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The incidence of sepsis, a systemic inflammatory response to 
infection that results in multiorgan failure, has increased in recent 
years.31,39,42 This complex, multifactorial syndrome is character-
ized by oxidative stress and a systemic inflammatory response 
to an infective insult. Although the complete pathophysiology 
of human sepsis is still poorly understood,39,42 the consequences 
are severe and include widespread tissue injury, multiple-organ 
failure, and death.10,30,47 The murine cecal ligation and perforation 
(CLP) model is considered the ‘gold standard’ of sepsis models, 
mimicking the clinical progression observed during human sep-
sis.10,12,13,20,42 The murine CLP procedure involves a laparotomy to 
induce peritonitis and subsequent polymicrobial sepsis.10-12,21,39,42 
Researchers who intend to translate findings of sepsis research 
from the murine model to human medicine often use the CLP 
procedure.

In the literature, the use of analgesics in the murine model of 
sepsis is a topic of debate. One of the greatest concerns raised is 

the potential effect of an analgesic on the immune response of the 
animal.10,21 Previous studies have examined the murine immune 
response to several common analgesics. One study examining the 
effect of buprenorphine on CLP in C57BL/6 mice demonstrated 
that buprenorphine causes few perturbations of inflammatory 
parameters in male mice undergoing the procedure.10 Another 
group compared the use of tramadol and buprenorphine and 
found that mice given a high dose of tramadol after CLP had sig-
nificantly greater mortality and higher levels of cytokines than 
did those treated with buprenorphine.21 These concerns alone do 
not outweigh the benefits of using appropriate analgesics in sep-
tic mice. The Public Health Service Policy on the Humane Care 
and Use of Laboratory Animals requires that animals used in bio-
medical and behavioral research are provided with appropriate 
treatment, including the appropriate use of tranquilizers, analge-
sics, and postsurgical veterinary medical and nursing care.34 The 
Government Principles for the Utilization and Care of Vertebrate Ani-
mals used in Testing, Research, and Training states that procedures 
with animals that may cause more than momentary or slight pain 
or distress should be performed with appropriate sedation, anal-
gesia, or anesthesia.34 In addition to remaining in compliance with 
government policies, it is in the researchers’ best interest to pro-
vide appropriate analgesia, given that unrelieved pain interferes 
with metabolic and immunologic functions.21-24
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4-0 silk was used to ligate approximately 50% of the cecum distal 
to the ileocecal junction. The antimesenteric border of the ligated 
cecum was perforated twice (through-and-through procedure) by 
using a 21-gauge needle. Cecal contents were gently expressed to 
ensure patency of the perforations. The abdominal musculature 
was closed with sutures, followed by closure of the skin by using 
wound clips. Sterile saline (0.5 mL) was administered intraperito-
neally immediately after the procedure. Mice were identified by 
numbering the tails with nontoxic markers for future recordkeep-
ing and were returned to their home cages once they had recov-
ered completely from anesthesia. The procedure time for each 
mouse was approximately 5 to 10 min, with a total anesthesia 
time of less than 15 min. Mice did not display any evidence of an-
esthetic complication. The procedures were divided over 2 d, and 
all surgeries were performed by the same investigator, who was 
blinded to treatment group, and began at the same time each day.

Animal health monitoring postoperatively. Individual mice were 
monitored immediately after the CLP procedure and at 6, 12, 24, 
30, and 36 h thereafter, concurrent with Bup HCl dosing. Animal 
mortality was documented at each time point. All observations 
were performed by the same investigator, who was female to 
avoid potential stress-related analgesia bias and who was blinded 
to treatment group.44 Several clinical signs associated with activity 
and response to stimulus were used to create a scoring system. 
Observations with clinical assessment scoring were performed 
at 12, 24, and 36 h after the CLP procedure; the monitoring at the 
6- and 30-h time points included a general health check, with no 
clinical assessment scoring, and euthanasia as warranted. Begin-
ning 48 h after the CLP procedure, all mice were observed every 
12 h for general health, with no clinical scoring and euthanasia if 
warranted. All observations occurred prior to the administration 
of the analgesic. An abbreviated version of a validated behavioral 
scoring system14,48 was used to create the current scoring system, 
integrating physiologic and behavioral parameters to evaluate 
clinical condition of postoperative mice. Duration of all behaviors 
was recorded by using a stopwatch in real time. Individual mice 
initially were observed for 5 min from a distance while they were 
in their home cage. Mice were observed for movement, interac-
tion with conspecifics, posture, and amount of time spent focused 
at the surgical site. After the initial observation, mice were ob-
served for 15 s immediately after the home cage lid was opened, 
to evaluate responsiveness to cage opening, grooming, and respi-
ratory effort. Finally, mice were evaluated for reactiveness and 
exploration for 15 s during handling. During handling, a clinical 
exam was performed, and skin tenting for hydration status, nasal 
or ocular discharge, and color of mucous membranes were noted. 
Scores of 0 (normal), 1 (mild presentation), or 2 (severe presenta-
tion) were assigned for each feature in every mouse. The clinical 
condition scale with a complete description of all clinical signs 
can be found in Figure 1; the maximal total condition score was 
30. Mice that scored greater than 12 or that were unable to right 
themselves were euthanized by CO2 asphyxiation followed by 
cervical dislocation.

