
232

Comparative Medicine Vol 67, No 3
Copyright 2017 June 2017
by the American Association for Laboratory Animal Science Pages 232-241

In nature, arthropod-borne viruses (arboviruses) are transmit-
ted between vertebrate hosts by hematophagous (blood-feeding) 
arthropod vectors, including mosquitoes and ticks. Before its 
transmission to a susceptible host, an arbovirus must first rep-
licate to sufficient levels inside the arthropod vector. The virus 
then disseminates to the salivary glands of the vector, and the 
infectious saliva is injected into a host during the blood-feeding 
process. Thus, the maintenance of an arbovirus in nature involves 
a triad of interactions between the virus, the vertebrate host, and 
the arthropod vector. Mosquitoes, ticks, and midges are well-
established vectors for transmission of many viruses that cause 
disease in humans. Over the past 20 y, there has been a significant 
increase in the number of human cases and in the geographic dis-
tribution of several arboviruses.39 Every year, millions of people 
become infected with a mosquito-borne virus, and several thou-
sand people are infected with a tick-borne virus. The emergence 
of various arboviruses can be attributed to several factors, includ-
ing virus adaptation to new susceptible hosts, travel of persons 
between endemic and nonendemic regions, and climate changes 
that allow for greater worldwide distribution of vector species.39

To better understand and effectively control these viruses, it is 
necessary to establish appropriate animal models that demon-
strate similar clinical manifestation and disease progression as 
seen in humans. However, there are many challenges in develop-
ing arbovirus animal models, given that many arboviruses do not 
readily cause lethal infection, nor do they approximate the pattern 
of human disease in standardly used laboratory animal species. 

In addition, the presence of saliva at the site of vector blood feed-
ing enhances the infection of mosquito- and tick-borne viruses.50,59 
The role of arthropod saliva in disease progression makes evident 
the need to replicate the natural route of virus transmission in a 
laboratory setting, and it further complicates the development of 
suitable animal models. Here we examine currently available ani-
mal models for several viruses transmitted by mosquitoes, ticks, 
and midges, for which vaccines and therapeutics are not readily 
available or do not exist.

Animal Models for Mosquito-borne Viruses
Dengue virus (DENV), Chikungunya virus (CHIKV), and Zika 

virus (ZIKV) have caused large outbreaks on multiple continents, 
and large portions of the world’s population live in regions where 
there is a risk of DENV, CHIKV, or ZIKV transmission. Although 
there are numerous mosquito-borne viral diseases (Table 1), this 
section focuses on the currently available animal models for 
DENV, CHIKV, and ZIKV. The primary vector for each of these 
viruses is the Aedes aegypti mosquito. A. albopictus is also a com-
petent vector for both DENV and CHIKV, whereas other vector 
species for ZIKV have yet to be identified.21,44,63,69 Both A. aegypti 
and A. albopictus are dispersed throughout tropical and subtropi-
cal regions of the world. A. albopictus tolerates more temperate 
regions than A. aegypti, and A. albopictus has expanded further 
north into the Americas, Europe, and Asia.34 As global climate 
changes continue, the regions for both of these species of mos-
quito might continue to expand.

Dengue virus. DENV is a member of the Flaviviridae family and 
has 4 serotypes (DENV 1 through 4). Clinical symptoms of DENV 
are rapid onset of fever, headache, arthralgia, abdominal pain, 
nausea, and rash. Although many cases are self-limiting, some 
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cases progress to dengue hemorrhagic fever or dengue shock 
syndrome. Natural hosts of DENV are mosquitoes, humans, 
and nonhuman primates. Numerous models using small ani-
mals have been developed with varying degrees of success (Table 
1). Several commercially available strains of immunocompetent 
adult mice have been evaluated for susceptibility, including 
BALB/c, C57BL/6, A/J, and C3H/He. Most immunocompetent 
strains were not susceptible to DENV, with the exception of A/J 
mice, which had detectable viremia, transient thrombocytopenia, 
and developed paralysis.26 The majority of DENV mouse models 
require humanized or immunosuppressed animals to develop 
clinical manifestations resembling human disease. SCID mice 
have been xenografted with a variety of human cells, including 
peripheral blood lymphocytes, liver cells, K562 cells, and hepa-
tocarcinoma cells; after inoculation with DENV, many of these 
humanized mouse models displayed disease characteristics simi-
lar to human disease manifestations.11,72 After DENV challenge, 
AG129 mice, which lack IFNα/β and IFNγ receptors, develop 
clinical symptoms similar to human infection and have a sus-
tained antibody response.11,72

