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Estrus and diestrus are associated with a loss of insulin sensitiv-
ity in both normal and diabetic dogs2,8,31,33,35 Although muscle is 
known to be involved in this change in insulin sensitivity,30 wheth-
er the liver is affected also is unclear. The liver is an especially im-
portant organ of glucoregulation, because it both releases glucose 
to and extracts it from the circulation, depending on glycemic and 
hormonal cues. However, to our knowledge the liver’s response 
to insulin in the period surrounding estrus has not been examined 
nor has the degree of insulin resistance been quantified in depth.

Because dogs are an important model for humans in metabolic 
research26,28 and a popular companion animal prone to develop-
ing diabetes, insulin resistance, and impaired glucose tolerance,32 
understanding metabolic consequences of the normal estrus cy-
cle in dogs is important. In addition, the NIH and other research 
funding agencies currently require or strongly encourage the ac-
quisition of data from both sexes in applicable preclinical stud-
ies,6,15,34 thus highlighting the importance of elucidating the effects 
of the estrus cycle on the canine model.

In the current project, we sought to compare hepatic and pe-
ripheral insulin sensitivity and glucose metabolism in normal fe-
male dogs in PE and anestrus. These studies were accomplished 

by using a 2-step hyperinsulinemic euglycemic clamp after the 
insulin infusion rate that maintained basal glycemia (that is, re-
flecting near-basal insulin secretion) had been established. The 
first data-collection period involved an insulin infusion rate previ-
ously demonstrated to suppress endogenous glucose production 
by approximately 50% in normal female dogs in anestrus, and the 
second period used an infusion rate known to completely sup-
press endogenous glucose production and to increase whole-body 
glucose utilization by approximately 7-fold in normal dogs of both 
sexes.5 We chose the hyperinsulinemic euglycemic clamp technique 
for these studies because it is frequently considered to be the ‘gold 
standard’ for assessment of insulin sensitivity in humans and ani-
mal models.1,17,20,40,41 The use of 2 insulin-infusion rates allows the 
differentiation of hepatic and whole-body insulin sensitivity, given 
that the liver’s response is evident at a much lower insulin delivery 
rate than that of peripheral insulin-sensitive tissues.4,10,27

Materials and Methods
Animals and surgical procedures. The protocol was approved 

by the Vanderbilt University IACUC, and all animals were 
housed in a facility accredited by AAALAC. Adult female mon-
grel dogs (n = 11; weight, 23.0 ± 0.4 kg) obtained from a USDA-
licensed vendor were studied. All dogs consumed a diet of dry 
chow and canned food (Laboratory Canine Diet 5006, LabDiet, St 
Louis, MO; Pedigree Choice Cuts, Mars Petcare US, Franklin, TN; 
metabolizable energy, approximately 1650 to 1850 kcal/d; 31% 
protein, 26% fat, and 42% carbohydrate).
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Table 1. Plasma insulin and glucagon concentrations and total hepatic 
blood flow

Experimental period

Basal P1 P2

Arterial insulin (µU/mL)
control 7 ± 1 10 ± 1 28 ± 3
PE 6 ± 1 8 ± 1 29 ± 3

Arterial glucagon (ng/L)
control 35 ± 3 35 ± 2 31 ± 3
PE 40 ± 5 37 ± 2 34 ± 2

Hepatic blood flow (mL/kg/min)
control 25 ± 5 27 ± 5 26 ± 4
PE 23 ± 3 24 ± 3 24 ± 3

Data are mean ± SEM (control, n = 6; PE, n = 5) for 3 sampling times in 
each period. There were no significant differences between groups.

Approximately 16 to 17 d prior to the experiment, the dogs under-
went laparotomy and surgical insertion of splenic and jejunal vein 
infusion catheters for infusions into the hepatic portal circulation as 
well as the insertion of sampling catheters in the left femoral artery, 
hepatic portal vein, and left common hepatic vein. Ultrasonic flow 
probes (Transonic Systems, Ithaca, NY) were placed around the he-
patic artery and portal vein. The incision was closed in 3 layers. All 
dogs received analgesics preoperatively (0.02 mg/kg buprenorphine) 
and for 48 h postoperatively (0.02 mg/kg buprenorphine and 0.1–0.2 
mg/kg meloxicam). During the postoperative period, dogs were ob-
served at least twice daily by research and veterinary staff. Criteria for 
use and the preparation for study were as previously described.9 The 
control group consisted of 6 dogs in anestrus. Dogs in the proestrus–
estrus group (PE; n = 5) were determined by vaginal cytology to have 
entered proestrus 6 ± 5 d (range 1 to 23) prior to study.

Clamp studies. The dogs were fasted for 18 h prior to study. On 
the morning of study, the catheters and flow probes were removed 
from their subcutaneous pockets under the use of local anesthesia. 
At –130 min, a basal arterial plasma glucose sample was obtained, 
and a primed (35 µCi), constant infusion (0.35 µCi/min) of [3-3H]glu-
cose (PerkinElmer, Waltham, MA) was initiated through a periph-
eral vein. Concurrently, a continuous infusion of somatostatin (0.8 
µg/kg/min; Bachem, Torrance, CA) was begun through a different 
peripheral vein. In addition, infusions of human insulin (approxi-
mately 0.3 mU/kg/min; Eli Lilly, Indianapolis, IN) and glucagon 
(GlucaGen, Novo Nordisk, Denmark; 0.57 ng/kg/min) were deliv-
ered into the splenic and jejunal catheters at rates previously shown 
to yield near-basal hormone concentrations in overnight-fasted dogs 
for example.9,12 The splenic and jejunal veins drain into the hepatic 
portal vein, the route by which insulin and glucagon reach the liver 
during normal secretion. Both hormones were replaced because so-
matostatin suppresses the pancreatic secretion of glucagon as well 
as insulin. Arterial plasma glucose concentrations were obtained 
every 5 min thereafter, and the insulin infusion rate was adjusted as 
necessary to maintain arterial plasma glucose concentrations at the 
basal level.

