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Aspergillosis is an opportunistic fungal airborne infection 
caused by ubiquitous saprophytic molds that belong to the 
Aspergillus genus.69 Infection has been documented in humans and 
animals and usually occurs through the inhalation of unicellular 
spores—known as conidia127—or, more rarely, after ingestion or 
wound contamination. In humans, Aspergillus-related diseases 
show a broad clinical spectrum,186 ranging from chronic local-
ized aspergilloma to acute invasive aspergillosis, and are depen-
dent on the patient’s underlying medical condition.118 Similarly, 
Aspergillus-related diseases are quite variable in animals, and 
every species has susceptibility for developing aspergillosis.215

Further progress regarding the pathophysiologic process 
and virulence of Aspergillus spp. is expected,42 but recent major 
advances include the identification of underlying genetic risk 
factors based on single-nucleotide polymorphisms in genes af-
fecting the host immune response.61 However, the diagnosis 
of aspergillosis remains difficult because tools are inaccurate 
or nonstandardized.69 Moreover, treatment is limited by the 
unavailability of antifungal drugs, their high cost, and phar-
macodynamics or pharmacokinetic properties that are difficult 
to manage.236 Animal models of aspergillosis can be used to  
address all of the pending issues.56,97,185

In this overview, we discuss Aspergillus fungus and its related 
diseases as well as the technical parameters, benefits, and limita-
tions of various animal models of aspergillosis.71

Description of Aspergillus fungus. Aspergillus spp. belong to 
the Ascomycotina phylogenetic clade and to the Eurotiales order.68 
These organisms are very prevalent in the environment and are 
commonly found in soil and on plants, in decaying organic mat-
ter, and in humid places.186 Overall, Aspergillus spp. represent 
1% to 7% of the environmental fungi.192

Approximately 185 ubiquitous Aspergillus species have been 
described thus far.69 Microscopically, all have a filamentous, 
hyaline, and septate mycelium. In humans, Aspergillus fumigatus 

is isolated from more than 80% of clinical samples positive for 
Aspergillus spp., regardless of the medical context and the nature 
of the biologic specimen.69 In animals, A. fumigatus infection 
has been reported primarily in birds and, more rarely, in honey 
bees, dogs, cats, horses, cetaceans, and monkeys.215 In addition 
to the small size of A. fumigatus spores (diameter, approximately 
2 to 3μm)186 and its ability to rapidly grow at 37 °C,30 several 
virulence factors are involved in its pathogenic power: pro-
duction of the pigment melanin;240 discharge of proteolytic en-
zymes, including elastases60 and lipases,1 and toxins including 
gliotoxin;60,176 and the possession of adhesion factors including 
hydrophobins.60 Notably, A. fumigatus is often misidentified as 
other species of the same Fumigati section, including Neosarto-
rya udagawae, A. lentulus, N. pseudofischerii, and A. viridinutans, 
which all have very similar phenotypic characteristics.125 Among 
the other Aspergillus sections, A. niger, A. flavus, A. terreus, and A. 
nidulans are sometimes reported as pathogens, but each of these 
species is generally less virulent than A. fumigatus.186

Difficulties in managing Aspergillus-related diseases in  
humans. Innate immunity and bronchotracheal mechanical 
defenses aid in clearing Aspergillus conidia from the airways. 
In immunocompetent patients, macrophages and neutrophils 
play a critical role in this process, together with mucociliary 
clearance.47 Soluble molecules including lysozyme, defensins, 
and surfactant proteins help in controlling infection and delete-
rious inflammation.250 When these means of defense are entirely 
or partially abolished, Aspergillus spores initiate a filamentous 
expansion, which marks the beginning of the pathogenic pro-
cess for aspergillosis.47

In humans, Aspergillus-related diseases are varied, and their 
clinical spectrum depends on the host’s immune status and 
underlying medical condition. The Aspergillus syndromes are 
primarily classified according to their degree of invasiveness 
and their anatomic locations. Invasive aspergillosis is the most 
severe form of Aspergillus disease and is usually encountered in 
highly immunocompromised patients;142 its prevalence is high-
est in neutropenic patients undergoing chemotherapy for acute 
myeloid leukemia.31,142 In bone-marrow transplant patients, the 
incidence of invasive aspergillosis has been estimated as 7% 
to 13%.130 Invasive aspergillosis occurs in 1% to 6% of patients 
with solid-organ transplants and more often in those with lung 
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transplants than kidney or liver transplants.87 The symptoms of 
invasive aspergillosis first involve the lungs but can be general-
ized with dissemination, especially in the brain.117 Symptoms 
usually include antibiotic resistant fever ≥38.5 °C for more than 
48 h, cough, chest pain, and difficulty in breathing.69 Invasive 
aspergillosis continues to be associated with high morbid-
ity, and mortality rates range from 30% to 70%.110 Many other 
syndromes caused by Aspergillus spp. have been described in 
humans, including allergic bronchopulmonary aspergillosis, 
which affects patients with respiratory diseases such as asthma, 
cystic fibrosis, and sinusitis.154 In allergic bronchopulmonary 
aspergillosis, persistent colonization with Aspergillus conidia 
induces an excessive immune reaction toward hyphae, which 
evolves in situ5 and leads to the formation of an aspergilloma 
(a ‘fungus- ball’), which can develop within preexisting cavities 
created by previous diseases, such as tuberculosis and sarcoid-
osis.229 In addition, aspergillomas can occur in natural cavities, 
including the maxillary sinus or the sphenoid and ethmoid 
sinuses. Involvement of the frontal sinus remains extremely 
rare.29 Eye infections including keratitis are usually superficial 
and limited and are the consequence of trauma with contami-
nated plants.124

