 
sought to evaluate the reliability of a novel way to assess the 
level of autonomic imbalance in CHF patients. Dogs diagnosed 
with naturally occurring degenerative mitral valve disease were 
selected, and their response to experimentally induced OCR 
was used as an alternative method to evaluate the integrity of 
autonomic cardiac control.
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Materials and Methods
Domestic dogs (Canis lupus familiaris) included in this pro-

spective transversal observational study were healthy client-
owned pets, patients admitted for regular cardiac evaluation, 
and dogs under preoperative examination for elective surgery at 
a veterinary teaching facility. All animals were housed and kept 
under evaluation for no longer than 40 min, in a room appropri-
ately equipped for cardiac examination and either returned to 
their owners or transferred to receive additional medical care. 
All procedures were previously approved by the IACUC and 
complied with the National Research Council’s Guide for the Care 
and Use of Laboratory Animals.16

To be included in the study, a diagnosis of naturally occurring 
mitral insufficiency was required, which was based on the echo-
cardiographic criteria of impaired valvar anatomy and func-
tion.6 Dogs with echocardiographic evidence of any congenital 
or acquired cardiac disease other than degenerative mitral valve 
disease were excluded from the study, as were patients with 
history of intrathoracic or abdominal tumors, those with oph-
thalmic disorders and brachycephalic dogs. Once selected, the 
dogs were further classified according to cardiac remodeling 
and clinical history regarding signs attributable to CHF, includ-
ing coughing, exercise intolerance, and respiratory distress. The 
3 groups were: NA, no cardiac remodeling and asymptomatic; 
RA, cardiac remodeling present but asymptomatic, and RS, car-
diac remodeling and symptomatic. In addition, healthy animals 
lacking signs of valvular dysfunction were recruited as controls. 
All echocardiograms were performed by experienced veterinary 
cardiologists using an ultrasonography system (MyLab 30, Es-
aote, Genova, Italy) equipped with 5.0- and 7.5-MHz phased 
array transducers (models P240 and P023, Esaote).

Once enrolled in the study, dogs were maintained in right 
lateral recumbency by using gentle physical restraint to obtain 
ECG tracings. Toothless alligator electrodes were attached to 
the skin and wet with alcohol to improve electrical conduction. 
The left and right arm electrodes were placed at the elbows, 
and the left and right leg electrodes were placed on the stifles. 
ECG was performed continuously and uninterrupted for 5 min. 
During the last minute, manual ocular compression was applied 

by using the thumbs to exert continuous digital force over the 
superior eyelids of both eyes simultaneously for 1 min, until the 
5-min ECG run was complete. The operator made a conscious 
attempt to always place the thumbs at the center of both supe-
rior eyelids. The amount of pressure applied was empirically 
estimated as the force sufficient to cause slight retrobulbar dis-
placement of the eyes without induction of any physical signs 
of ocular or physical discomfort, such as changes in HR, vocal-
ization, or body movement. No instruments, such as pressure 
gauges, were used to quantify the pressure exerted on the eye-
lids. To avoid interinvestigator discrepancy, the same investiga-
tor, who was blinded to patients’ clinical conditions, performed 
all ocular compressions in all dogs. Poor-quality recordings and 
ECG tracings in which arrhythmias prevented a continuous run 
of 20 RR intervals of sinus rhythm were not used in the study.

Once the recording was over, the ECG tracing was used to 
calculate the mean RR interval (MRR), standard deviation of RR 
intervals (SDNN), root mean square of successive differences 
in RR intervals (RMSSD), and vasovagal tonus index (VVTI), 
which is an alternative indicator of HR variability and was ob-
tained by using the natural logarithm of the variance of 20 con-
secutive RR intervals. These indices were calculated according 
to the following equations:4,35

where N is the number of RR intervals, NL is the natural loga-
rithm, and VAR is the variance. Each index was calculated twice 
for every tracing: the first one before the beginning of ocular 
compression and the other 20 s after the beginning of ocular 

Table 1. Descriptive statistics (either mean ± 1 SD or median [interquartile range]) of the recruited population categorized according to echo-
cardiographic and clinical criteria in healthy controls and mitral insufficient dogs with no cardiac remodeling or symptoms (NR), remodeled 
hearts but no symptoms (RA), or remodeled heart and symptoms (RS)

Controls (n = 16) NR (n = 31) RA (n = 10) RS (n = 11) P

Age (y) 2.2 (1.5–8.0)A 11.0 (9.0–13.0)B 11.0 (8.5–12.0)B 13.0 (12.0–14.2)B <0.0001a

Sex (female/male) 10/6 (63% ± 34%) 18/13 (58% ± 42%) 7/3 (70% ± 30%) 5/6 (45% ± 55%) —

