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The first outbreak of Ebola virus disease (EVD) occurred in 
Zaire (now Democratic Republic of the Congo) in 1976. In that 
outbreak of 318 cases, 280 patients (88%) died. The cases were due 
to close contact and the use of contaminated needles at the hos-
pital where the patients were treated.41,86 Subsequent outbreaks 
were confined to equatorial Africa until the most recent epidemic.  
The 2013–2016 EVD outbreak in Western Africa originated in 
Guinea and spread to Liberia and Sierra Leone, resulting in ap-
proximately 11,310 fatalities among approximately 28,616 cases.108 
No other filovirus has caused an epidemic on the same scale as 
observed in Western Africa.3,108 In the wake of this outbreak, inter-
est in developing animal models for the study of pathogenesis, 
virus characterization, and vaccine and therapeutics research is 
increasing.

The family Filoviridae consists of nonsegmented, negative-sense 
RNA viruses subdivided into 3 genera: Ebolavirus, Marburgvirus, 
and Cuevavirus.15,56,57 The Ebolavirus genus has 5 species—Zaire 
ebolavirus, Sudan ebolavirus, Bundibugyo ebolavirus, Taï Forest  
ebolavirus, and Reston ebolavirus.15,41 The Ebola virus (EBOV) iso-
late responsible for the 2013–2016 outbreak is a member of the 
genus Zaire ebolavirus and was named ‘Makona’ (Ebola virus/H.
sapiens-wt/GIN/2014/Makona-C15) after a river shared by the 
3 most affected countries.56,108

All ebolaviruses, with the exception of Reston virus, cause in-
fections exhibiting severe viral hemorrhagic fever, with lethality 
in humans averaging 40.3%.56 As such, filoviruses are considered 

Category A Bioterrorism Agents by the Centers for Disease Con-
trol and Prevention, Tier 1 Select Agents by the US Department 
of Health and Human Services, and priority pathogens needing 
urgent research by the World Health Organization. Accordingly, 
all work with filoviruses is performed under BSL4 conditions.3,5

Animal Models of Ebola Virus Infection
EBOV is a zoonotic pathogen that has been reported to infect 

several animal species, but exactly which animal species plays a 
role in transmission of EBOV infection to humans is still under 
investigation.108 Exhaustive efforts to find the natural host have 
resulted in the general agreement that fruit bats, which can be 
asymptomatically infected with EBOV, are likely to be a main 
reservoir species.41,60

A variety of animal models (Figure 1) have been developed 
for basic research into the characterization of the virus, elucida-
tion of pathogenesis, and development of countermeasures. Such 
models including immunocompetent mice, immunodeficient 
mice,6 hamsters,100 strain 13 guinea pigs, outbred guinea pigs, ma-
caques, African green monkeys (Chlorocebus aethiops),78 marmosets  
(Callithrix jacchus), and baboons (Papio spp.).5,79 Among the many 
species used for EBOV research, the preferred models for studies 
on pathogenesis, treatment, and vaccines remain rhesus (Macaca 
mulatta) and cynomolgus (M. fascicularis) macaques.78,100

Mouse Models
Although NHP are considered the most representative model  

of EVD,30,37 limited space in high-containment vivariums,  
financial considerations, and ethical issues regarding the use of 
NHP continue to fuel the development of small animal models 
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for EBOV infection. Because of the availability of mice in large 
numbers and the existence of a wealth of reagents for biochemical 
and immunologic testing, these rodents are the preferred small 
animal model for filovirus research.9 Immunocompetent mice are 
resistant to WT EBOV.3,12,102 Immunocompromised mice are not 
well established as models of EBOV infection and are considered 
of limited use because of their immune status, but previously they 
were the only mice that could be infected with WT EBOV.80

WT EBOV is lethal to suckling mice and immunodeficient mice, 
such as SCID mice, which lack functional B and T cell responses. 
Suckling mice and knockout mice lacking a complete type I IFN 
response (for example, lack of expression of cytoplasmic signal 
transducer and activator of transcription 1 protein,23,84 IFN recep-
tor α/β) uniformly die within a week of subcutaneous challenge 
with a variety of filovirus strains.9,11,12 After challenge with filovi-
ruses, SCID mice remained healthy for approximately 14 d, but 
then developed gradual, progressive weight loss and slowing 
of activity and succumbed on 20 to 25 d after inoculation.5,12,102 
Aerosol but not intraperitoneal challenge with the outbreak iso-
late, EBOV-Makona, in female A129 IFN α/β receptor–deficient 
mice is lethal.92 Signal transducer and activator of transcription 
1 knockout mice developed severe disease from aerosol inocula-
tion.62