As a naturally occurring host, NHP can be used for DENV 
research as well. Although NHP do not have a clinical disease 
manifestation, they do demonstrate immune responses that are 
helpful for vaccine and pathogenesis research.72

Chikungunya virus. CHIKV is a member of the Togaviridae fam-
ily. The name Chikungunya comes from the East African lan-
guage of Makonde and means “that which bends up.” This name 
refers to the incapacitating arthralgia that is characteristic of the 
disease and that lasts for several days or becomes a chronic con-
dition. Additional symptoms include fever, headache, muscle 
pain, nausea, and rash. Mouse, hamster, and NHP models have 
been established for studying CHIKV disease pathophysiology 
and evaluation of therapeutic and vaccine candidates.6,12,13,36,46 Im-
munocompetent adult mice are not susceptible to CHIKV, but 
neonatal C57BL/6 mice are susceptible to CHIKV infection.13 
In addition, adult IFNα/β receptor knockout mice, similar to 
those used for DENV research, can be used for models of mild 
or severe CHIKV infection, depending on the degree of the re-
ceptor deficiency. The results of these studies align with clini-
cal manifestations in humans of comparable age and are useful 
for pathogenesis studies.13 Unlike the established mouse mod-
els, golden hamsters do not exhibit clinical signs of illness after 
CHIKV infection. Despite this characteristic, there are benefits to 
using hamsters in CHIKV studies. First, the hamster model yields 
a sufficiently high viremia, enabling over 50% of mosquitoes to 
become infected after feeding on a CHIKV-infected hamster.6 
Furthermore, CHIKV-infected hamsters develop inflammatory 
lesions in joints and skeletal muscle, mimicking the disease in 
humans.6 Studies using rhesus macaques (Macaca mulatta) and 
cynomolgus macaques (M. fascicularis) have demonstrated that 
not only do these animals develop an acute illness similar to hu-
man disease, they can be used to study the reproductive effects 
and age-associated changes in disease progression.12,36,46

Zika virus. Like DENV, ZIKV is a member of the Flaviviridae 
family. In 2012, it was determined that there were 2 distinct ZIKV 
lineages (African and Asian), and the Asian lineage has been 
responsible for the recent global expansion.23 Typically ZIKV 
infection is asymptomatic or presents as a mild febrile illness 
with headache, muscle pain, and rash. A correlation between in-
creases in microcephaly and neurologic disorders in infants and  

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-27



Arbovirus animal models

235

Guillain–Barré syndrome in adults spurred the World Health 
Organization to declare a public health emergency in February 
2016.70 Several rodent models have been attempted, and it ap-
pears that, as needed to study DENV and CHIKV, mice deficient 
in IFN receptors are the most susceptible to ZIKV. Immunocom-
petent CD1 and C57BL/6 mice showed no evidence of suscepti-
bility to ZIKV infection.55 In comparison, A129 and AG129 mice 
showed disease manifestations and offer potential models for 
antiviral and vaccine testing.55