Low sensitivity and specificity limit current diagnostic meth-
ods for aspergillosis.7 Therefore, to increase the chance for ac-
curate diagnosis, recent guidelines recommend to use several 
tests at a time concomitantly.11,67 Histopathology remains the 
reference standard for confirmation of the aspergillosis diagno-
sis. When positive, biopsy samples from lung or other infected 
tissues show septate hyphae. However, the septa are not always 
apparent and, in such cases, filaments may be mistaken for 
zygomycota. Aspergillus spp. filaments usually range in diameter 
from 2.5 to 4.5 µm and are dichotomously branched primarily at 
acute angles of approximately 45°.69 Use of silver stains, includ-
ing Gomori methenamine–silver staining, give the fungal walls 
a gray–black color and makes them easier to observe on a slide 
preparation. However, because invasive procedures to collect 
biopsy samples are sometimes difficult to perform in weakened 
patients, other diagnostic alternatives are important. Computed 
tomography is a readily available imaging approach that may 
be highly suggestive of invasive aspergillosis when a halo sign 
and, at later stages of infection, an air-crescent sign are observed 
in the lungs.35

Mycologic cultures obtained from respiratory samples allow 
the identification of the Aspergillus section according to the spe-
cific phenotypic characteristics of the growing colony, including 
color, size, and microscopic features;69 from that point, DNA 
sequencing is needed to confirm the species. Importantly, a posi-
tive culture does not establish the diagnosis of a true infection; it 
might merely reflect simple colonization of the upper airways, 
given that Aspergillus spores are ubiquitous.186 In neutropenic 
patients with invasive aspergillosis, detection of the Aspergillus 
galactomannan antigen (a specific cell-wall carbohydrate compo-
nent of Aspergillus) can aid in diagnosis. However, false-positive 
Aspergillus galactomannan tests have been obtained from non-
neutropenic patients148 and in persons who undergo intrave-
nous antibiotic treatment, are injected with fluids containing 
gluconate or citric acid, or receive parenteral nutrition.130,151 In 
addition, tests using pan-fungal cell-wall biomarkers includ-
ing (1→3) β-D-glucans in blood are available, but they do not 
allow differentiation between invasive aspergillosis and other 
fungal diseases. Consequently, these tests should be considered 
as a way to exclude fungal infection when negative.126,130 Quan-
titative PCR analysis still lacks standardization for detecting 
Aspergillus DNA in blood or respiratory samples and thus has 

not been included in the pivotal criteria for definitive diagnosis 
yet.69,130,148 AntiAspergillus antibody detection is only valuable for 
the diagnosis of chronic aspergillosis,187 including aspergilloma 
and allergic bronchopulmonary aspergillosis. Overall, most se-
rologic assays still are hampered by a lack of reproducibility due 
to poor standardization.177 Such limitations delay the initiation 
of antifungal therapy.

The current treatments for aspergillosis are based on anti-
fungal drugs and surgery, used either alone or in combination. 
The choice is made according to the clinical presentation, the 
anatomic location of the disease, and the underlying medical 
condition. Voriconazole (an azole drug) and liposomal ampho-
tericin B (a polyene) are the 2 most commonly used medica-
tions in cases of invasive aspergillosis. As monotherapy, they 
are prescribed for at least 12 wk and often for several months.236 
Posaconazole is now preferred for prophylaxis.146 For allergic 
bronchopulmonary aspergillosis, which is less aggressive and 
a more chronic process compared with invasive aspergillosis, 
findings suggest the use of oral corticosteroids for 6 to 9 mo.163 
Because itraconazole is considered to have a ‘steroid-sparing’ 
effect, which increases their efficacy and thus allowing decreased 
doses, it is often given with corticosteroids.75 Surgical debride-
ment or lobectomy are recommended for aspergilloma when 
the lesion is small and easily accessible,65 and long-term oral an-
tifungal therapy is sometimes needed for cases of complicated 
aspergilloma, which can cause hemorrhage when the masses are 
too close to large blood vessels.

High variability of Aspergillus-related veterinary diseases. 
Aspergillus spp. has been found worldwide in almost all do-
mestic and wild animals, ranging from insects and corals to 
NHP.215 Compared with its incidence in humans, aspergillosis 
is a common infection in birds, particularly pet parrots, pen-
guins, captive raptors, mallards and other ducks, turkeys, and 
Japanese quail, in which it causes pulmonary and air sac in-
fection.80 Aspergillosis has also been described in cats and in 
dolichocephalic and mesocephalic dogs in which it remains an 
uncommon disease affecting only the nasal passages.215 In large 
animals, Aspergillus infection is assumed to be rare but has been 
reported with increasing frequency.2 It can lead to various dis-
eases like mycotic abortion and gland infection in cows as well 
as guttural pouch involvement in horses.215 In marine mammals, 
airways are usually initially affected leading to pneumonia, but 
other organs including the brain may also be infected following 
fatal dissemination.2