All cages contained approximately 3 g of nesting material, and 
the mice’s nesting behaviors scored at the same time each evening 
after the animals had experienced at least 10 h of the light cycle. 
Nest scores were graded prior to the start of this experiment, and 
all cages had nests that scored as 4 or higher. Because of the ran-
domization of mice in groups, nest scores could not be accurately 
compared between before and after CLP.

A common analgesic used in research is the synthetic opiate 
buprenorphine. Buprenorphine is classified as a partial μ ago-
nist and κ antagonist and has few immunomodulatory effects.10,15 
Previous studies have shown that buprenorphine did not have 
significant effects on mortality or several immune parameters.10,21 
The dosage recommended is 0.05 to 0.1 mg/kg at a frequency 
ranging from every 6 h to every 12 h.7,15 Buprenorphine SR (Bup 
SR) is a sustained-release injectable formulation of buprenorphine 
that was developed by a United States veterinary compounding 
pharmacy. Reports have claimed that Bup SR provides analgesic 
relief for 12 to 72 h duration in murine species.6,8,9 Previous stud-
ies have shown few effects of short-acting buprenorphine (Bup 
HCl) on inflammatory parameters in a murine model of sepsis.10,21 
However, whether Bup SR has a similar lack of immunomodu-
lary effects when administered at doses that would alleviate clini-
cal signs of pain in a murine model of sepsis is unknown.

The purpose of this study was to determine whether Bup HCl 
and Bup SR differed in their effects on mortality, plasma concen-
trations of the inflammatory cytokines monocyte chemoattractant 
protein (MCP) 1 and IL6, and clinical signs of pain in a murine 
model of sepsis. In this study, mice undergoing the CLP proce-
dure received either 0.1 mg/kg Bup HCl every 6 to 12 h for a total 
of 48 h or 1.0 mg/kg Bup SR once at time of anesthetic induction. 
Compared with the Bup HCl group, Bup SR mice exhibited sig-
nificantly fewer signs of pain during the first 24 h after surgery, 
according to clinical condition scoring, with no measurable differ-
ences in mortality or circulating levels of MCP1 and IL6 between 
groups.

Materials and Methods
Animals. Male C57/BL6 mice (weight, 24 to 28 g) were pur-

chased from Charles River Laboratories (Wilmington, MA). Mice 
were acclimated for at least 3 d prior to experimental use. Ani-
mals were housed at a maximum of 5 per cage on autoclaved 
corncob bedding (Alpha-dri–Cob Blend, Shepherd Specialty Pa-
pers, WF Fisher and Son, Somerville, NJ) in individually ven-
tilated microisolation cages. After undergoing CLP, mice were 
assigned to cages according to treatment with a maximum of 5 
mice per cage; mice were not single-housed during the experi-
ment. Enrichment was provided in the form of social housing and 
cotton nesting pads (Cotton squares, Ancare, Bellmore, NY). Mice 
had unrestricted access to irradiated feed (Purina Lab Diet 5053, 
PMI, St Louis, MO) and water treated by reverse osmosis. Mice 
were housed in a SPF facility and were SPF for pathogens includ-
ing Sendai virus, pneumonia virus of mice, mouse hepatitis virus, 
minute virus of mice, mouse parvovirus, Theiler mouse encepha-
lomyelitis virus, reovirus type 3, epizootic diarrhea of infant mice 
virus, Mycoplasma pulmonis, lymphocytic choriomeningitis virus, 
mouse adenovirus, ectromelia virus, K virus, polyomavirus, and 
endo- and ectoparasites. Mice were maintained in accordance 
with the Guide for the Care and Use of Laboratory Animals22 in an 
AAALAC-accredited facility. All procedures were approved by 
the Columbia University IACUC and followed applicable gov-
ernmental policies and regulations.