Rodent models have been developed using EBOV-Makona 
and EBOV-Mayinga isolates through serial passage in both mice 
and guinea pigs.5 The 1976 Mayinga isolate of EBOV, Ebola virus 
H.sapiens-tc/COD/1976/Yambuku-Mayinga, was adapted to 
lethal virulence for adult, immunocompetent mice through serial 
passage in newborn, suckling, and progressively older weanling 
mice, by using intraperitoneal injections of liver homogenate.3,9,13 
The resulting mouse-adapted EBOV (MA-EBOV), when admin-
istered intraperitoneally, caused lethal disease in adult C57Bl/6, 
BALB/c, and CD1 mice at approximately 5 to 6 d after inocula-
tion and that resembled EVD in NHP.3 No adapted filoviruses 
cause disease in immunocompetent mice when administered in-
tramuscularly or subcutaneously; only intraperitoneal injection 
produces uniform disease and lethality.3

Overall, mouse models of EBOV infection demonstrate rapid 
onset of viremia and high viral burden in the spleen, liver, and 
multiple organ tissues. Lymphopenia, thrombocytopenia, kidney 
dysfunction, and liver damage resulting in high serum concen-
trations of AST and ALT are observed.9,10,14,91 Liver and kidney 
function is diminished in mice, similar to that seen in rhesus ma-
caques, and histopathologic findings include extensive necrosis of 
the liver, spleen, and other organs. Widespread lymphocyte apop-
tosis is observed in both species.9 A proinflammatory cytokine 

profile, including TNFα, IFNγ, IL8, macrophage inflammatory 
proteins 1α and 1β, and monocyte chemoattractant protein 1, re-
sembles that seen in EBOV-infected rhesus macaques.9,13 Lympho-
blast formation indicating lymphocyte activation, increased T-cell 
CD44 expression, and increased circulating lymphocytes late in 
infection have been found in mouse and macaque models. Com-
monly used mouse models (such as BALB/c and C57BL/6 mice) 
exhibit little to no coagulopathy or hemorrhagic manifestations 
(for example, tissue fibrin deposition, disseminated intravascular 
coagulation) or the characteristic maculopapular to petechial rash 
observed in patients with EVD.3,13,38

In 2004, a genetically diverse panel of recombinant inbred mice, 
collaborative cross (CC) mice, was obtained through a systematic 
cross of 8 inbred founder mouse strains. Five of these 8 strains are 
classic laboratory strains (C57BL/6J, A/J, 129S1/SvImJ, NOD/
ShiLtJ, NZO/H1LtJ).83 The remaining 3 founders are from wild-
derived strains selected to represent Mus musculus subspecies 
(M. m. musculus, M. m. domesticus, and M. m. castaneous).97 Ge-
netic analysis reveals that the 8 strains capture almost 90% of the 
known genetic variation present in laboratory mice and that the 
captured variation is randomly distributed across the genome.87,97 
Currently, CC mice consist of hundreds of independently bred, 
octo-parental recombinant inbred lines.97

The use of CC mice substantially expands the number of  
EBOV-related disease manifestations observed. Exposure of these 
strains to MA-EBOV yielded a wide variety of outcomes.83 The 
CC mouse line 13140 × 3015 (susceptible to lethal EVD) exhibited 
typical lesions as seen in humans. By day 5 after inoculation with 
MA-EBOV, CC mice presented with prolonged blood coagula-
tion, internal hemorrhage, coffee-colored blood, splenomegaly, 
and hepatic discoloration and softened texture. However, the 
mice did not show these signs after infection with WT EBOV. Sus-
ceptible CC mice also had significantly prolonged thrombin time, 
PTT, and APTT compared with C57BL/6J mice, suggesting that 
host genetic background plays a role in disease development.83

A humanized mouse model on a NOD/ShiLtJ background, 
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, shows promise for the study 
of WT EBOV infections in mice.6,80 These mice are highly immu-
nodeficient, because they lack functional murine macrophages, 
dendritic cells, T cells, B cells, and natural killer cells. These cells 
are nonfunctional because of mutations in multiple genes, in-
cluding those encoding protein kinase, DNA-activated catalytic 
polypeptide, and X-linked IL2 receptor γ chain (gene-targeted 
mutation 1), which results in SCID.6 When humanized through 
transplantation of bone marrow cells and liver and thymus tissue, 
these mice typically have high levels of engraftment of functional 

Figure 1. Comparison of signs and symptoms of Ebola virus disease between humans and animal models.
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human macrophages, dendritic cells, T cells, B cells, and natural 
killer cells.6,48,80