In all of the animal species just mentioned, the diagnosis of 
aspergillosis remains very challenging. The methods are similar 
to those described earlier for the human disease. Overall, veteri-
nary diagnostic tools are less developed and have infrequently 
been validated in large trials.39,62 Additional difficulties exist re-
garding the definition of an appropriate cutoff value and disease 
staging in animals. Briefly, measurement of galactomannan an-
tigen in blood was shown to have inconsistent reliability in rap-
tors, waterfowl, and falcons but was more valuable in turkeys 
and chickens.80,82 The ubiquitous presence of similar carbohy-
drates in the environment can result in false positives;14 there-
fore repeated assessments are usually encouraged. Detection 
of antiAspergillus antibody is almost always positive in some 
birds, including penguins, even when the animals are clinically 
normal.58 Furthermore, advanced diagnostics including medi-
cal imaging are not readily available in every veterinary facility. 
The use of quantitative PCR analysis for Aspergillus has not been 
validated for use in animals.

Antifungal treatment for animals is often based on low-cost 
azoles, including clotrimazole, enilconazole, and itraconazole, 
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delivered through the topical, oral, or nebulization route. Poly-
enes, such as desoxycholate amphotericin B and nystatin, and 
allylamines like terbinafine are potential alternatives in Asper-
gillus-infected animals.26

Goals and contributions of animal models of aspergillosis. The 
development of animal infection models can help to address 
the pathophysiologic processes of aspergillosis22 as well as the 
appreciation of the fungus virulence, the assessment of diag-
nostic tools,21,24,252 and therapeutic effects of antifungal drugs.23 
These complex questions demand different technologies but can 
clearly benefit from the use of valid animal models. In spite of 
some inherent limitations that are detailed below, models have 
been designed to reproduce the clinical course and the signs of 
the disease as observed in human patients and potentially pro-
vide reliable answers to scientific questions, while being more 
reproducible and cost effective than clinical trials.56,181

Thus far, animal models have already provided relevant an-
swers regarding aspergillosis. A vast majority of all reported 
work has brought accurate information about immunopathol-
ogy, for example, disease transmission, innate and acquired 
host-response, genes and proteins involved in fungal invasion, 
susceptibility to infection.71 For example, genetic knockout mod-
els have revealed that IL6, IL12, and IFNγ were protective fac-
tors against A. fumigatus40,51,63 and that IL17, TLR4, and TLR2 are 
greatly important in the innate response.79,233 Aspergillus-infected 
TLR2 knockout mice have low TNFα and IL12 levels as well as 
lower survival and higher tissue fungal burden than infected 
immunocompetent mice.19,27 Other studies have focused on 
preclinical therapy (pharmacology, pharmacokinetics, toxicol-
ogy),83,190,213 and on diagnostic and imaging approaches.252 For 
example, the therapeutic potential of posaconazole against 
aspergillosis has been demonstrated in mice.34 In addition, a 
mouse model of cerebral aspergillosis was used to show that 
combined therapy comprising either caspofungin and ampho-
tericin B lipid complexes or caspofungin and liposomal ampho-
tericin B has not enhanced first-line treatment.50,102,144 Similarly, 
using an endocarditis model in guinea pigs,152 investigators 
demonstrated the superiority of voriconazole over itraconazole 
to cure aspergillosis. Furthermore, a few studies described the 
interesting use of several mouse infection models that offered 
the opportunity to study aspergillosis in specific contexts, in-
cluding solid-organ transplantation,96 bacterial superinfection,253 
and concurrent with chronic granulomatous disease.66,165 Key 
articles regarding animal models of aspergillosis are grouped 
by topic in Figure 1.

General description of the various available animal models 
of aspergillosis. Several mammalian species have been used as 
models for aspergillosis,71 most frequently mice,44,56,136 rats48,70,86,129 
guinea pigs,113 and rabbits.9,44,46 In addition, some investigators 
have described experimental aspergillosis in nonconventional 
laboratory species, including NHP147 and cows.106

Mice. Mouse models are the focus of more than 85% of the 
publications on experimental aspergillosis.56,136 The first pub-
lication was in 1967.81 Mice and humans show similarities in 
organs and systems, biochemistry, and pathology. In addition, 
this species is relevant as an animal model because the mouse 
and human genomes are less than 1% different.169 Moreover, 
mice are inexpensive, and their body size allows the use of a 
relatively large number of animals to be tested simultaneously 
under identical conditions, which can enhance the power of 
statistical analysis. Laboratory reagents dedicated to mouse 
models are readily available especially those for addressing 
the disease–host response. Young mice with lower weight 
are assumed to be more susceptible to infection because 

they require a lower fungal inoculum for the infectious chal-
lenge. However, compared with rabbits and other rodents, 
the small size of this species permits only small volumes 
of blood to be collected. Moreover, repeated sampling is dif-
ficult, especially from animals with decreased clinical condi-
tion. In addition, the small lung size of mice may contribute 
to the different kinetics compared with humans. At the same 
speed of fungal growth, the much smaller murine lung will 
be overwhelmed much faster than the human lung, with pos-
sible consequences regarding the likelihood of hematogenous  
dissemination.3,101,230,248