CLP procedure. All mice underwent the CLP procedure under 
isoflurane anesthesia. Prior to the initial incision, mice were given 
a dose of either Bup HCl (0.1 mg/kg SC) or Bup SR (1 mg/kg 
SC) by a designated investigator who ensured that all other in-
vestigators were blinded to the treatment group. The cecum was 
exposed through a ventral midline incision. A single ligature of 
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Figure 1. Behavioral ethogram. Mice were observed for the listed clinical parameters during the time period indicated. Mice were scored on a scale of 0 
to 2; the maximal total clinical condition score was 30. Mice that scored higher than 12 or that were unable to right themselves were euthanized by CO2 
asphyxiation followed by cervical dislocation.
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study attrition bias due to dropout from euthanasia, clinical con-
dition scores were not compared between the 2 groups after 48 h.

During the current experiment, few cotton squares were ma-
nipulated throughout the study. The results regarding nest scores 
were not statistically significant and therefore are not shown. In 
addition, all mice were negative according to TINT throughout 
this experiment.

Immunologic parameters. One mouse in the Bup HCl group 
was moribund at 24 h postoperatively and therefore did not un-
dergo blood collection at this point. Proinflammatory IL6 and 
MCP1 cytokine–chemokine levels were evaluated on all other 
samples. In the Bup SR group, the MCP1 concentration was 
10,212 ± 5615 pg/mL and the IL6 level was 14,612 ± 20,607 pg/mL, 
compared with 20,918 ± 18,941 pg/mL and 17,221 ± 24,320 pg/mL, 
respectively, in the Bup HCl mice. These cytokine levels did not 
differ significantly between the treatment groups (Figure 4).

Discussion
Sepsis (Greek, ‘to make putrid’) is characterized by oxidative 

stress and a systemic inflammatory response to infection.4,26,38,43 
This inflammatory reaction is mediated by the release of cyto-
kines from neutrophils and macrophages. Cytokines then acti-
vate the extrinsic coagulation cascade and inhibit fibrinolysis, 
leading to disruptions of the coagulation pathway, the formation 
of microvascular thrombi, the consumption of endogenous anti-
coagulant, and ultimately organ dysfunction. Outcomes include 
aberrant mediator production and cellular dysfunction, both of 
which are being investigated as potential causes of widespread 
tissue injury.26,38

Sepsis is a leading cause of mortality in human and veterinary 
medicine.39,42,43 In 2012, bacterial sepsis was the 8th leading cause 
of death in newborns, and septicemia ranked as the 10th lead-
ing cause of death in females. Septicemia ranks within the top 10 
causes of death in various other populations.1,18,31 The mortality 
rate from sepsis among human and veterinary populations has 
remained stable over the past few years and appears to be a result 
of a host’s inability to respond to the pathogenesis of sepsis.31,39,42,43

The CLP procedure is frequently considered the gold stan-
dard of murine sepsis models because it replicates the clinical 
progression of sepsis in humans.10,21,39 In the murine CLP model, 
sepsis originates from a polymicrobial infectious focus within the  

Time-to-integrate-to-nest test (TINT) scoring was attempted at 
the same time each morning, within 3 h of initiation of the light 
cycle. TINT scoring began the day after the CLP procedure and 
was continued for the duration of the experiment. As described 
in previous reports,40,41 a single square (1 in. × 1 in.) of cotton was 
placed opposite the established nest and left for a total of 10 min. 
When the nesting square was integrated into the established 
home nest, the cage was scored as positive. When the cotton 
square was untouched, the cage was scored as negative.

Analgesic dosing. All analgesics were provided subcutaneously 
after induction of anesthesia. The mice assigned to the Bup HCl 
group (n = 16) were given a single subcutaneous dose of Bup HCl 
at time of the CLP procedure and 0.5 mL saline intraperitone-
ally at the completion of the procedure. Additional doses of Bup 
HCl (0.1 mg/kg) were given at 6, 12, 24, 30, and 36 h postopera-
tively for a total of 6 doses of Bup HCl. The Bup SR group (n = 
16) received a single subcutaneous dose of Bup SR (1 mg/kg) at 
the time of the CLP procedure and 0.5 mL saline intraperitone-
ally. To maintain investigator blinding and to reduce the poten-
tial confounding effect of increased disturbance to the Bup HCl 
group, after the first Bup SR dose, mice in the Bup SR treatment 
group received an equal volume of saline without analgesics at 
the same time points as the Bup HCl groups were treated. In to-
tal, 1 dose of analgesic and 5 doses of saline without analgesics 
were given in the Bup SR group. The initial analgesic injection 
was given by one investigator, who recorded the drug given and 
thus the analgesic groups. All additional injections were given 
by a second investigator, who was blinded to the identity of the  
analgesic groups.

