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A CBC analysis is one of the most common diagnostic tests 
performed in clinical medicine. This test can detect a variety of 
ongoing changes throughout the body by measuring multiple 
components of blood, including the concentrations of RBC and 
WBC. In this study, we sought to measure the specific changes in 
peripheral WBC populations caused by acute and chronic stress-
ors. These changes have already been established as a ‘stress 
leukogram’ in many mammalian models and a few teleost spe-
cies.35 Altered levels of circulating leukocytes reflect a physiologic 
response to a rise in endogenous glucocorticoid concentrations, 
such as cortisol, that often occurs after a stressful event. As in oth-
er species, studies have shown that zebrafish respond to stressful 
stimuli with a rise in cortisol.12,21,23 However, zebrafish studies to 
date have not investigated the specific effects of cortisol on WBC 
populations.

In mammals, stress-induced glucocorticoid secretion is regulated  
by the HPA axis. This axis consists of 3 major endocrine glands 
that share a complex set of interactions involving positive and 
negative feedback mechanisms. Studies have shown that fish reg-
ulate stress-induced glucocorticoid secretion similarly to mam-
mals but by the hypothalamic–pituitary–internal axis.1,31 This axis 
is analogous to the mammalian HPA axis and shares extensive 
homologies between the different components, including many 

of the main endocrine glands involved in mammals.14,27 Although 
zebrafish do not have a separate adrenal gland, their head kidney 
tissue is analogous to the adrenal cortex in mammals, and gluco-
corticoids are synthesized and secreted by the interrenal tissue.31 
One large advantage of using zebrafish in stress research is that 
the final product of this stress-regulating system is cortisol, which 
is the primary glucocorticoid in humans.27 In contrast, murine 
models synthesize and secrete corticosterone, a weak glucocor-
ticoid in humans that primarily serves as an intermediate in the 
formation of aldosterone.27

Although both the HPA and hypothalamic–pituitary–internal 
axes play a major role in cortisol secretion during stress, endog-
enous cortisol concentrations are also mediated by 2 important 
intracellular corticosteroid receptors that are expressed in both 
mammalian and teleost tissues, the mineralocorticoid receptor 
and the glucocorticoid receptor (GR). Most fish contain 2 isoforms 
of the GR, thought to have arisen from a whole-genome duplica-
tion event occurring 350 million years ago.18 Zebrafish, in con-
trast, are similar to mammals in that they contain only a single 
GR isoform.1 This similarity is important from the standpoint that 
duplicated genes can acquire new functions,3 making zebrafish an 
even more favorable model organism for stress studies.

The purpose of the current study was to examine the defin-
ing morphologic characteristics of individual WBC types (lym-
phocytes, monocytes, neutrophils, eosinophils) and ultimately 
analyze the effects of acute and chronic stressors on periph-
eral WBC populations. To illustrate a direct link between rises 
in endogenous cortisol and changes in peripheral WBC, we 
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used ELISA to measure plasma cortisol concentrations in both 
stressed and nonstressed groups of fish. We show that acute and 
chronic stressors increase plasma cortisol concentrations and 
subsequently alter WBC populations in circulating blood. These 
results have important implications, not only in the progres-
sion of clinical zebrafish pathology but also in the use of zebraf-
ish as an animal model for human and mammalian stress and  
hematologic research.

Materials and Methods
Animals and husbandry. Adult wild-type zebrafish were pur-

chased from Aquatica BioTech (Sun City Center, FL). All fish were 
acclimated to the facility for 1 wk prior to any treatment and were 
maintained in recirculating 3-L tanks at 28 ± 2 °C. Fish were kept 
on a 14:10-h light:dark cycle and fed a commercial fish diet (Tet-
raMin Tropical Flakes, Tetra Spectrum Brands, Blacksburg, VA) 
twice daily. All experimental procedures were approved by the 
University of Missouri’s IACUC and were performed according 
to the guidelines set forth in the Guide for the Use and Care of Labo-
ratory Animals.15