Further animal model development examining the reproduc-
tive effects of ZIKV used IFNAR1−/− dams crossed with wild-
type male mice to produce IFNAR1+/– offspring. All dams were 
infected with ZIKV around gestational day 7 and fetuses were 
harvested 1 wk later. Many of the IFNAR1+/– offspring had been 
reabsorbed, and all others showed signs of intrauterine growth 
restriction.48 Although these current models will be useful in the 
treatment and prevention of ZIKV, their immunocompromised 
status means that additional models are needed to evaluate 
pathogenesis. NHP models have successfully been developed 
using rhesus and cynomolgus macaques. For both species, clini-
cal findings were limited to a rash at the site of injection in few 
animals and mild to moderate inappetence in some rhesus ma-
caques. Viral titers have been detected in blood, urine, and sa-
liva samples from both species, as well as in vaginal swabs taken 
from the rhesus macaques.17,32 Reproductive effects are currently 
being evaluated in the rhesus model, and although complete re-
sults were not published at the time of this review, blood samples 
yielded detectable viral titers for several weeks longer taken in 
pregnant macaques infected during the first trimester than non-
pregnant animals.17 Because NHP are both immunocompetent 
and a naturally occurring host for ZIKV, these models may pro-
vide a more accurate translation to human cases than currently 
available mouse models.

Animal Models for Tick-borne Viruses
Unlike many mosquito-borne diseases, tick-borne viruses tend 

to have low species specificity. This characteristic reflects the 
natural feeding cycle of the tick: throughout its lifecycle, ticks 
may feed on different sizes or species of host, often with little re-
gard to the host species. Humans are not a normal host for ticks, 
and human infection is inevitably the result of sylvatic escape. 
Due to their comparative host promiscuity, most tick-borne vi-
ruses lend themselves well to study in laboratory animals. The 
best-known tick-borne viruses come from 3 main viral families  
(Table 2): Flaviviridae, Bunyaviridae, and Thogotoviridae. A spe-
cial case also exists for African swine fever virus, an asfivirus. 
This virus is not medically significant in humans but instead is 
agriculturally important. We include African swine fever virus 
in this review because the solution to the challenge posed by its 
unique species-specificity is illustrative of the scientific potential 
of ‘zooized’ mice. Like humanized mouse models, which have re-
ceived human cells or tissues to better model diseases that infect 
humans, zooized mice have been implanted with cells or tissues 
from another species to provide an alternate option for species-
specific pathogens.

Flaviviridae. The flaviviruses are a diverse group of envel-
oped viruses vectored both by ticks and mosquitoes. The tick-
borne subgroup (group B) flaviviruses are led by the tick-borne 
encephalitis virus (TBEV). TBEV is actually a group of closely 
related virus subtypes found throughout Europe and northern 

Asia, including the European, Siberian, and Far-eastern subtypes. 
The primary model for this disease is immunocompetent mice, 
commonly BALB/c or C57BL/6, which develop signs of febrile 
and neuroinvasive illness when dosed intracerebrally or intra-
peritoneally with TBEV.19,71 Primate models using African green 
monkeys (Cercopithecus aethiops) and cynomolgus macaques have 
been attempted but fail to produce signs of illness beyond mild 
fever.53 There is some indication that dogs may be able to serve 
as a larger-animal model compared with mice, because dogs de-
velop illness when infected naturally by ticks;62 however, further 
studies are needed to examine the potential of such a model.

Alternatively, TBEV can be modeled using Langat virus, which 
is a close relative of TBEV but is unknown to produce human 
disease naturally. C57BL/6 mice injected subcutaneously with 
Langat virus develop febrile illness.47 The disease manifestations 
and mortality of the virus can be enhanced by using immuno-
compromised Ccr5−/− or IPS1−/− mice.35 In addition, infant rats 
have been used with Langat virus to model the effects of TBEV.42

BALB/c mice have been used to study Powassan virus, another 
group B flavivirus that can be thought of as a North American 
version of TBEV. Mice infected intradermally with greater than 
103 pfu of Powassan virus quickly develop febrile and neuroin-
vasive illness that mirrors human Powassan encephalitis.24,56 In 
addition, Peromyscus mice, one of the natural reservoirs of Powas-
san virus, may prove to be a useful research animal for modeling 
persistent resistance, given that these species are both available 
for and have been used in laboratory settings.3