Blood collection and processing. Approximately 25 μL blood 
was collected from the saphenous vein at 24 h postoperatively. 
Previous studies have shown that the highest single-day mortal-
ity and highest expression of circulating cytokines typically occur 
at 24 h after the CLP procedure.35 The same experienced inves-
tigator collected blood from all animals. The proinflammatory 
cytokine IL6 and chemotactic cytokine MCP1 were evaluated in 
all collected samples by using the Cytometric Bead Array Mouse 
Flex Kit (BD Biosciences, Franklin Lakes, NJ) according to the 
manufacturer’s instructions.

Statistical analysis. Kaplan–Meier survival curves were calcu-
lated for each treatment group, and differences between curves 
were analyzed by using log-rank statistics. Observational scores 
and MCP1 and IL6 levels were compared between groups 
by using nonparametric 2-tailed Mann–Whitney U testing.  
A P value of less than 0.05 was considered significant. All sta-
tistical analyses were performed by using Prism 5 (GraphPad 
Software; La Jolla, CA).

Results
Survival rate. In both analgesic groups, the survival rate was 

approximately 50% at 48 h after CLP and reached 100% by 84 
h postoperatively. Overall, no significant difference in mortality 
rate was detected between the analgesic groups during the 5-d 
course of this study (Figure 2).

Clinical condition analysis. Clinical condition scores (mean ± 
1 SD) in the Bup SR mice at 12 h (4.69 ± 1.08) and 24 h (4.69 ± 
2.02) postoperatively were significantly better (that is, lower) than 
those in mice given Bup HCl (12 h, 6.13 ± 1.67, P = 0.02; 24 h, 6.93 ±  
3.38, P = 0.006; Figure 3). However, clinical condition scores at  
36 h did not differ between the 2 groups (Figure 3). Because of 

Figure 2. Kaplan–Meier survival curve show a 50% survival rate for 
both Bup HCl (black) and Bup SR (gray) treatment groups at 48 h post-
operatively. Both treatment groups reached 100% mortality at 84 h after 
undergoing CLP, and mortality rate did not differ significantly between 
the analgesic treatment groups during this study.
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abdominal cavity, followed by bacterial translocation into the 
blood compartment, triggering a systemic inflammatory re-
sponse.39 This model often presents challenges to IACUC due 

Figure 3. Clinical condition analysis scores of Bup HCl (circle) and Bup SR (square) treatment groups at 3 time points after CLP. (A) At 12 h after the 
CLP procedure, mice dosed with Bup SR had significantly (P = 0.02) better (that is, lower) condition scores (mean ± 1 SD) than did mice given Bup HCl 
(4.69 ± 1.08 and 6.13 ± 1.67, respectively). (B) At the 24-h time point, Bup SR mice again had significantly (P = 0.006) better condition scores than did 
Bup HCl mice (4.69 ± 2.02 compared with 7.313 ± 3.32). (C) At 36 h after CLP, the condition score did not differ significantly (P = 0.67) between the mice 
treated with Bup SR (6.71 ± 3.05) and those given Bup HCl (6.27 ± 3.07).

Figure 4. Circulating MCP1 and IL6 levels at 24 h after CLP in Bup HCl- 
(circles) and Bup SR- (squares) treated mice. (A) MCP1 levels (mean ± 1 
SD) were 10,212 ± 5,615 pg/mL in the Bup SR group and 20,918 ± 18,941 in 
the Bup HCl group. These values did not differ significantly between the 
2 groups. (B) IL6 levels (mean ± 1 SD) were 22,657 ± 41,783 pg/mL in Bup 
SR mice and 43,010 ± 82,853 pg/mL in Bup HCl mice. Circulating levels 
of IL6 did not differ significantly between the analgesic treatment groups.

to the invasive abdominal surgery, induction of peritonitis, and 
severe postoperative outcomes. Perioperative analgesia is con-
sidered standard of care in veterinary medicine, and federally 
funded research must be in compliance with the Public Health 
Service policy. However, investigators may be hesitant to pro-
vide analgesics in animal models of sepsis because of the risk of 
potential immunomodulatory effects. Currently, investigators 
are tasked with providing appropriate analgesia or providing 
adequate justification for the withholding of analgesics.21 This di-
lemma has been a topic of discussion in recent laboratory animal 
veterinary forums, with consensus in favor of providing analge-
sics in mice undergoing the CLP procedure.