Challenge with 1 × 104 focus-forming units (ffu) of Mayinga 
WT EBOV isolate caused uniformly lethal EVD in these human-
ized mice, with histologic changes in the liver and upregulation of 
cytokines and chemokines corresponding closely to those seen in 
human patients with EVD.6,80 With lower-dose challenges of 10 ffu 
of either Mayinga or Makona EBOV isolate, the severity of EVD 
in such mice was lower; thus, the severity of infection is dose-
dependent.6 Unlike the situation with most prior mouse models, 
WT EBOV was able to cause disease in these humanized mice, 
suggesting that interactions between the virus and the model’s 
immune system is similar to that observed in humans.6,80 With 
the humanized bone marrow, liver, and thymus mouse model, 
researchers can examine the activity of filovirus-specific thera-
peutic agents and vaccines that directly target cells derived from 
hematopoietic stem cells.65,80 One drawback of using humanized 
bone marrow, liver, and thymus mice is the variability of immune 
characteristics among human donors. However, the possibility of 
using donors with immune characteristics associated with EVD 
susceptibility could increase the value of the model. Prior to the 
development of this model, only NHP infected with WT EBOV 
could be studied for the development of vaccines and therapeutics, 
given that rodent models require MA- or guinea-pig–adapted 
(GPA) EBOV to produce EBOV infection.

Hamster Models
Because of their short life cycle and the ease with which they 

are bred in captivity, Syrian golden hamsters (Mesocricetus auratus) 
are a readily available rodent candidate for use in infectious dis-
ease research. When experimentally infected with MA-EBOV, 
Syrian hamsters have disease manifestations similar to those of 
humans and NHP, including the severity of coagulopathy, which 
does not occur in mouse and guinea pig models.27 Although Syr-
ian hamsters have been thoroughly characterized for use in EVD 
studies,1 their ability to develop coagulopathies makes them a 
valuable animal model for studying other viral hemorrhagic fe-
vers.27 As in the mouse model, WT EBOV does not cause clinical 
signs in hamsters, although a low level of replication can occur.3,100 
MA-EBOV replicates to high titers in hamsters, causing signifi-
cant organ damage, especially in the liver and spleen. When ham-
sters are challenged intraperitoneally or subcutaneously with 
MA-EBOV or WT EBOV, only MA-EBOV administered intraperi-
toneally mimics human disease.

Manifestations of MA-EBOV infection in Syrian hamsters in-
clude cytokine dysregulation (suppression of early type I IFN 
responses), severe coagulopathy, lymphocyte apoptosis, target 
organ necrosis or apoptosis (lymph nodes, spleen, liver), and le-
thal outcome.27,73,100 Suppression or noninduction of type I IFN 
responses and aberrant proinflammatory responses in infected 
hamsters, which are also seen in the signal transducer and ac-
tivator of transcription 1 mice, are suggested as critical patho-
genic processes leading to lethal outcomes.4,23,27,84,100 In terminally 
ill Syrian hamsters, all cytokines tested (IL1β, IL2, IL4, IL6, and 
IL12p35; TNFβ, IFNγ-induced protein 10, IFNγ, and TNFα) are 
upregulated in the spleen, liver, and blood, indicating potentially 
uncontrolled immune responses. The severe coagulopathy seen 
in hamsters is similarto that seen in macaques infected with WT 
EBOV. MA-EBOV–infected hamsters have significantly prolonged 
PTT, APTT, and thrombin times during late stages of infection.27  

Coagulopathy was preceded by an initial abnormal increase in 
fibrinogen concentrations, representing the acute-phase response 
to EBOV infection.27

The spleens, livers, and lymph nodes of EBOV-infected ham-
sters have degenerative changes similar to those seen in ma-
caques. Multifocal acute splenitis is characterized by lymphocyte 
depletion and tissue destruction.27,100 Hepatic changes include 
diffuse hepatocellular degeneration and necrosis, with infiltra-
tion of moderate numbers of neutrophils, decreased numbers 
of macrophages, and the presence of intracytoplasmic inclusion 
bodies.27,73,100 Fibrin deposition in the liver is reported to be simi-
lar to that seen in macaques and humans.27,73 In addition, lymph 
nodes from EBOV-infected hamsters display diffuse lymphocytic 
necrosis and loss, along with acute lymphadenitis and draining 
hemorrhage.

Recently a new Syrian hamster strain has been developed that 
does not express the cytoplasmic signal transducer and activa-
tor of transcription 2 protein (signal transducer and activator of 
transcription 2 knockout hamsters). As in signal transducer and 
activator of transcription 1 mice, the type I IFN pathway in these 
hamsters is disrupted, which is an important part of the innate 
immune response to virus infection.98 This strain is the first ge-
netically modified Syrian hamster strain ever reported, although 
it has yet to be used as an animal model of EVD.