Acute stress protocol. After a 1-wk acclimation period, 11 adult 
fish were randomly selected to undergo a series of 2 alternating 
3-min long acute stressors performed every 27 min (total time, 
108 min). Stressors comprised full-body exposure to air by sus-
pension in a net (air stress) and swimming at extremely low water 
levels (low-water stress), such that the dorsum of the fish was 
exposed to air (Figure 1). Before the application of the stressor, 
11 adult fish were sampled and served as controls. At 108 min 
after the initial start of the protocol (15 min after the last stressor 
was performed), all fish were euthanized by using previously 
described techniques.8 Fish were individually placed in a 50-mL 
conical tube containing 20 mL 0.1% (100 mg/L) clove oil in sterile 
water.

Chronic stress protocol. A chronic unpredictable stress para-
digm was modified from a previous study.5 Zebrafish were 
exposed to stressors twice daily for 5 d. A detailed list of the 
stressors used is provided in Figure 2. To avoid potential habitua-
tion to stressors, the specific stress paradigm and its timing were 
chosen randomly each day (Figure 2).

Blood collection and hematologic analysis. Immediately after 
euthanasia of each fish, blood was collected into a heparinized 
capillary tube by using cardiocentesis. This method was modi-
fied from a technique described previously.26 Blood smears were 
prepared from whole blood and stained with Wright–Giemsa 
(Hematek Slide Stainer, Siemens Health Care Diagnostics, Tarry-
town, NY). The slides were examined and leukocyte differentials 
performed under oil immersion at 100× magnification.

Serum collection and cortisol ELISA. Blood was collected by 
sharp transection of the caudal peduncle a few millimeters cranial 
to the caudal fin. Fish were then placed in a fenestrated microtube 
(0.6 mL) nested within a 1.5-mL microfuge tube for centrifuga-
tion at 400 × g for 5 min at room temperature. The 1.5-mL tubes 
containing the blood samples were centrifuged at 13,800 × g,  
4 °C for 15 min. Supernatants were recovered, and the serum was 
stored at –80 °C until analysis. Serum cortisol concentrations were 
determined by using a cortisol ELISA kit (Salimetrics, Carlsbad, 
CA) according to the manufacturer’s instructions. The sensitivity 
of the assay is less than 0.007 μg/dL, and cortisol concentrations 
were read on a plate reader (SpectraMax M3, Molecular Devices, 
Sunnyvale, CA).

Statistics. Data were analyzed by using Prism (GraphPad Soft-
ware, La Jolla, CA). Statistical significance was set at a P value of 
less than 0.05. Leukocyte counts and cortisol data were analyzed 
by using 2-way ANOVA, with treatment (control compared with 
stress) and type of stressor (acute compared with chronic) as the 
2 factors. A Student–Newman–Keuls posthoc test was performed 
for pairwise comparisons.

Results
Characterization of zebrafish leukocytes based on morphology. 

According to morphologic characteristics, 4 WBC types were 
present in peripheral blood of adult zebrafish (Figure 3). Differ-
ential counts indicated that lymphocytes were the predominant 
leukocyte, followed by lower percentages of monocytes and neu-
trophils (Table 1). Eosinophils comprised the smallest percentage 
of circulating leukocytes and were rarely found on peripheral 
blood smears (Table 1).

Lymphocytes varied in shape and size but mainly had a round 
appearance, with sporadic pseudopodia lining the cytoplasmic 
border (Figure 3 A through D, J, and K). Occasionally, lympho-
cytes morphed around surrounding cells (Figure 3 C). The lym-
phocyte nucleus generally remained round and occupied more 
than half of the cytoplasm. The cytoplasm of lymphocytes varied 
from light blue containing small pink granules (Figure 3 C and D)  
to deeply basophilic (Figure 3 J and K). In addition, sporadic 
vacuoles were dispersed throughout the cytoplasm. The mor-
phologic differences in the lymphocytic lineage most likely reflect 
the different types of lymphocytes present in peripheral blood. 
The differentiation of plasma cells, T cells, and natural killer cells 
according to morphologic characteristics alone has not been de-
scribed for zebrafish. Although thrombocytes might be mistaken 
for small lymphocytes,16 examining cellular characteristics by 
using Wright–Giemsa stain revealed the smaller size and clear 
cytoplasmic border of thrombocytes, allowing them to be distin-
guished from small lymphocytes in zebrafish.