Weight (kg) 9.0 (9.0–17.0) 9.7 (5.3-13.7) 8.6 (5.8–13.6) 7.1 (5.1–9.0) 0.1028
Left ventricular internal diameter during 62.5 ± 15.3A 67.3 ± 17.2A 75.7 ± 14.9A,B 90.6 ± 17.0B 0.0003

  diastole relative to body surface area (mm/m2)
Left ventricular internal diameter during 36.2 (24.7–42.6) 34.4 (29.3–39.8) 40.7 (34.6–46.3) 41.7 (37.0–49.9) 0.0906a

  systole relative to body surface area (mm/m2)
Wall stress index during diastole 3.8 ± 1.4 3.6 (0.9) 4.1 ± 0.9 4.1 ± 1.0 0.4128

Wall stress index during systole 1.3 ± 0.3 1.3 (0.4) 1.3 ± 0.7 1.3 ± 0.4 0.9102

Fractional shortening (%) 43.2 ± 5.9A 46.9 ± 8.8A,B 43.2 ± 10.0A,B 51.9 ± 6.5B 0.0327

Left atrium:aorta 1.2 (1.1–1.3)A 1.1 (1.0–1.2)A 1.6 (1.4–1.7)B 2.1 (1.9–2.3)B <0.0001a

Mitral E wave (cm/s) 82.8 ± 19.1A 66.4 ± 10.7B 92.5 ± 18.6A 151.9 ± 30.5C <0.0001
Mitral E wave:A wave 1.4 (1.0–1.6)AB 0.9 (0.7–1.2)A 1.1 (0.8–1.4)A 2.3 (1.6–3.2)B <0.0001a

Isovolumic relaxation time (ms) 58.0 (40.2–56.2) 51.0 (43.0–60.5) 51.0 (41.5–51.2) 35.0 (17.5–49.5) 0.1514a

E wave/isovolumic relaxation time 1.5 (1.1–2.4)A 1.3 (1.1–1.6)A 1.7 (1.4–2.2)AB 3.9 (2.5–9.6)B <0.0001a

Within each row, different uppercase letters indicate values that differ significantly (P < 0.05).
aNonparametric analysis.
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compression. In addition, echocardiographic indices of conges-
tion and cardiac function were documented for posterior cor-
relation and included the left atrium:aorta ratio, body surface 
area-indexed left ventricular internal diameter during diastole 
and systole, wall stress index in diastole and systole, fractional 
shortening, mitral E wave velocity, mitral E-to-A ratio, isovolu-
mic relaxation time, and mitral E-to-isovolumic relaxation time 
ratio.6

All data underwent Shapiro–Wilk testing to check for nor-
mal distribution. To investigate differences between groups, 
ANOVA followed by Tukey multiple-comparison tests were 
applied to MRR and VVTI data, and Kruskal–Wallis testing fol-
lowed by the Dunn test was used for SDNN and RMSSD data. 

Later, Mann–Whitney and t tests were used to compare non-
parametric and parametric pre- and postOCR data, respectively, 
for each index in every group. The percentage change in each 
index was analyzed, by using the variation between pre- and 
postOCR values, and Kruskal–Wallis and Dunn tests were used 
to compare these data among groups. Finally, either the Pear-
son or Spearman test was used to assess whether correlations 
existed between the percentage change in each index and the 
echocardiographic parameters of congestion and cardiac func-
tion. All analyses were performed by using GraphPad Prism 
(version 5.0, San Diego, CA) with default settings. For all analy-
ses, the level of significance was defined as a P value less than 
0.05.

Figure 1. Box plots depicting the effect of the oculocardiac reflex (OCR) on the (A) mean RR interval (MRR), (B) standard deviation of the RR 
intervals (SDNN), (C) root mean square of successive differences in RR intervals (RMSSD), and (D) vasovagal tonus index (VVTI), which were 
used as surrogates for autonomic control in healthy control dogs and mitral insufficient dogs with no cardiac remodeling (NR), cardiac remod-
eling but no symptoms (RA), or cardiac remodeling and symptoms (RS). Hatched boxes represent the parameters recorded after OCR. Outliers 
are shown; + indicates the mean.
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Results
We recruited 68 client-owned dogs for this study. Several 

breeds were represented, and the dogs varied from 1 to 16 y 
in age and from 2.5 to 32 kg in weight. Beagles (n = 8), Dachs-
hunds, (n = 6), and Miniature Pinschers (n = 5) were overrep-
resented in the study population. Body weight did not differ 
between groups (P = 0.3943), but age differed between the con-
trol and RS groups (P = 0.0074). Descriptive statistics of the stud-
ied population are summarized in Table 1.