Alkhumra hemorrhagic fever virus and Kyasanur Forest virus 
have been shown to infect BALB/c mice, with varying degrees 
of clinical outcomes between the 2 viruses.57 Louping ill virus, 
an agriculturally important flavivirus of sheep, can be modeled 
in BALB/c mice and (albeit less reliably) in lambs.60 As the natu-
ral host, adult laboratory sheep show promise for pathogenesis 
studies.

Bunyaviridae. Several bunyaviruses are transmitted by ticks. 
The most well-known of these is Crimean–Congo fever virus, 
a hemorrhagic disease. This virus has been studied in both 
STAT1−/− and IFNα/βR−/− mice for vaccine studies.16,33 In addi-
tion, transmission studies have been accomplished by using in-
fected infant mice as a source for tick infection and guinea pigs 
as a final host.15

Severe fever with thrombocytopenia syndrome virus has been 
tested in mice. Immunocompetent C57BL/6J mice have been 
used in immunization trials after being dosed intraperitoneally 
with 3 × 107 pfu of this virus; however, these mice cleared the 
virus and failed to develop severe symptoms.40 Immunocompro-
mised A129 mice infected with 106 ffu of the virus were shown 
to develop lethal illness, although the exact cause of the variable 
lethality was not clear.61 A lethal infection can be produced by us-
ing IFNAR−/− transgenic mice.65

Heartland virus was recently described as a cause of human 
disease in the United States, and animal models are still under 
development. Rabbits have been shown to seroconvert without 
developing viremia or signs of infection.22 Recently published 
studies indicate that, similar to many other arboviruses, AG129 
mice infected with Heartland virus develop viremia and clinical 
signs that are consistent with human disease.7

Thogotoviridae. Several varieties of thogotovirus are transmit-
ted by ticks. Thogoto virus is an orthomyxovirus that is related to 
influenza virus and is generally modeled in mice, where it pro-
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duces a systemic infection, febrile illness, and weight loss simi-
lar to the human infection.31,52 The livestock effect (abortions in 
sheep) has not been modeled in mice. For equipped laboratories, 
a sheep model of this phenomenon may be viable.

Dhori virus, a close relative of Thogoto virus, has similarly been 
modeled in mice. Intranasal infection of Dhori virus produces 
rapid and fatal infection in ICR mice, with clinical manifestations 
similar to those seen in humans infected with highly virulent in-
fluenza A virus.38 Intraperitoneal and subcutaneous inoculation of 
Dhori virus have also been used, with intraperitoneal inoculation 
producing the most rapid decline.43 Due to its pathogenesis and 
close relation to influenza, Dhori virus has been proposed as a 
model of severe influenza.

African Swine Fever Virus. African swine fever virus varies from 
other tick-borne viruses in that, as an asfivirus, it is a large DNA 
virus. It also differs in the fact that it is highly host-specific, af-
fecting only swine and constituting a strictly agricultural threat. 
African swine fever virus is asymptomatic in wild porcine species 
but causes hemorrhagic illness in domestic hogs; swine have been 
used for pathogenesis studies and vaccine development.30,41 The 
virus has also been studied in zooized mice. In this case, SCID 
mice were injected intraperitoneally with porcine bone marrow 
cells prior to challenge with African swine fever virus. Develop-
ment of this zooized animal model allows labs to use a species 
that is lower on the phylogenetic scale and to bypass the need for 
the extensive facilities required for work on pigs.64

Animal Models for Midge-borne Viruses
Midges are biting, hematophagous flies prevalent in North 

America. Many of the viruses that they transmit do not cause 
illness in humans but rather are of agricultural significance  
(Table 3). Akabane virus is a bunyavirus transmitted by Culicoi-
des midges that is responsible for causing encephalomyelitis and 
birth defects in cattle.37 Cattle have been used experimentally to 
study the pathogenesis of the virus and for vaccine development. 