Monocytes, at times, had a similar appearance to lymphocytes 
but were distinguished by their larger size, irregularly ovoid nu-
cleus, smaller nuclear:cytoplasmic ratio, and increased amounts of 
vacuoles throughout a lighter cytoplasm (Figure 3 E through G).  

Figure 1. Acute stress paradigm.

Figure 2. Chronic stress paradigm.
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Occasionally, they appeared exceptionally large and contained 
engulfed material within phagosomes (Figure 3 G).

Neutrophils, also known as heterophils, were well differen-
tiated from other leukocytes, with a grainy, clear to pale-blue 
cytoplasm (Figure 3 H through K). The nucleus of neutrophils 

varied, taking on a segmented, band, or round appearance.  
Eosinophils, the other granulocytic cell in zebrafish, were larger 
than neutrophils, and, unlike in mammals, circulating eosinophils 
contained basophilic cytoplasmic granules on Wright–Giemsa 
staining (Figure 3 L). Zebrafish eosinophils had a peripheral 

Figure 3. Microstructure of peripheral blood cells in zebrafish. (A–D) Lymphocyte (arrow). (E and F) Monocyte with vacuoles in cytoplasm (arrow). 
(G) Monocyte engulfing material (arrow). (H) Neutrophil with peripheral nucleus (arrow). (I) Neutrophil with segmented nucleus (arrow). (J and K) 
Lymphocyte (arrow) and monocyte (asterisk). (L) Eosinophils (arrows). Wright–Giemsa stain; bars, 10 µm.
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nucleus with a dense chromatin pattern, but nuclear borders 
were often obscured by the overwhelming vacuolization within  
the cytoplasm.

Serum cortisol levels. Serum cortisol was measured in control 
fish and in both groups of stressed fish (Figure 4). Compared with 
levels in controls, serum cortisol concentrations were significant-
ly higher in acutely and chronically stressed fish (F1,56 = 29.58,  
P = 0.00586; F1,56 = 29.58, P = 0.0000268, respectively; Figure 4).  
A trend toward greater serum cortisol concentrations in the acute-
ly stressed group compared with the chronically stressed group 
was noted (F1,56 = 29.58, P = 0.067; Figure 4).

Leukocyte differentials. The relative percentages of circulating 
leukocytes in peripheral blood were significantly altered after ei-
ther acute or chronic stress paradigms (Figure 5). Acutely stressed 
fish exhibited a relative decrease (F1,32 = 43.10, P = 0.0000319)  
in lymphocytes (Figure 5 A) and increase in both monocytes  
(F1,32 = 32.73, P = 0.00920; Figure 5 B) and neutrophils (F1,32 = 4.058,  
P = 0.0246; Figure 5 C) compared with percentages in control  
fish. Chronically stressed fish shared a similar relative decrease 
(F1,32 = 43.10, P = 0.00129) in lymphocytes (Figure 5 A) and increase  
(F1,32 = 32.73, P = 0.000122) in monocytes (Figure 5 B) but did not 
exhibit a change in neutrophils compared with the control group 
(Figure 5 C). Relative eosinophil counts did not differ in either 
acutely or chronically stressed fish (Figure 5 D). However, one 
chronically stressed fish with no apparent disease had a higher 
proportion of eosinophils, consisting of 10% of the leukocyte 
population.

Discussion
The use of zebrafish as models for stress research has been in-

creasing rapidly in recent years. Studies have already outlined 
the mechanisms of cortisol secretion and regulation in zebrafish, 
mechanisms that share extensive homologies with mammalian 
models.12,20,23,27 Like humans, zebrafish respond to stressful stimuli 
by activating the hypothalamic–pituitary–internal axis and ulti-
mately increasing endogenous cortisol secretion. Our study eval-
uated this response one step further and illustrated the changes 
in peripheral leukocyte populations that accompany increased 
serum cortisol concentrations. These changes can be identified as 
a stress leukogram in zebrafish.