More than 20 distinct mouse strains have been used to study 
aspergillosis in studies, and they all display substantial differ-
ences of susceptibility to infection.66,131,132 Outbred mouse strains 
like Albino Swiss Webster140,178,184,224 and CD120,145,201,214,218,231,242 
primarily have been used especially for therapeutic assays. 
Outbred Swiss OF1172,199,209 and NMRI12,13 mice were tested in 
pharmacologic–pharmacokinetic and toxicologic studies. The 
DBA2 inbred strain, which is deficient in C5 complement, was 
shown to be highly susceptible to experimental aspergillo-
sis,41,95,254 whereas C57BL/6, BALB/c, and CD2F1 inbred mice 
were less likely to develop invasive aspergillosis, although they 
provided a permissive background for maximal expression 
of most mutations.95 Targeted mutations in innate and adap-
tive immunity are ideal models for forward screening of genes 
that have a role in the susceptibility or resistance to invasive 
aspergillosis and have provided new insights into pathophysi-
ology. For example, 129/Sv mice have been used for this pur-
pose.78,88,143,227,247 C57BL/6 mice have been useful for inducing 
mutations in gp91phox or gp47phox genes to generate defective oxi-
dative burst in phagocytic cells, to address chronic granuloma-
tous disease.64,76,111,196,206,248 In this model, subacute aspergillosis 
developed even with a very low fungal inoculum.10 Other stud-
ies in infected mice demonstrated that IL6, IL12, IL4, IL10, IL12, 
IL17, IFNγ, TLR4, and TLR2 play important roles in regulating 
the immune response against Aspergillus.40,51,63

Mice have also been successfully used to address other forms 
of aspergillosis, such as cerebral infection45 and allergic diseases, 
especially Aspergillus bronchitis.198 Unlike traditional murine 
models of allergic airway disease, which use ovalbumin, models 
of fungus-induced inflammation and atopy do not require ad-
ditional adjuvants,123,156 because fungal allergen proteases alone 
elicit adjuvant effects to usually innocuous proteins.179 Thus, 
such models in C57BL/6 mouse strains iteratively exposed to 
Aspergillus are excellent tools for the study of airway hyperreac-
tivity and allergic inflammation in response to conidia and spe-
cific hyphal antigens. For example, these models demonstrated 
that protease allergens (for example, Asp f13 and Asp f5) may 
be more important than nonprotease allergens for atopy and 
inflammation, although their specific roles in airway hyperreac-
tivity—that is, Th2 cytokine induction manifested by increased 
levels of IL4 and elevated IgE levels in serum—and airway wall 
remodeling are only partially elucidated to date.77 The use of 
relatively Th2-dominant mouse strains, such as BALB/c, or 
mice with inducible Treg deficiency results in a model that more 
closely resembles allergic bronchopulmonary aspergillosis 
rather than bronchitis.160,249 Studies using these animal models 
have provided important insights into evaluating the activity 
of therapeutic agents for diverse allergic conditions,153,197 innate 
immunity,197,198 and B-cell, T-cell, cytokine, and chemokine re-
sponses against A. fumigatus.79,164,170

Rats. Rats are a viable model species, given their ease of use 
and the availability of immunologic reagents.43,70 These ani-
mals accommodate large volumes of blood and other biologic 
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specimens, including bronchoalveolar lavage fluid.72 In addi-
tion, rats are amenable to repeated sampling, and the animals 
are relatively inexpensive in terms of housing and purchase.

Rat models have primarily been used to address invasive 
aspergillosis with an initial pulmonary course.70,72,92 Studies 
in rats have addressed new treatments23,121,171 and diagnostic 
methods21,24,252 as well description of disease.22 In addition, these 
rodents are relevant models for studying cerebral aspergillosis: 
their median survival time (around 3 d) was consistent with the 
course of the human disease; the animals developed similar his-
topathologic patterns, with high numbers of cerebral abscesses 
containing abundant fungal hyphae and neutrophils, to those in 
humans; and the infection spread to peripheral organs in more 
than 80% of challenged rats.257

Male adult rats have frequently been used in models of in-
vasive aspergillosis.203,246,257 Challenging young rats (that is,  
6 to 8 wk old) is critical to being able to use a reduced fungal 
inoculum and increasing their susceptibility to infection.43,70 
Outbred strains including Sprague–Dawley, Wistar albino, and 
albino×CD rats have typically been used,43,48,70 because they 
were judged as excellent multipurpose models for safety and ef-
ficacy testing. Inbred strains including RP, Lewis, Dark Agouti, 
and albino×Oxford strains have been used in studies relating to 
immunology and inflammatory responses.158,159,191,243

Other rodents and small mammals. Guinea pigs and rabbits 
have shown good correlation with humans regarding specific 
aspects of invasive aspergillosis.121,181 For example, guinea 
pigs have been used to study fungal endocarditis,152 and rab-
bits have been used in a model of fungal keratitis.116 Rabbits 
emerged as a relevant animal model because they are naturally 
highly susceptible to infection.211 In addition, their larger size 
than mice and rats accommodates serial sampling including 
repeated blood collection and bronchoalveolar lavage. Rab-
bits do not manifest an acute infection pattern; studies have 
addressed therapeutic questions linked to clinical efficacy and 
pharmacodynamics–pharmacokinetics of antifungal drugs.36,202 
Moreover, rabbits are considered to have a comparable in vivo 
metabolism to humans.90 However, despite all of their valuables 
features, rabbits and guinea pigs have been used infrequently 
to study aspergillosis, perhaps due to expense, husbandry 
concerns, and lack of immunologic reagents as compared  
with mice and rats.