However, cows did not develop fatal illness unless inoculated 
intracerebrally or intrasubarachnally.37 Cattle inoculated through 
other routes develop histologic changes of the brain but show 
no illness. This clinical pattern may indicate that a live vector is 
required or that the infection probability is low. In addition, aka-
bane virus has been modeled by using infant mice, where it has 
been used to study the comparative lethality of viral mutants in-
jected intraperitoneally.27

The other main group of midge-borne viruses are members of 
the orbivirus genus of the Reoviridae family. This group includes 
equine encephalosis virus (not to be confused with equine en-
cephalitis virus), the closely related African horse sickness virus, 
and bluetongue virus. Equine encephalosis virus and African 
horse sickness virus cause lethal horse diseases native to Sub-
saharan Africa. African horse sickness virus has been studied in 
INFAR−/− mice for vaccine studies, where it produces viremia, 
illness, and eventual fatality when injected subcutaneously at 104 
to 105 pfu.9 Ponies have been used for vaccine studies of equine 
infectious anemia (a retrovirus vectored by horseflies) and likely 
could be adapted to studying the disease caused by African horse 
sickness virus in its natural host.14 The facilities required for such 
an undertaking would be extensive.

Bluetongue virus affects various ruminants. Sheep have been 
used to study the pathogenesis of the virus and for vaccine devel-
opment.20,45 In both cases, the sheep were injected intradermally. 
Vaccine studies have also been performed in INFAR−/− mice, in 
which bluetongue virus produces lethal disease.28 Comparatively, 
the mouse infection model had a much shorter course of disease 
than the sheep model.

Conclusions
In this review, we outlined currently available animal models 

for various arboviruses, including those transmitted by mosqui-
toes, ticks, and midges. Arboviruses are responsible for millions 
of human infections each year; thus, to alleviate the burden and 

Table 3. Midge-borne viruses

No. 
infected 
annually

Mortality 
rate

Animal models

Disease Family Vector Treatment Vaccine
Immuno-
competent

Immuno- 
compromised

Humanized 
or zooized Notes References

Akabane 
virus

Bunyaviridae Culicoides 
spp.

>500 
(cattle)

Unknown None Available Mice  
(infant), 

cattle

None None Infects  
ruminants only; 
usually nonfatal 

but results  
in abortion

27, 37

African 
horse  
sickness 
virus

Reoviridae Culicoides 
spp.

Unknown 90% None Available, 
provides 
partial 

protection

Ponies Mice (IN-
FAR−/−)

None Infects horses 
only; research 
ponies have 

not been used 
specifically for 
this disease but 
can be adapted 

from studies  
of equine  
infectious 

anemia

9

Bluetongue 
virus

Reoviridae Culicoides 
spp.

Unknown Variable 
by breed

None Available Sheep Mice  
(INFAR−/−)

None Infects  
ruminants only

20, 28, 45
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costs associated with these diseases, it is important that research 
focuses on arbovirus disease control and treatment strategies. 
Animal models for these vector-borne viruses are valuable ex-
perimental tools that can shed light on the pathophysiology of 
the infection and will enable the evaluation of future treatments 
and vaccine candidates. There is no substitute for using animal 
models if we are to understand in detail the interactions between 
the virus, vector, and host or the interactions between the host 
cells and tissues involved in the response to an arbovirus. Yet 
significant challenges are often associated with animal model de-
velopment for arboviruses. Many of the arboviruses fail to cause 
a lethal infection in common laboratory animal species, or the 
pattern of disease in the animal model does not accurately repre-
sent the course of human infection. Despite such challenges, the 
number and variety of animal models developed for arbovirus 
research have increased steadily in recent years. With each of the 
animal models developed comes a better understanding of the 
disease and how to best implement preventative and therapeutic 
measures.
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