In the current study, we evaluated the effects of 2 formulations 
of buprenorphine on mortality, MCP1 and IL6 cytokine response, 
behavior, and perceived pain in C57BL/6 male mice after a CLP 
procedure. We chose Bup HCl as the control analgesic in this 
study because previous reports concluded that the use of Bup 
HCl in mice undergoing the CLP procedure had limited adverse 
effects in this model.10 In addition, we modified an IACUC proto-
col in which the use of Bup HCl was already approved to evaluate 
the 2 analgesic formulations in a murine model of polymicrobial 
sepsis. The doses of buprenorphine that we used reflect current 
recommendations in the literature and in commonly used veteri-
nary formularies.7,15 The dosages chosen for Bup HCl and Bup SR 
were at the higher end of the recommended dose range, as was 
protocol-approved standard dosing. The recommended dosing 
frequency for Bup HCl ranges from every 6 to every 12 h.7,15 Our 
study used the maximal time between doses of Bup HCl, because 
this schedule mimics the common practice at many institutions 
of implementing the least invasive treatment regimen. In addi-
tion, this schedule followed the dosing regimen of a preapproved 
IACUC protocol, further demonstrating the common use of this 
dosing frequency. Bup SR is reported to be efficacious for as long 
as 72 h,6,8,9 thus exceeding the 48-h analgesic coverage required by 
the IACUC-approved protocol.

We administered Bup HCl (0.1 mg/kg) at the time of the CLP 
procedure and at 6, 12, 24, 30, and 36 h postoperatively, for a total 
of 6 doses. Bup SR was given once at the time of the procedure, 
and saline was injected at the remaining time points to control for 
handling effects and fluid volume between groups. No significant 
difference in mortality or levels of IL6 and MCP1 were observed. 
IL6 is a proinflammatory mediator that is significantly elevated in 
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day 1 for the duration of the experiment, and all cages of mice 
received negative TINT results throughout the study. Previous 
reports have documented the importance of performing the TINT 
prior to a study to have a baseline measurement with which to 
compare manipulated animals. However, due to time constraints, 
we did not obtain a baseline TINT, which could have been a rea-
son for the lack of TINT-positive cages.41 As previously reported, 
the use of buprenorphine may produce a motor depression that 
inhibits mice from forming complete nests and integrating nest-
ing material into preestablished nests.41 A complete analysis of 
the effects of Bup SR and Bup HCl on TINT and nest scoring is 
beyond the scope of the current study.

Clinical observations and assessments of complex behaviors 
have been used in studies to evaluate pain and animal condi-
tion. The Mouse Grimace Score is a parameter validated for use 
to measure pain in mice. For this scoring, mice are placed in a 
chamber suitable for obtaining photographs or videorecordings 
the face of a mouse; these images then are scored by a trained ob-
server.14,28,29,32 Due to its complex set-up, we did not use the Mouse 
Grimace Score for this project, and this type of scoring is beyond 
the scope of this study.

For mice undergoing surgical procedures, the analgesics select-
ed for postoperative care should be considered carefully on the 
basis of efficacy, ease of application, and effects on research. Argu-
ments have been raised regarding the use of analgesics for murine 
sepsis models. The current study concludes that, compared with 
Bup HCl, Bup SR does not alter mortality or plasma levels of the 
inflammatory cytokines MCP1 and IL6 and is superior in amelio-
rating signs of pain, as evidenced by the significantly decreased 
clinical condition scores in mice at 12 and 24 h following the CLP 
procedure. The recommended time between doses of Bup HCl 
varies, leading to inconsistent dosing schedules between studies. 
Compared with Bup HCl, Bup SR provides a more consistent 
dosing regimen and thus eliminates a potential confounding vari-
able. The less frequent dosing schedule, consistent analgesia, and 
lack of effect on MCP1 and IL6 cytokine levels and mortality sup-
port the use of Bup SR in the CLP procedure.
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