Key technical parameters for animal models of aspergillosis. 
Generating optimal conditions for experimental infection. An 
example experimental invasive infection protocol for aspergil-
losis in rats is illustrated in Figure 2.43 All animal models except 
birds14 require immunosuppression to generate a reproducible 
invasive infection.71 Animals are usually rendered neutrope-
nic through repeated injections of alkylating drugs, including 
intraperitoneal cyclophosphamide,70,129 or immunomodulated 

through injections of subcutaneous steroids.212 Alkylating drugs 
bind to DNA during cellular replication and thus induce pro-
found leukopenia.43,70,108 The histologic and radiologic features 
of animal models treated with alkylating drugs were highly 
similar to those of profoundly neutropenic infected patients, 
such as those undergoing leukemia.43 However, the leukopenic 
animal models are currently becoming less relevant, because 
the characteristics of human patients infected with A. fumigatus 
have been progressively changing over time and are now at de-
creased risk for invasive disease, especially because of the sys-
tematic use of antifungal prophylaxis.142,238 Steroid usage yielded 
a pathogenesis pattern distinct from that of neutrophil-depleting 
drugs, which affect alveolar macrophage function and thus 
reduce the first barrier to pulmonary infection. Steroid-treated 
animal models have been used to mimic patients with solid-organ 
transplants or those with stem cell transplants undergoing 
graft-versus-host disease. Hydrocortisone and triamcinolone 
both affect both T- and B-cell lymphocytes and decrease the pro-
duction of cytokines, thus compromising the adaptive immune 
response against invasive aspergillosis.150,232 Overall, steroid-
treated models manifest massive inflammation with excessive 
neutrophil recruitment that results in insufficient fungal clear-
ance, whereas leukopenic models induced by alkylating drugs 
enable unrestricted fungal growth.

Steroid-treated animal models mimic a different human pa-
tient group than those treated with alkylating agents; thus the 
2 types of models provide different information. For example, 
gliotoxin acts as a virulence factor in corticosteroid-treated but 
not in leukopenic mice. Use of alkylating drugs or steroids is 
not expensive but quite reliable, provided that the protocol of 
immunosuppression is consistently applied. Many doses have 
been described, including single or repeated applications. Over-
all, cortisone at 100 to 200 mg/kg SC 3 times a week for the 2 wk 
before experimental infection and cyclophosphamide at a 150 
mg/kg IP 3 times during the week before infection have been 
used most commonly in mice. Injections can be continued after 
the infectious challenge. Some investigators have used lower 
dosages to minimize other infections.43 Other immunosuppres-
sive medications, including tacrolimus and cyclosporine A, 
have been tested but with less success.43,46,180 Some investiga-
tors have used monoclonal antibodies, such as Ly6 (Gr1) rat 
IgG2b MAb57 (clone RB6-8C5), to achieve neutrophil depletion. 
This strategy yields a rodent model that specifically reflects as-
pects of invasive aspergillosis during immunoreconstitution 
in humans.8,25,98,109,207,213,222,248 In addition to the various conven-
tional immunosuppressive protocols, some investigators have 
used protein deficiency to reproduce the clinical conditions in 
which aspergillosis preferentially affects weakened, malnour-
ished patients.43,212 Given the risk of concomitant bacterial in-
fection in immunocompromised rodents, germ-free housing 

Figure 1. Selected articles addressing important topics regarding animal models of aspergillosis
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and prophylactic antibiotics are recommended.208 Tetracyclines, 
β-lactamins, and fluoroquinolones can be provided in the food 
or drinking water or by injection.208

Because other Aspergillus-diseases are not directly dependent 
on the host immunologic status, immunocompromise need not 
be introduced in corresponding animal models.

Choosing the best route for experimental infection. Several 
routes of infection have been described to induce experimen-
tal aspergillosis in animal models.71 Nebulization of Aspergillus 
conidia within a sealed plastic inhalational chamber has been 
used to reproduce the natural pathophysiology of aspergillo-
sis.221,225,235 Controlling the infection is difficult in such devices,235 
because animals are free to passively breathe at their own pace 
(Figure 3 A). Standardizing nebulization protocols is difficult 
because the number of fungal elements inoculated into lung 
tissue is variable, and animals do not react consistently.221,225 
In the inhalational model, the fungal inoculum that is effec-
tively deposited is estimated as 1.0 × 104 spores per mouse, but 
sometimes with great variability, such that a large volume of 
fungal suspension typically is needed to initially generate the 
Aspergillus cloud inside the device.99,100 In contrast, intravenous 
inoculation leads to homogenous infection that is readily re-
producible. This route is likely the easiest to standardize and 
can require fewer animals than inhalational models. A mean 
inoculum size of 1.0–2.0 × 107 conidia is sufficient, regardless 
of the animal model. In general, the first target organs are the 
kidneys and brain, followed by the spleen and liver.105 However, 
as with intraperitoneal inoculation,211 intravenously induced 
infection does not mimic natural aspergillosis, which is usu-
ally not a blood-inoculated disease in humans and animals.104 
Alternatively the deposition of a few droplets of spore suspen-
sion into the nares can be considered close to natural infection 
(Figure 3 B), but the development of aspergillosis was quite 
variable in challenged immunocompetent mice, due to their 
upper mucociliary clearance which can expel as many as 1.0 × 
108 conidia daily.73 However the deposition of fungal solution 
into the nares deposited only approximately 10% of the dose 