Stress leukograms vary among species but are typically char-
acterized by lymphopenia and neutrophilia, with occasional 
monocytosis and eosinopenia. Our findings in both acute and 
chronic stress groups were consistent with mammalian models, 
demonstrating a relative decrease in circulating lymphocytes in 
all stressed subjects. The exact mechanisms of cortisol and its ef-
fects on circulating leukocytes have not been well defined. Lym-
phopenia is the result of an immediate shift of lymphocytes from 
the circulating blood to other tissues, but the specific location is 

unknown. Glucocorticoids can induce apoptosis of lymphoid 
cells in both mammals and fish,24,30,33 and chronic exposure to  
glucocorticoids can lead to lymphotoxicity, lymphoid hypoplasia, 
and decreased lymphopoeisis.17,28

In addition, monocytosis was present in both our chronic and 
acute stress groups. This effect is most likely the result of a shift 
from a marginalized to a circulating population of monocytes. 
The direct mechanisms of this shift are still unknown but may 
be due to changes in the expression of adhesion molecules and 
chemotactic cytokines to interfere with the trafficking of leuko-
cytes into tissues.6 Neutrophilia occurred only in our acute stress 
group, and similar to the situation with monocytes, a relative 
shift of neutrophils into circulating blood most likely contributed 
to this change. However, in vitro studies have also shown that 
cortisol can inhibit neutrophil apoptosis in carp, an effect that 
is mediated specifically by glucocorticoid receptors.32 The fact 
that circulating neutrophils did not increase in our chronically 
stressed group might be due to the downregulation of different 
glucocorticoid receptors during chronic exposure to increased 
cortisol concentrations. Cortisol concentrations are regulated by 
these receptors, which are located intracellularly in various tis-
sues, including blood leukocytes. One study demonstrated that 
chronic elevation in plasma cortisol downregulates corticoste-
roid receptor concentrations in the gills of coho salmon.25 Another 
study illustrated the downregulation of mRNA levels of glucocor-
ticoid receptors in the brain of carp as a result of prolonged expo-
sure to stress.29 It is clear that glucocorticoid receptors and cortisol 
concentrations have an extensive relationship based on various 
feedback mechanisms, but the role they have on circulating WBC 
populations in zebrafish has yet to be explored.

Table 1. WBC differential counts (%) in control and acutely and chronically stressed zebrafish

Acute Chronic

Control group (n = 11) Stressed group (n = 11) Control group (n = 7) Stressed group (n = 7)

Mean ± SEM Range Mean ± SEM Range Mean ± SEM Range Mean ± SEM Range

Lymphocytes 76.36 ± 2.48 64–92 54.55 ± 3.25 38–74 80.00 ± 2.69 70–90 59.29 ± 4.17 42–74

Monocytes 11.64 ± 2.32 4–32 22.55 ± 2.99 10–42 8.57 ± 1.94 2–16 30.14 ± 3.36 18–46

Neutrophils 10.91 ± 1.93 2–18 23.64 ± 4.87 8–62 10.57 ± 2.89 4–22 9.14 ± 2.86 2–22

Eosinophils 0.91 ± 0.41 0–4 0.18 ± 0.18 0–2 0.86 ± 0.40 0–2 1.43 ± 1.43 0–10

Figure 4. Serum cortisol concentrations (µg/dL) in zebrafish from con-
trol and acutely and chronically stressed groups. Serum cortisol lev-
els were increased in stressed zebrafish compared with their control 
groups. Data are shown as mean ± SEM (n = 7 each in acute control  
and stressed groups; n = 11 each in chronic control and stressed group). 
*, P < 0.05 (2-way ANOVA).
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One of the most interesting aspects of a stress leukogram is the 
variation between individuals within the same species. Although 
our data display intragroup variability, ranges from our control 
groups are consistent with a study that published the first refer-
ence intervals for WBC differential counts in zebrafish.19 These 
ranges are most likely due to normal variations within the blood 
leukocyte populations of a single species. Therefore, it is impor-
tant to consider the differences between individuals when analyz-
ing hematologic parameters.