Unlike mice, whose genome has been fully sequenced, a lim-
ited number of Syrian hamster genes involved in the spectrum of 
fundamental biologic processes have been identified.28 The lim-
ited genomic information is a significant downside to using Syr-
ian hamsters as an EBOV model and, more broadly, as a model for 
infectious disease research. However, the recent elevation of Syr-
ian hamsters in the sequencing priorities of the Human Genome 
Research Institute ultimately will expand their use as a valuable 
infectious disease animal model.63

Guinea Pig Models
Both outbred Duncan–Hartley and inbred strain 13 guinea pigs 

have been used as models of EVD for the evaluation of patho-
genesis, vaccines, and therapeutic agents. Compared with most 
other rodent models, the larger size of guinea pigs is reflected in 
a greater circulating blood volume. With greater blood volume, 
the increased blood sampling and dosing adjustments necessary 
for optimizing therapeutic agent and vaccine development are 
possible.21 Guinea pigs inoculated with WT EBOV develop only 
a short-lived, nonlethal febrile illness.5,91 Like NHP, guinea pigs 
can be infected by peripheral routes in addition to intraperito-
neal inoculation. Several different GPA filoviruses were generated 
over the last few decades, most of which required only 8 or fewer 
passages of the original WT EBOV in adult guinea pigs before 
a lethal phenotype was achieved.3,5,19 The animals showed few 
signs of EBOV infection until day 5, at which time they devel-
oped a fever and became anorexic and dehydrated. A maculo-
papular rash did not develop in these animals. Hemorrhage was 
not seen in this model, but a drop in platelet counts, increased 
fibrin deposition (more than mice), and prolonged PT and  
APTT occurred.5,9,100

Guinea pigs exhibit histopathologic lesions and serum chem-
istry changes during filovirus infection similar to those of mice, 
NHP, and humans. After GPA-EBOV challenge, the virus was 
first detected in lymph node macrophages as early as 24 hours 
after inoculation, spread to the spleen and liver on day 2 after 
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inoculation, and subsequently to the other organs and tissues.19 
The disease course of GPA-EBOV–infected guinea pigs includes 
splenic and hepatic pathology, lymphocyte apoptosis, neutro-
philia, thrombocytopenia, and marked granulocytosis. In outbred 
Hartley guinea pigs, changes in the serum biochemistry profile 
include marked increases in liver-associated enzyme concentra-
tions and significant hypoalbuminemia.21

In contrast to similarities to the serum biochemistry profiles 
of other rodents and humans, strain 13 guinea pigs demonstrate 
altered immune responsiveness.21 Thus, these guinea pigs may 
not be representative of the heterogeneous immune responses of 
outbred hosts such as NHP and humans. Compared with older 
models of GPA-EBOV in inbred strain 13 guinea pigs, recently 
developed models in outbred Hartley guinea pigs infected with 
GPA-EBOV show evidence of bystander lymphocyte apoptosis 
and a marked proinflammatory response. However, the proin-
flammatory response observed may simply be a function of the 
increased availability of guinea pig reagents used to characterize 
proinflammatory responses.3,21

In addition the use of the guinea pig model to explore the natu-
ral history of EVD, these animals have been used to test thera-
peutic agents against EVD. Antibody therapy against filoviruses 
with equine IgG containing high concentrations of antiEBOV an-
tibodies protected guinea pigs after GPA-EBOV infection.51,55 In 
another GPA-EBOV challenge study, guinea pigs were protected 
from lethal infection in a dose-dependent manner by a monoclo-
nal antibody, KZ52, which was derived from a human survivor 
of EVD.77

Nonhuman Primate Models
NHP are the preferred animal model for human filovirus infec-

tion, because they can be fatally infected by various routes with 
human virulent, nonadapted strains of EBOV.29 NHP recapitulate 
human disease quite accurately in terms of clinical symptoms 
(fever, anorexia, and rash), clinical chemistry profile (increase 
in liver enzymes, disruption of coagulation), and pathologic 
changes. As in humans, monocytes, macrophages, and dendritic 
cells are primary sites of filovirus replication in NHP. A few pub-
lished studies detail EBOV infection in marmosets and baboons, 
but the majority of research studies describe the pathogenesis of 
EBOV infections in cynomolgus or rhesus macaques (favored 
NHP models) or African green monkeys (AGM).91 Currently, only 
macaques recapitulate many clinical hallmarks of fatal filovirus 
disease observed in humans, including high viremia, coagula-
tion abnormalities, and an aberrant proinflammatory cytokine 
response.3

Macaque models. Cynomolgus macaques have been the species 
most often used for vaccine studies, whereas rhesus macaques 
have been more frequently used for evaluating therapeutics.37 
This difference in species usage results from the slightly shorter 
disease course in cynomolgus macaques as compared with that 
observed in rhesus macaques.37 Results of multiple studies have 
shown that filovirus infection in macaques closely reproduces 
what is known about the disease in humans.30,34,37 The macaque 
incubation period of ebolavirus infections is similar to that seen in 
humans, although the route of inoculation, the ebolavirus isolate 
used, and challenge dose affect disease progression.34,73 Results of 
studies in macaques have shown that EBOV doses as low as 2 to 
15 pfu, administered by a variety of challenge routes, can produce 
a lethal filovirus infection.85,94,95