into the lungs,149 fungal burdens were smaller with higher stan-
dard deviations, and generated less homogenous pneumonia.225 
Pulmonary aspiration after intranasal deposition was suggested 
to drive the spore suspension toward the lung alveoli.133–135 In 
addition, dissemination typically is limited to the liver when 
using rats,24,43 whereas CNS involvement occurs in many  
mouse models.136,194

Some investigators have used bronchotracheal inoculation as 
an alternative method, in which the spore suspension is depos-
ited through a tracheotomy in anesthetized animals (Figure 3 C).16 
With this method, the fungal inoculum is tightly controlled and 
deposited in a sinopulmonary organ for aspergillosis develop-
ment.121,212 In addition, surgery is minimal and bypasses only 
the upper airways and their putative defenses.14 Noninvasive 
procedures, such as deposition into the caudal oropharynx of 
anesthetized rodents, in which normal breathing results in fluid 
aspiration into the lungs,138,139,175,206,219,228 and novel devices (for 
example, Microsprayer Aerosolizer [PennCentury, Wyndmoor, 
PA]) achieve reproducible bronchotracheal inoculation without 
surgery.43,70 As shown in Figure 3 D, administration of the fungal 
inoculum is relatively easy.43 General anesthesia of 4 to 5 min 
per animal is sufficient to complete serial inoculations on sev-
eral subjects. In addition, Microsprayer devices have been tested 
successfully in mice and rats.43,70,72 Overall, disseminated models 
are used commonly for therapeutic studies. In contrast, the vast 
majority of studies that address the host response and fungal 
factors contributing to invasive aspergillosis are performed with 
pulmonary models.

In models of allergic aspergillosis, sensitization is achieved 
through repeated administration of a low-dose fungal inocu-
lum, delivered by using similar devices as for bronchotracheal 
inoculation.32 In contrast, alternative routes of experimental in-
fection have been chosen to address some very specific forms 
of invasive aspergillosis; these routes include local eye inva-
sion during endophthalmitis or ulcerative keratitis;49,107,137,251,255 
cerebral infection55,166 after abrasion or removal of the corneal 

Figure 2. General protocol for Aspergillus experimental infection in animal models.43,70 This flowchart indicates the estimated timing for major 
events, based on a model involving neutropenic rats challenged by intratracheal nebulization of A. fumigatus conidia. The duration of a protocol 
depends on the experimental design but lasts 15 to 30 d on average. In most invasive models, immunosuppression is needed to make the ani-
mals susceptible to experimental infection. Unique or repeated administration of alkylating drugs or steroids has been mostly described in the 
published literature. The regimen starts a few days to 2 wk before the Aspergillus challenge. Animals are then inoculated with Aspergillus conidia 
(day 0). Several routes of infection have been reported, including intravenous injection, nebulization, and intranasal or intratracheal deposition. 
Generally, the onset of clinical signs occurs 48 to 72 h after experimental inoculation (days 2 to 3). After that time, the animals become moribund 
from aspergillosis. At the end of protocol, surviving animals and controls are euthanized and examined through necropsy, histopathology, and 
mycologic culture, among other methods.173
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epithelium;37,200 and direct injection through the central area of 
the frontal bone45,155 or inside the cisterna magna.257

Selecting the Aspergillus strain. A review of the literature re-
vealed great variability regarding the Aspergillus strains used 
in experimental animal models.71 This choice might influence 
conclusions from the studies,204 although only a few reports 
thoroughly addressed variations in virulence among distinct 
Aspergillus strains.94 The decision regarding which strain to use 
depends on the scientific question. For example, hypovirulent 
strain that induces lower mortality is more useful for study-
ing the benefits of various diagnostic tools during early-stage 
disease and throughout the course of the disease. Conversely, a 
hypervirulent strain is more suited to assess overall survival in 
preclinical therapeutic assays, when mortality rates are almost 
100% without intervention. In the light of its widespread his-
torical use,174 AF293 (also known as ATCC MYA4609 and CBS 
101355) is the strain used most often, although it is known to be 
less virulent than others. Dal/CEA10 (that is, ATCC MYA1163 
or CBS 144.89) has also been used. CEA10 is the parental strain 
for a strain deficient for nonhomologous recombination, a fea-
ture that makes the construction of genetically modified fungal 
strains significantly more efficient. Other Aspergillus species in-
cluding A. flavus, A. terreus, A. niger and A. nidulans have been 
less studied.108,168