We assigned 16 healthy dogs as controls, and 31, 10, and 11 
dogs were assigned to the NR, RA, and RS groups, respectively. 
The box plot graphs in Figure 1 demonstrate how the OCR in-
terfered with indicators of autonomic balance in all dogs regard-
less of cardiac condition. In addition, a significant difference 
between groups emerged when the values of all 4 parameters 
obtained during ocular compression were compared: for every 
index, the symptomatic group presented significantly lower 
values than control and NR groups. In the NR group, ocular 
compression significantly increased SDNN (from 49.7 to 87.3, 
P = 0.0002), RMSSD (from 289.7 to 506.4, P = 0.0003) and VVTI 
(from 8.1 to 8.9, P < 0.0001), whereas healthy controls demon-
strated an increase in VVTI (from 8.1 to 8.9, P = 0.0278) only. 
Remodeled groups showed no significant variation in any of 
these parameters after compression.

When we calculated the percentage change between values 
before and after OCR, only VVTI in the RS group yielded a sig-
nificant difference (P = 0.0419). Despite the absence of signifi-
cant differences, plotting the data revealed numerically higher 
absolute values for SDNN and RMSSD in the control, NR, and 
RA dogs than for the RS group. In addition, in the RS group, 
these parameters also tended to increase after OCR (that is, neg-
ative value) rather than decrease (that is positive change value) 
in the control and asymptomatic groups (Figure 2).

Regarding the echocardiographic indices of congestion and 
function, weak negative correlations were found between 
SDNN and the wall stress index during systole (R = –0.2508), 
left atrium:aorta ratio (R = –0.3558), and mitral E (R = –0.2714), 
as well as between RMSSD and body surface area-indexed left 
ventricular internal diameter during systole (R = –0.2695), wall 
stress index during systole (R= –0.3188), and left atrium:aorta 
ratio (R = –0.2810). In addition, VVTI percentage change was 
correlated with various echo indices (Figure 3) In contrast, no 
correlation existed between MRR and the collected echocardio-
graphic data.

Discussion
CHF is characterized by autonomic imbalance, which results 

in sustained elevation and diminished variability of HR.34 In 
the current study, we characterized this autonomic imbalance 
by means of a reduced response to a vagal maneuver in a natu-
rally occurring canine model of mitral valve insufficiency. First 
described in people,2,8 the OCR is a peripheral subtype of tri-
geminal cardiac reflexes and an important cause of profound 
bradycardia during ocular surgery, especially in pediatric pro-
cedures.10 Moreover, manual compression of the eyeballs, either 
together or individually, significantly decreases HR in dogs.38

Experimental evidence of increased sympathetic and reduced 
vagal tone in CHF has encouraged the development of quantita-
tive markers of autonomic activity.36 HR variability is an impor-
tant measure of autonomic tone and is defined as the fluctuation 
in time between normal sinus beats (RR intervals).39 Although 
assessing the autonomic nervous system is not simple, HR 
variability indices have proved to be clinically useful, because 
analyses of beat-to-beat changes in HR provide sensitive and 

early information regarding impaired cardiac function, even 
before clinical signs develop.36 These indices typically are ob-
tained by linear methods of either time or frequency domain 
analysis.5,39 The time–domain analysis consists of statistical cal-
culations based on normal RR intervals. In the current study, 
we used MRR, SDNN, RMSSD, and VVTI—all of which have 
been used to assess autonomic dysfunction in both dogs4,22,28,38 
and humans.20,35,36,39 However, this current investigation is the 
first to assess how vagal stimulus through digital ocular com-
pression interferes with these parameters. Although SDNN is 
influenced by short-term high-frequency variations as well as 
low-frequency components, reflecting total autonomic activ-
ity, only high-frequency variations, which usually are related 
to parasympathetic influence, are thought to play a role in the 
other 3 parameters.5,36

In our study, the symptomatic group responded differently 
during digital ocular compression than every other group. The 
lack of response to OCR in RS dogs, as demonstrated by the 
absence of significant changes in all 4 parameters, is in accor-
dance with the parasympathetic withdrawal in human patients 
with CHF.9 This information has since been supported by many 
studies that have assessed autonomic function during CHF in 
various species.11,13,21,31 More importantly, this finding illustrates 
not the lack of vagal activity but rather a diminished response 
to parasympathetic stimuli in these patients. In addition, the 
lack of significant difference between the RS and RA groups for 
MRR and VVTI (Figure 1) supports the theory that some grade 
of autonomic imbalance precedes clinical evidence of cardiovas-
cular disorders.36