Zebrafish hematology is still at its infancy, and many hemato-
logic parameters are unknown. Routine procedures in other model 
systems, such as making blood smears, can be challenging in 
small teleost models, especially when working with minute quan-
tities of blood that rapidly clot and undergo hemolysis. Studies 
have been able to work around blood collection altogether by 
using transgenics to tag individual WBC with different fluores-
cent markers.34 Using these techniques has allowed researchers 
to visualize leukocyte trafficking in vivo in genetically modi-
fied transparent zebrafish.13 Although the information gained 
from these innovative studies is highly useful in mapping the 
mechanisms of zebrafish immunity, these methods require spe-
cific materials and tools that are not accessible to all laboratories. 
Therefore, we wanted to establish methods that are easily repro-
ducible and can be done with the most basic approach. Although 
our study specifically focuses on the relative WBC populations 
found in peripheral blood, our method allows for the potential of 
assessing many other hematologic parameters. Changes in these 
parameters are not limited to the effects of stress. Many diseases 

and neoplasms can be evaluated through blood analysis. One 
study has already identified eosinophilia in zebrafish exposed to 
helminth infections.2

One of the largest limitations in the development of zebrafish 
clinical pathology is that blood collection has ultimately been le-
thal. Repeated blood collections from individual zebrafish have 
been attempted only in one study,36 but the damage induced and 
the resulting secondary physiologic effects have yet to be deter-
mined. It would be advantageous to explore the potential for us-
ing larger mutants or relatives, such as the giant danio (Devario 
aequipinnatus), of the common laboratory species of zebrafish, 
which would provide greater quantities of blood with the pos-
sibility of repeated blood collections. In doing so, studies might 
track hematologic changes over time. Regardless, sampling blood 
from a few zebrafish by using current methods can still be useful 
clinically, such as for assessing the health status of a population 
sharing the same water source. However, further development 
in finding viable blood collection methods likely would provide 
even more opportunities in the field of zebrafish clinical pathology.

Similar to the variety of blood collection methods published 
in zebrafish research, cortisol collection and measurement tech-
niques have differed in zebrafish stress studies. Much of the 
current literature describes methods for extracting whole-body 
cortisol and using cortisol-specific radioimmunoassays to mea-
sure cortisol concentrations per gram of fish.22,23 Others have used 
commercial enzyme immunoassay kits on a variety of samples, 
including trunk cortisol20 and gill filaments.11 One study in par-
ticular used RIA to measure cortisol in plasma collected from 

Figure 5. WBC differential counts (%) in acutely and chronically stressed zebrafish and their controls. (A and B) WBC differential counts reveal that 
acutely and chronically stressed fish have (A) significant reductions in peripheral lymphocytes and (B) significant increases in peripheral monocytes 
compared with their respective control groups. (C) Peripheral neutrophil numbers are significantly increased in acutely stressed fish but are not altered 
in chronically stressed fish, compared with their respective control groups. (D) Eosinophil differential counts remained unaltered in both acutely and 
chronically stressed fish compared with their respective control groups. Data are shown as mean ± SEM (n = 7 each in acute control and stressed groups; 
n = 11 each in chronic control and stressed groups). *, P < 0.05 (2-way ANOVA).
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zebrafish blood.10 Similarly, our study evaluated plasma from 
peripheral blood but instead used a human salivary ELISA kit to 
measure cortisol concentrations. This particular human salivary 
ELISA kit has previously been used on zebrafish plasma to quan-
tify changes in cortisol after both acute and chronic stressors.7,8 
Although the overall cortisol values we obtained were lower than 
those in one previous study,10 they were consistent with those 
in others.7,8 In addition, a human salivary ELISA kit was used 
to measure whole-body cortisol in a pharmacologic study9 and 
was described by other authors as a highly sensitive yet simple 
and inexpensive method of measurement.4 Comparing cortisol 
levels between different measuring techniques would be to es-
tablish well-defined baseline cortisol concentrations in zebrafish. 
In addition, it would be interesting to compare a variety of acute 
and chronic stressors by using a single collection and measure-
ment technique. Doing so would make it possible to relate types 
of stressors to peak cortisol concentrations. We have provided 
a table of comparison between the various stressors, methods, 
and changes in cortisol concentrations published in the studies 
we described earlier (Table 2).7,8,10,11,20,22,23 However, the ability to 
detect changes in cortisol concentrations is the most important 