The size of the Aspergillus inoculum for the challenge dose 
is a matter of debate, although dose-dependent correlation be-
tween the number of conidia and the severity of infection is as-
sumed.45,51,52 However, the infectious dose depends not only on 
the strain but also on the mode of immunosuppression. For the 
CEA10 strain, as few as 5.0 × 104 conidia were sufficient to induce 
lethal aspergillosis in leukopenic mice, whereas the dose lethal 
to 90% of corticosteroid-treated mice was 10- to 20-fold higher. 
In addition, broad dose ranges have been noted depending on 
the inoculation route: for example, from 1.0 × 102 to 1.0 × 109 
for mice infected through intranasal route.89,244 In contrast, the 
intravenous route has demonstrated an excellent infection:dose-
to-mortality ratio211 and requires a lower Aspergillus inoculum 
than do nasal and pulmonary routes as well as the inhalational 
model, for which 1.0 × 109 conidia/mL in 12 mL of suspension 
are usually needed for nebulization inside a chamber.99,100,225 In-
tratracheal challenge is generally achieved with 1.0 to 2.0 × 107 
conidia.33,85,162 It should be noted that standardized culture con-
ditions and preinfection technical steps (incubation temperature 
and humidity, age of culture, diluent, and method for conidia 

counting) are mandatory to ensure reproducibility. Therefore, 
providing this necessary information in publications is critical.

Refinement and endpoints to relevantly assess the outcomes. 
Refinement: attempts to improve the animal welfare. Investiga-
tors should thoroughly consider opportunities for refinement 
before initiating animal protocols. When assessing therapeutic 
effect or diagnostic performance, researchers must use a sta-
tistical power analysis to justify that they have sufficient (but 
not excessive) numbers of animals to estimate accurately to an 
appropriate level of precision. As with human clinical trials, 
estimation of the number of subjects to include should take 
into account several pivotal parameters: the primary outcome, 
method of comparison, and the type of variable measured (for 
example, binary [mortality, success rate of a procedure, and so 
forth] or continuous [weight, number of neutrophil leukocytes, 
and so forth] or discrete [number of respiratory episodes and 
so forth]).

Once challenged, animals should be checked twice daily, 
given the rapid onset of clinical signs and morbidity in most 
models. Thorough monitoring is suggested and should start 
from the second day after experimental inoculation when clini-
cal status begins to deteriorate. Ideally, the experiments should 
be designed in such a way as to minimize mortality, except for 
preclinical therapeutic assays aimed at evaluating effects on 
mortality.54 However, animal models of invasive aspergillosis 
usually develop according to an acute pattern, and avoiding 
death as protocol endpoint can be difficult.72,119 To improve ani-
mal welfare and to enable the collection of sufficient biologic 
specimens (blood, tissue, and so forth) prior to sudden death, 
euthanasia should be decided on the basis of clinical scores, 
such as those obtained by using validated grids assessing vari-
able endpoints and visible criteria.38,167 For example, one scoring 
system evaluates twice daily the discomfort level according to 
a scale that scores the animal from 1 to 6 on the basis of appear-
ance changes (dirty nose, red-rimmed eyes, ruffled fur, extreme 
pallor, and so forth), physiologic behavior changes (gasping, 
wheezing, bleeding, respiratory distress, icteric urine, prostra-
tion, instability, lethargy, and so forth),22,43,70 reaction to stimuli, 
body temperatures changes,4 and variation of body weight loss 
≥20% of baseline. An empirical example of such a scale might 
be: score 1, no discomfort; 2, minor discomfort; 3, marked dis-
comfort; score 4, serious discomfort; score 5, severe discomfort; 
score 6, death.43,72,167 As an alternative, in vivo imaging is a non-
invasive method to monitor disease progression and fungal 

Figure 3. Examples of different routes for experimental infection. (A) Hermetically sealed inhalational chamber in which the Aspergillus spp. 
spore suspension is nebulized. Contact of the animals (here, rats) with the spore ‘cloud’ must be prolonged, and the amount of inoculum is vari-
able. (B) Intranasal deposition of Aspergillus spp. conidia suspension into mouse nares. (C) Instillation of the Aspergillus spp. spore suspension di-
rectly into the rat trachea by using a tuberculin syringe. This protocol requires that animals are anesthetized and tracheotomized. (D) Instillation 
of Aspergillus spp. spore suspension directly into the trachea by using the Microsprayer Aerosolizer (PennCentury) device. The Microsprayer 
Aerosolizer is composed of a metal elbow with a screw-on syringe adaptor; the device sprays a liquid solute in fine droplets due to a prism 
placed at its end. The anesthetized animal is positioned on a work stand, which is then tilted at 45° to allow for intubation. An otoscope is used 
as a laryngoscope. Spores are deposited directly at the bottom of the trachea, without surgery, because the device has the same curvature as the 
airways of the animal. Reprinted with permission from Guillaume Desoubeaux and Centre d’Etude des Pathologies Respiratoires, Tours, France.
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burden in leukopenic mice; this approach has the potential to 
significantly reduce the number of animals needed in therapeu-
tic studies. Other imaging techniques have also been shown to 
be helpful.193 In addition, the detection of galactomannan anti-
gen has been reported to be useful for defining endpoints for 
euthanasia.43