In the before-after analyses within each group, the param-
eters in the RS group not only appeared to respond less to OCR 
but also behaved opposite to other groups, showing a clear ten-
dency to increase with this classic vagal maneuver. This interest-
ing finding might be attributable to the previously mentioned 
parasympathetic withdrawal together with subtle sympathetic 
activation due to discomfort related to eyeball compression, 
which is likely disguised in dogs in which the vagal response is 
preserved. However, the other and more intriguing explanation 

Figure 2. Median percentage change (before oculocardiac reflex – 
after oculocardiac reflex) of the surrogates used to assess autonomic 
balance in healthy control dogs and mitral insufficient dogs with no 
cardiac remodeling (NR), cardiac remodeling but no symptoms (RA), 
or cardiac remodeling and symptoms (RS) undergoing manual ocular 
compression to induce the oculocardiac reflex. *, P < 0.05.
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is that, in addition to parasympathetic withdrawal, patients in 
CHF have increased sensitivity to sympathetic activation.11,17,31 
This hypothesis becomes stronger when the percentage vari-
ation of the surrogates obtained for each group in our study 
are considered. The opposite behavior of the RS group is most 
likely a result of sustained sympathetic tone rather than tran-
sitional sympathetic activation. In addition, the clear similar-
ity between the NR and RA groups and the control, otherwise 
healthy group, as compared with the RS dogs, suggests that, 
unlike parasympathetic withdrawal, which appears to be pres-
ent at initial stages, sustained sympathetic activation is more 
evident in overtly affected patients. Similar findings have been 
previously documented in people with CHF.3,7

The significant correlation between the before-after percent-
age variation of the surrogates of cardiac autonomic regulation 
and the echocardiographic indices of congestion and function 
supports the theory that individual response to OCR diminishes 
with the progression of cardiac disease. In severe cases of mi-
tral valve regurgitation, volume overload leads to left atrial and 
ventricular remodeling, both of which are associated with clini-
cal onset.29 Many echocardiographic indices tend to become  
altered when an asymptomatic mitral insufficient dog progresses 
into symptomatic CHF.6 Therefore, the significant correlations 
that we found here likely support the decreased parasympa-
thetic role as CHF becomes overt. This finding is in accordance 
with data previously documented in people,3,9 dogs,21 and rats.24

Figure 3. Scatter plots depicting the correlations between the percentage change in VVTI and the (A) left atrium-to-aorta ratio, (B) mitral E wave, 
(C) isovolumic relaxation time, and (D) mitral E wave-to-isovolumic relaxation time ratio. *, P < 0.05.
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An important limitation of this research is the impossibility 
of controlling external factors that potentially interfere with 
autonomic tone, including stress and fear. Most dogs enrolled 
in this study were calm and quiet during the procedure and 
appeared to tolerate the ocular compressions. However, some 
animals were more resistant to physical restraint and more un-
comfortable by the end of the maneuver, likely resulting in in-
tensification of sympathetic tone. In addition, the significant 
age difference between the control group (average, 2.2 y) an-
dRS group (average, 13 y) may represent a confounding factor, 
leading to questions regarding whether advanced age plays a 
role in autonomic imbalance, regardless of cardiac condition. 
However, the vast existing data supporting parasympathetic 
withdrawal during CHF in many different species and the fact 
that our study used dogs with naturally occurring mitral insuf-
ficiency, in which prevalence and progression increase markedly 
with age, strongly validate the obtained results.

Another limitation of this study was the absence of a mecha-
nism to estimate the exact amount of compression applied over 
the eyelids, to increase the precision and repeatability of the 
response. Nevertheless, this somewhat empirical methodology 
has been used in several other investigations with humans and 
animals18,19,27,32 and therefore is considered a standard model, 
to some extent. We are currently investigating a modified elec-
tronic von Frey anesthesiometer to elicit OCR by using a con-
trolled amount of pressure applied on the eyelids.

In this study, dogs with naturally occurring mitral insuffi-
ciency were used as an animal model of heart disease leading 
to CHF, with the purpose of investigating autonomic imbal-
ance. The vagal maneuver, represented by manual compres-
sion of the eyeballs, was a reliable, simple, and quick technique 
to demonstrate the deterioration of cardiac autonomic regula-
tion as mitral insufficiency progresses toward CHF. Dogs with 
CHF demonstrated signs of parasympathetic withdrawal and 
increased sustained sympathetic activation when exposed to 
OCR. These findings contrasted with those from both the as-
ymptomatic and control dogs, in which lack of parasympathetic 
response to ocular compression was not observed. Although 
many questions still remain regarding the exact influence of 
the autonomic nervous system in cardiovascular disorders, we 
believe our finding regarding the response to a simple vagal 
maneuver helps to shed light on how the autonomic nervous 
system behaves during CHF and may aid in defining prognosis.
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