The initial onset of EVD signs in macaques occurs by approxi-
mately 3 to 5 d after exposure and includes fever and malaise, fol-
lowed by anorexia, depression, lethargy, diarrhea, vomiting, and 
development of a maculopapular rash. Hemorrhagic manifesta-
tions can be seen, including petechiae, ecchymosis, and bruising; 
hemorrhage at venipuncture sites; epistaxis; hematochezia; and 
hematuria. CBC abnormalities include neutrophilia, lymphope-
nia, thrombocytopenia, decreased Hct, and early monocytosis. 
Clinical chemistry results are typical of that seen in severe dehy-
dration and kidney impairment, including high BUN and cre-
atinine concentrations and hypocalcemia.26,67,94 Increases in the 
liver enzymes AST and ALT can occur as early as 3 to 5 d after 
challenge.94 Coagulation panels reveal increased prothrombin 
time and PTT, and elevations in fibrin degradation products and 
D-dimers.34,85

Monocytes, macrophages, and dendritic cells are primary sites 
of filovirus replication in macaques, and some researchers consider  
that high levels of tissue factor expression by filovirus-infected 
monocytes and macrophages trigger disseminated intravascular 
coagulation.37,67 Infection with EBOV leads to early and robust 
IFN-like responses that occur before the appearance of circulat-
ing virus. This response occurs not only from circulating immune 
cells but also throughout the majority of infected tissues.16,67 Pri-
or to succumbing to infection, macaques exhibit characteristic 
inflammatory cytokine, chemokine, and growth factor profiles, 
such as increased production of eotaxin, IFNγ-induced protein 
10, monocyte chemoattractant protein 1, and IL6, similar to what 
is seen in EVD patients.67 Macaques are often euthanized at 7 to 9 
d after exposure, due to multiorgan failure, hypovolemic shock, 
and severe dehydration.30,37

A number of administration routes have been used to mimic 
different transmission routes of EBOV infection in macaques. The 
most commonly used route of EBOV infection in macaques is 
intramuscular injection (1000 pfu), mimicking a needle-stick in-
jury in a laboratory setting. Although airborne transmission is 
not thought to be a significant route of human infection,76 aero-
solized virus causes a rapidly lethal disease in experimentally 
infected NHP. In the research setting, aerosol inoculation mimics 
either large droplets or small particles circulating near human pa-
tients. Several NHP studies have attempted to show transmission 
through aerosol, fomites, and indirect exposure to body fluids of 
experimentally inoculated animals to other animals housed in the 
same room. In one study, control rhesus macaques, which were 
located 3 m from the experimental rhesus macaques challenged 
intramuscularly with EBOV, became infected.49 In that study, the 
pattern of pulmonary antigen staining on pathology specimens 
suggested aerosol infection. Alternatively, transmission might 
have occurred through various behavioral activities or through 
routine animal husbandry practices.2,76

Another study showed transmission between 6 EBOV-infected 
piglets (swine) and 4 cynomolgus macaques; the animals were 
separated by a wire barrier 20 cm in front of the NHP cages.106 
Transmission could have resulted from inhalation of aerosols, 
inoculation of mucous membranes by droplets, or by fomite 
transmission. Although animal caretakers were trained to avoid 
cross-contamination of the cages during husbandry practices, 
inadvertent transfer during husbandry procedures could not 
be ruled out. In a contrasting study, 2 rhesus macaques infected 
intramuscularly with EBOV were housed in open barred cages 
adjacent to 2 uninfected rhesus macaques, that did not become  
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infected.2 The infected macaques had high titers of circulating virus, 
but oral, nasal, and rectal swabs did not produce infectious virus.

In several studies examining mucosal exposure, investigators 
found that rhesus macaques were successfully infected through 
the conjunctival and oral routes, as in humans,50 but required 
higher doses (5.2 log10 of EBOV Mayinga isolate) than for paren-
teral routes.50,70 Doses of 10 pfu by oral or conjunctival routes did 
not result in clinical disease in cynomolgus macaques.70

In addition to the use of macaques to study the natural history 
of EBOV infection and transmission of the virus, these species 
have been used to evaluate therapeutic interventions. Vaccines 
against EBOV have typically been screened initially in guinea 
pigs, mice, and hamsters.11,14,96 Unfortunately, because filovirus 
isolates from humans or NHP do not cause severe disease in 
rodents, candidate vaccines must ultimately be tested in NHP. 
Several vaccine platforms, including replicating and nonreplicat-
ing viral vector approaches (for example, rabies virus, adenovi-
rus, vesicular stomatitis virus [VSV], paramyxoviruses), subunit 
vaccines, and DNA vaccines have shown promise in macaque 
models. However, safety and manufacturing concerns with these 
vaccines still exist.