factor and is demonstrated in all of the cited studies. We chose 
to use a human salivary ELISA kit to measure cortisol concentra-
tions in plasma in view of its simplicity and reliability, as shown 
in other studies.7,8

Hematologic analysis is one of the most common diagnostics 
used in veterinary and human medicine. The findings provide 
indications of physiologic and pathologic change and can be used 
to assess various tissues and organs before any outward manifes-
tation of disease occurs. Establishing various hematologic chang-
es that occur in zebrafish is crucial in assessing their health and 
also provides the opportunity to expand the use of zebrafish as 
models for human disease. Eliciting a stress leukogram in zebraf-
ish only further exemplifies their importance as a research model 
that shares many of the conserved physiologic mechanisms found 
in higher vertebrate species.
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Table 2. Comparison of baseline and peak cortisol concentrations in zebrafish after exposure to stressors according to collection and quantification 
methods gtw, trunk weight in grams; EIA, enzyme immunoassay, MS222, tricaine methanesulfonate; RIA, radioimmunoassay 

Cortisol quantification 
method

Cortisol concentration

Stressor type Sample Baseline Peak Reference

1) Acute net handling and air  
 exposure

Plasma Human salivary  
cortisol ELISA kit

1) 1.22 ± 0.39 µg/dL 1) 4.51 ± 0.86 µg/dL Current

2) Chronic unpredictable stress  
 (5 d)

2) 1.25 ± 0.36 µg/dL 2) 3.228 ± 0.36 µg/dL

1) Crowding (3 h) Whole-body  
  cortisol  

extraction

Cortisol-specific RIA 1) 3.2 ng/g fish 1) 11.7 ng/g fish 22
2) Crowding (5 d) 2) 14.3 ng/g fish

Acute net handling Whole-body  
  cortisol  

extraction

Cortisol-specific RIA 4–6 ng/g fish 27–35 ng/g fish 23

Social hierarchy:  
 dominant compared with  
 subordinate

Plasma Cortisol-specific RIA Dominant fish: 
75.66 ng/mL 
(7.57 µg/dL)

Subordinate fish: 115.95 
ng/mL 

(11.595 µg/dL)

10

1) Acute net handling and air  
 exposure

Trunk cortisol 
extraction

Commercial cortisol 
EIA kit

1) <2.0 ng/gtw 1) 11.87 ± 2.46 ng/gtw 20

2) Crowding 2) <2.0 ng/gtw 2) 6.6-22.4 ng/gtw

3) Background color 3) 4.8 ± 1.1 ng/gtw 3) 37.8 ± 6.7 ng/gtw

Acute stressor Plasma Commercial cortisol 
ELISA kit

Plasma: 
17.2 ± 4.2 ng/mL

Plasma: 
108.0 ± 30.7 ng/mL

11

Gills Gills: 
<0.2 ng/mg protein

Gills: 
0.5–0.8 ng/mg protein

Euthanasia in clove oil compared  
 with MS222

Plasma Human salivary cortisol 
ELISA kit

Euthanasia in clove oil: 
<1.0 µg/dL

Euthanasia in MS222: 
1.5–3.5 µg/dL

7

Chronic unpredictable stress Plasma Human salivary cortisol 
ELISA kit

<2.0 µg/dL 3.0–4.0 µg/dL 8
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