Methods for validating the development of experimental infec-
tion and assessing fungal load. Assessments are needed to ensure 
that the disease develops correctly and that the animal model 
reliably mimics aspergillosis.71 Serum measures of BUN, creati-
nine, ALT, and AST have been reported as indirect nonspecific 
biomarkers that reflect the effects of invasive aspergillosis.224 
Necropsy confirmation of infection is highly recommended.120 
When positive, histopathology provides unquestionable evi-
dence of aspergillosis.91 Mycologic cultures from lungs or other 
organs enable relative quantification of the fungal burden 
through colony counting, but overall culture-based methods are 
hampered by insufficient interlab reproducibility and are time-
consuming. However, because of dead fungus and dormant 
spores remaining in the lung, these methods underestimate as-
sessments of the fungal load.211 In addition, mechanical homoge-
nization, particularly of lung parenchyma, can result in possible 
underestimation due to the multicellular filamentous nature of 
Aspergillus spp., because a single disrupted filament can give 
rise to an unknown number of colonies.57,217 Furthermore, differ-
entiating simple colonization from actual invasive infection can 
be difficult, especially in guinea pigs.114 Therefore, nonculture-
based methods, used alone or in combination, can provide more 
precise monitoring of the experimental disease.43,132,241,256 The chi-
tin assay, which measures a specific cell-wall fungal component, 
makes it possible to quantify the infection in lung and other 
tissues.23 However, such tests can only be performed after the 
animal has been euthanized and may be time-consuming when 
large numbers of samples must be analyzed.18 Determination of 
galactomannan antigen in blood has been used often because it 
reflects the progressive increase in mycelium load due to tip ex-
tension of hyphae57 and thus the extent of infection in challenged 
animals.241 Variable sensitivity or specificity occurred depending 
on the species tested.59,80 Although promising, the application of 
(1→3) β-D-glucans measurement and quantitative PCR analy-
sis needs to be thoroughly validated in animal models.157 For 
example, PCR analysis is assumed very specific and sensitive, 
especially when targeting multicopy genes,132,157 but it does not 
indicate the viability of the fungus, and some false-negative is-
sues due to the limitations of the DNA extraction method can 
arise.157,220,256 Measurement of surrogate endpoint biomarkers 
alone is insufficient to diagnose the actual extent of disease119 
and therefore should be coupled with the aforementioned cri-
teria.

Several pending problems and the urgent need for standard-
ization in animals models of aspergillosis. The knowledge ac-
cumulated over decades from animal models of aspergillosis 
demonstrates their utility for reproducing clinical infection in 
humans and animals. However, there is no consensus currently 
regarding the best experimental methodology. Overall, choices 
regarding the optimal animal species, strain, sex, and weight to 
use vary widely. In addition to invasive models, high variability 
occurs regarding immunosuppressive regimen, fungal strain, 
level of inoculum, and route for infectious challenge. Several 
standardization initiatives for invasive models of aspergillo-
sis are available.210 Furthermore, methods-based publications 
should be cited in studies, to provide an important resource 
for facilitating standardization and comparability93,136,234 and to 

improve the foundation for evaluating novel diagnostic tools 
and treatment regimens.115,237

In addition to the current lack of standardization, animal 
models might be criticized for poorly paralleling actual human 
disease. For example, in allergic models, repeated challenge with 
antigens, extracts, or conidia does not result in airway coloniza-
tion with live hyphae, bronchiectasis, or mucus plugging—all of 
which hallmarks of allergic bronchopulmonary aspergillosis in 
human patients. Therefore, these models likely more accurately 
reproduce Aspergillus-induced asthma or severe asthma with 
fungal sensitization rather than allergic bronchopulmonary as-
pergillosis or Aspergillus bronchitis.128,229 Overall, the availability 
of an animal model in which hyphae actively grow within the 
airways and produce a wide range of immunoreactive secondary 
metabolites would be a useful tool for studying host–pathogen 
interactions during allergic bronchopulmonary aspergillosis 
and therapeutics. For invasive models, experimental aspergil-
losis typically develops in challenged animals according to a 
hyperacute process that follows a unique and massive exposure. 
For example, infected rabbits die within an average of 5 to 10 d, 
rats between 3 and 7 d, and mice 4 to 7 after infection. In con-
trast, aspergillosis develops according to an indolent pattern in 
humans and naturally infected animals, due to continuous or 
repeated exposure to a much smaller number of conidia.

To address this limitation, some investigators suggest de-
creasing the infectious inoculum or reducing the immunosup-
pressive regimen slightly.168 Others propose a model involving 
agarose beads coated with Aspergillus spores so that the fungus 
remains alive for several weeks before the initiation of the im-
munosuppressive regimen, thus mimicking continuous expo-
sure to molds as might be encountered in the environment.173 
Mice infected for 6 wk with conidia-containing beads first de-
veloped chronic noninvasive airway infection with A. fumigatus. 
By day 7 after challenge, intraluminal leukocyte infiltration was 
already accompanied by peribronchial inflammation, composed 
of both neutrophils and mononuclear cells, and persisted in the 
lungs of mice for as long as 1 mo.239 Subsequent treatment with 
cortisone acetate 2 wk after the beginning of the colonization 
led to the development of invasive aspergillosis, suggesting that 
this model may be excellent for studying the pathogenesis that 
occurs in patients with underlying chronic lung disease.

No single model can answer all of the questions regarding 
Aspergillus, and each has its own limitations. However, the 
development and use of animal models suitable for basic and 
translational studies remains a key to aid in future advances 
against aspergillosis.
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