A replication-competent recombinant VSV (rVSV)-vectored 
EBOV (rVSV–EBOV), also known as rVSV-ZEBOV, candidate 
vaccine protected rhesus macaques from lethal EBOV challenge 
after single-dose vaccination, even when given a week prior to 
EBOV exposure.68 WT VSV infection is an exotic disease of live-
stock in the United States, causing vesicles and ulceration of the 
mucous membranes, hooves, and teats. Disease due to VSV is 
clinically indistinguishable from foot and mouth disease.88 Rep-
lication-competent viral vector vaccines in general are a concern 
due to issues such as this one. Human infections are rare and as-
ymptomatic or cause very mild influenza-type illness, although 
more severe disease has been described.1

Therefore, rVSV appears to be a good candidate as a vaccine 
platform for EBOV. In addition, the rVSV–EBOV vaccine has 
been shown to be somewhat protective in rhesus macaques when 
given 1 and 24 h after EBOV exposure.68 All animals became clini-
cally ill, including the survivors. The rVSV–EBOV vaccine is cur-
rently in phase I–III clinical trials in Europe and Africa.1,53

In evaluating the other vectors of EBOV vaccines in macaques, 
a live rabies virus replication-competent vaccine provided 100% 
protection without significant morbidity after EBOV challenge, 
whereas the inactivated candidates (no adjuvant) provided 50% 
or less protection in infected rhesus macaques, and all animals 
became ill.7,52 The replication-incompetent rabies virus vaccine 
showed increased efficacy when paired with an adjuvant.52

An additional vaccine approach in macaques uses replication-
defective adenoviruses, such as recombinant adenovirus serotype 
5.39,95 Although multiple vaccinations of recombinant adenovirus 
vector with multiple EBOV glycoprotein and nucleoprotein virus-
like particles have been used, one study using a single dose of 
a recombinant, replication-deficient, adenovirus-vectored vac-
cine showed equal efficacy to multiple vaccinations.94 The biggest 
drawback to using adenoviral vectors in humans is that many 
people have preexisting immunity to adenovirus serotype 5, thus 
decreasing the immunogenicity of the vaccine.94 In the United 
States, Western Europe, and Kenya, the adult prevalence of neu-
tralizing antibodies to human adenovirus 5 has been 30%, 50%, 
and as high as 98%, respectively.24,39 Adenovirus vectors that are 
less common or those found in chimpanzee populations have 

been tested, but protection against lethal challenge in EBOV- 
challenged macaques is variable.39 Recently, a chimpanzee adeno-
virus type 3 vectored EBOV vaccine phase II-III trial is ongoing to 
evaluate the safety and efficacy of the vaccine.53

An alternative to virus-vectored EBOV vaccines, nonreplicating 
protein subunit-based vaccine platforms using virus-like particles 
protected macaques. Virus-like particles are composed of as many 
as 4 filovirus proteins: nucleoprotein, VP24, VP40, and glycopro-
tein. Virus-like particles are highly immunogenic, and vaccina-
tion induces innate, humoral, and cellular immune responses 
in macaques and chimpanzees.101,104 Compared with replication-
competent platforms, virus-like particles are considered a safer 
approach.101,104 In one study, all EBOV-challenged cynomolgus 
macaques (n = 5) survived after a 3-dose virus-like particle vac-
cine protocol using RIBI (trehalose dimycolate, monophosphoryl-
lipid A, cell wall skeleton) adjuvant.59,105 Results from a second 
study in which NHP were pretreated with 2 doses of virus-like 
particles and QS21 adjuvant indicated that all cynomolgus ma-
caques (n = 3) were protected from morbidity after subsequent 
EBOV challenge.103

DNA vaccines have been developed against a number of virus-
es including EBOV. DNA vaccines are noninfectious, can be rap-
idly developed in large quantities, and can used in multiple-boost 
regimens; all of these qualities are important when working with 
emerging infectious pathogens.39 DNA vaccines are administered 
intramuscularly through electroporation using a gene gun.40,45 
The vaccines require several boosts but induce both humoral and 
cellular immunity in cynomolgus macaques.

Several studies have evaluated the efficacy of EBOV DNA vac-
cines in macaques. One study using EBOV glycoprotein DNA 
vaccine protected 5 of 6 cynomolgus macaques against lethal 
EBOV challenge.40 In another study, DNA combination vaccines 
expressing glycoprotein from 3 ebolaviruses (that is, EBOV, Su-
dan, and Ivory Coast) were used in combination in cynomolgus 
macaques, followed by challenge with EBOV Mayinga isolate.95 
Antibody responses to adenovirus vector expressing EBOV gly-
coprotein were not reduced compared with administration of the 
single DNA vaccine, and the combination was protective against 
EBOV lethal challenge.95 Another strategy included DNA vacci-
nation followed by a boost with recombinant adenoviral vectors 
encoding Ebola viral proteins.93-95 Cynomolgus macaques subse-
quently challenged by a lethal EBOV dose were uniformly pro-
tected, and 3 of 4 animals had sterilizing immunity; the remaining 
animal had mild viremia.89

Macaques are frequently used for studying therapeutic agents 
and countermeasures. The majority of those examined since the 
2013–2016 West African outbreak represent antivirals and anti-
microbials, many of which are FDA approved for treatment of 
other virus infections such as influenza, cytomegalovirus infec-
tions, HIV, and adenovirus infections. Other interventions in-
clude passive transfer of hyperimmune IgG from horses to NHP, 
monoclonal antibodies,43 and small-protein therapeutics. The ad-
ministration of hyperimmune horse serum IgG to cynomolgus 
and rhesus macaques failed to produce significant reductions in 
morbidity and fatalities.54,74

The most famous monoclonal antibody therapy is ZMapp, a 
combination of 3 monoclonal antibodies that bind to the glyco-
protein of EBOV.71 When ZMapp was given to rhesus macaques 
24 or 48 h after EBOV exposure, 4 of 6 animals survived with little 
viremia and only a few clinical signs.75 In another rhesus macaque 
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study, ZMapp given as late as 5 d after inoculation, when rhe-
sus macaques became viremic, was 100% protective (n = 6).82 In a 
small, randomized phase I–II clinical trial in West African patients 
with EVD, ZMapp plus current standard of care (for example, 
replacement IV fluids, antiemetics, gastric acid inhibitors, antibi-
otics, antimalarials, antipyretics) were beneficial, but results did 
not meet the threshold of superiority over supportive care alone.81

Small proteins have also been used as therapeutic interventions 
in macaques. Recombinant nematode anticoagulant protein c294 
and recombinant human activated protein C44—typically used 
to treat coagulopathy and sepsis, respectively—can be used to 
treat viral hemorrhagic fevers. Coagulopathy and sepsis occur 
in EBOV-infected human patients and people with other types 
of viral hemorrhagic fevers, although these manifestations are 
not specific for viral hemorrhagic fevers. Approximately 33% of 
NHP that were treated with nematode anticoagulant protein C 
(10 min or 24 h after EBOV challenge) were protected from EVD 
after EBOV challenge.5 Similarly, 18% of NHP that received re-
combinant human activated protein C 30 to 60 min after EBOV 
challenge survived.44 Survival in treated animals that succumbed 
to disease was approximately 4 d longer compared with that ob-
served in control animals.

Lipid nanoparticle-encapsulated short interfering RNAs were 
adapted to target the new Makona outbreak isolate of EBOV. In 
one rhesus macaque study, 2 compounds together were effica-
cious (66% to 100% survival), with milder clinical signs than those 
observed in control animals.96 The drug consists of 3 distinct short 
interfering RNA sequences formulated in self-assembling nucleic 
acid–lipid nanoparticles. These nucleic acids were chemically 
modified to eliminate any immune-related toxicities associated 
with the short interfering RNAs. The drugs caused the destruc-
tion of mRNA, resulting in the downregulation of EBOV pro-
teins VP24, VP35 and L, which are required for virus assembly, 
transcription, and replication, and the evasion of host IFN re-
sponse.36,42,46,99 The therapy was 100% protective against lethal 
challenge, and clinical signs were diminished but present in rhe-
sus macaques,96 but studies in human patients in West Africa did 
not confirm the efficacy seen in macaque studies.25

African green monkey model. Marburg virus, a filovirus closely 
related to EBOV, was first recognized in 1967, when outbreaks 
of hemorrhagic fever occurred simultaneously in laboratories in 
Marburg and Frankfurt, Germany, and in Belgrade, Yugoslavia 
(now Serbia). Laboratory research workers exposed to imported 
AGM or their tissues18,66 spread the disease to medical personnel 
and family members.

In addition to Marburg virus susceptibility, AGM have been 
studied as models of EBOV infection. The EVD progression in 
AGM is similar to that seen in rhesus macaques.8,22 Unlike ma-
caques, maculopapular rash does not occur, and no behavioral 
changes, such as anorexia or depression, are reported.22,85 In one 
study, EBOV aerosol exposure resulted in greater fever sever-
ity and platelet loss in AGM than in macaque species. Both the 
extrinsic and intrinsic coagulation pathways were more affected 
in AGM than in similarly infected macaque species.85 In an AGM 
study, EBOV-induced coagulopathies, with fibrin thrombosis, 
were observed in all abdominal organs.73 By using AGM, fibro-
blastic reticular cells in lymph nodes were first identified as EBOV 
targets.22 Despite these findings, AGM have a higher survival rate 
after filovirus infections than do macaques, with the exception of 

infection with EBOV-Mayinga isolate, which is uniformly fatal.31

Marmoset model. Marmosets (small [less than 500 g] New 
World callitrichid primates), have been used as a model of 
EVD.17,92 Like other NHP species, common marmosets are sus-
ceptible to WT, nonadapted EBOV. Like AGM, filovirus-infected 
marmosets do not develop a petechial rash.5,17,22 Marmosets can 
be infected by the intramuscular or aerosol route.92 Animals ex-
hibit anorexia, weight loss, and fever, but unlike humans and ma-
caques, marmosets succumb early, by day 4 to 5 after exposure.91 
Similarities to human disease include clinical signs, hepatocel-
lular necrosis, and extensive fibrin deposition. Marmosets dem-
onstrate coagulation abnormalities, including thrombocytopenia, 
hemorrhage and bleeding from venipuncture sites.91 In addition, 
marmosets develop high viral titers, which exceed 105 or 106 ge-
nomic viral RNA equivalents per milliliter of tissue homogenate 
in most tissues and higher titers in the adrenal glands, lymph 
nodes, spleen, and liver.17,91 Although one group17 has identified 
several reagents for tagging and tracking marmoset cells in stud-
ies, fewer immunologic tools are available for marmosets than 
macaques. The very small size of marmosets limits blood collec-
tion.107

Baboon model. Since 1994, Russian researchers have studied 
EBOV infection in baboons (Papio hamadryas).79 Baboons are some-
what more resistant to infection from all ebolavirus species, com-
pared with macaques.5,31,32,89,90 The baboon DNA sequence is more 
similar to human DNA than macaque DNA, differing by only 
4%; whereas DNA from humans and macaque species differ by 
6.5%.58,72,79 In a seroprevalence survey of NHP, wild baboons were 
positive for antiEBOV IgG, suggesting that baboons may be a nat-
ural reservoir.61 Despite their susceptibility to natural EBOV infec-
tion in the wild, the use of baboons as a model of human infection 
has been limited in the United States.61,79 The disease course in 
baboons is similar to that seen in infected humans. Baboons and 
humans both have a 4- to 5-d prodromal period, followed by sud-
den onset of fever, anorexia, and depression and progression to 
widespread hemorrhagic manifestations. Petechial rash did not 
occur until day 7 after inoculation in baboons as compared with 
day 4 to 5 after inoculation in macaques.73 Results from one study 
found hemorrhage in all visceral organs, most notably the liver 
and spleen.73 In several studies, peripheral lymphadenopathy oc-
curred at 3 to 4 d after inoculation, and cutaneous maculopapular 
rash appeared on days 6 to 8 after inoculation—several days later 
than the onset of rash in macaques.47,64,79,89

Baboons have been used for EBOV vaccine research and for the 
evaluation of therapeutic interventions. Results from a study on 
an early vaccine, using inactivated EBOV, showed complete pro-
tection against lethal challenge in 4 of 5 hamadryad baboons.35,69 
However, results from other studies suggested that inactivated 
EBOV vaccine did not induce sufficient immunity to reliably pro-
tect hamadryad baboons against lethal challenge.20,35 One thera-
peutic study involving hyperimmune horse serum IgG showed 
partial protection of hamadryad baboons, but the challenge dose 
(10 to 30 pfu) was lower than the standard 1000 pfu.55

The large size of adult baboons and the disparity in size be-
tween adult and juvenile baboons favor macaques over baboons 
for research. Most baboons used in biomedical research are 1 to 
3 y old and weigh 3 to 12 kg. Young baboons require a smaller 
cage (that is, group 4) when singly housed. Because adult male 
baboons can exceed 25 kg and adult females range in weight from 
12 to 18 kg, both sexes must be housed in group 5 or 6 primate 
cages.46
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Conclusions
Since the first appearance of EVD 40 y ago, progress in the 

development of animal models for EVD has been considerable. 
The 2013–2016 outbreak underscores the critical importance of 
animal models in the search for vaccines and therapeutics. Al-
though rodent models, with the possible exception of humanized 
mice, require serial passage of EBOV to acquire lethal infectious 
capacity, mice, hamsters, and guinea pigs remain the model of 
choice for preliminary studies on countermeasures and vaccines. 
The advantages of the small animal models include ease of han-
dling, relative affordability, ability to perform experiments with 
many subjects, and defined genetic backgrounds. In particular, 
Syrian golden hamsters and some strains of CC mice have clinical 
courses and severity of coagulopathy seen otherwise only in hu-
mans and NHP. Whereas guinea pigs and hamsters may provide 
models with higher fidelity to EVD than do mice, the current lack 
of species-specific immunologic tools limits their use.

Macaques remain the model of choice for EBOV research be-
cause they can be infected with WT EBOV, and they exhibit dis-
ease progression that is similar to that seen in humans, including 
coagulopathy, multiorgan failure, and proinflammatory cytokine 
profiles. Macaques do not exactly mirror human disease. EBOV 
causes 100% lethality in untreated macaques, whereas the hu-
man fatality rate in the West African outbreak was approximately 
40%.108 However, all of the current animal models have their place 
in research. To obtain licensing under the FDA Animal Rule, 2 
animal models must be used to show efficacy of treatments and 
vaccines, unless a single animal model adequately recapitulates 
human disease.33 Since 2013, the interest in and use of animals in 
EBOV basic research and the development of countermeasures 
have greatly increased and will further the refinement of animal 
models.
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