After stable insulin infusion rates were obtained at approxi-
mately –50 min, no further insulin adjustments were made dur-
ing the equilibration and basal periods. The period between –30 
and 0 min served as a basal sampling period. After the 0-min 
sample was obtained, the insulin infusion rate was increased by 
0.2 mU/kg/min; this continued for 120 min (0 to 120 min; test 
period 1 [P1]). At 120 min, the insulin infusion rate in all dogs 
was increased to 1.5 mU/kg/min, and this second test period 
(P2) lasted from 120 to 240 min. During the basal period, P1, and 
P2, blood samples were collected from the artery and the portal 
and hepatic veins at designated intervals, by using techniques 
previously described.9

Analytical procedures. Analyses have been described in detail 
previously9 and included plasma concentrations of glucose, insu-
lin, glucagon, cortisol, nonesterified fatty acids (NEFA), and 3H 
glucose and blood concentrations of lactate, alanine, glycerol, and 
β-hydroxybutyrate.

unpaired t test; a P value of less than 0.05 was accepted as statisti-
cally significant. Systat software (San Jose, CA) was used for sta-
tistical analysis. All data in the text are expressed as mean ± SEM 
of the 3 sampling times during the last half hour of each period.

Results
Insulin infusion rates, plasma hormone concentrations, and he-

patic blood flow. The insulin infusion rates required to mimic 

 ×
 

 
×

 × .

Calculations.

 

Nonhepatic glucose uptake was calculated as the glucose infu-
sion rate minus the net hepatic glucose output, with the rate cor-
rected for changes in the size of the glucose pool, as previously 
described.7 Glucose turnover (rates of endogenous appearance 
and disappearance) was calculated according to the circulatory 
model described previously.21,22

Statistical comparisons were made using 2-way repeated-mea-
sures ANOVA with posthoc analysis by using the Tukey test or an 
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the basal rate, and during P2 both groups switched to a low rate 
of net hepatic glucose uptake.

The rate of endogenous glucose production under basal con-
ditions did not differ between control and PE dogs (2.8 ± 0.5 
and 2.4 ± 2 mg/kg/min, respectively), and it fell similarly in 
both groups in response to hyperinsulinemia (Figure 2). The 
rate of glucose disappearance rose in both groups in response 
to hyperinsulinemia; the rates during P1 and P2 were approxi-
mately 35% greater (P = 0.05) in the control group than in the 
PE group.

Gluconeogenic precursors, NEFA, and β-hydroxybutyrate. Arte-
rial concentrations and net hepatic balances of the gluconeogenic 
precursors lactate, alanine, and glycerol were similar in the 2 groups 
throughout the studies (Table 2). Net hepatic lactate uptake in both 
groups declined during P1 and P2, with a significant (P < 0.05) 
change in the control group during P2. In both groups, arterial glyc-
erol concentrations declined significantly (P < 0.05) below baseline 
during P2, with a corresponding decrease in net hepatic glycerol 
uptake that reached statistical significance (P < 0.05) in the PE group.

Similar to glycerol, arterial concentrations of NEFA declined 
significantly (P < 0.05) in both groups in response to hyperin-
sulinemia; consequently the net hepatic NEFA uptake fell sig-
nificantly (P < 0.05) below basal levels during P2 in both groups 
(Table 2). In both groups the arterial concentrations and net he-
patic output of β-hydroxybutyrate declined in parallel with the 
supply of NEFA to the liver.

basal rates of secretion were approximately 30% greater in the 
PE dogs (294 ± 25 µU/kg/min) compared with the control group 
(223 ± 21 µU/kg/min; P < 0.05). In both groups, arterial plasma 
insulin concentrations increased slightly over basal values during 
P1 and then increased during P2 to approximately 4 times the 
basal level (Table 1).

Arterial plasma glucagon concentrations did not change sig-
nificantly throughout the studies within groups, and there were 
no significant differences between groups at any time (Table 1). 
Arterial plasma cortisol concentrations remained at basal levels 
throughout the studies in both groups, with no significant differ-
ences between groups (data not shown).

Hepatic blood flow did not differ significantly between groups at 
any time, and it was stable over time within each group (Table 1).

Glucose data. The plasma glucose concentrations remained 
at basal levels (control group, 104 ± 3 mg/dL; PE group, 108 ± 3 
mg/dL) during P1 and P2, and they did not differ significantly 
between groups at any time (Figure 1). The glucose infusion rates 
required to maintain euglycemia were 1.7 ± 0.5 and 1.0 ± 0.1 mg/
kg/min during P1 and 9.9 ± 2.0 and 6.2 ± 1.1 mg/kg/min during 
P2 in the control and PE groups, respectively (P < 0.05 between 
groups during P2; Figure 1).

Net hepatic glucose balance did not differ significantly between 
groups during any period. In the basal state both groups were in 
a state of net hepatic glucose output (Figure 1). During P1, net 
hepatic glucose output in the 2 groups declined nearly 60% below 

Figure 1. (A) Arterial plasma glucose concentration, (B) net hepatic glucose balance, (C) glucose infusion rate, and (D) nonhepatic glucose uptake in con-
trol (n = 6) and PE (n = 5) dogs. P1, 0–120 min; P2, 120–240 min; SRIF, somatostatin. Data are given as mean ± SEM. *, Value differs significantly (P < 0.05) 
between groups.
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Thus, these previous findings provide no information about he-
patic insulin sensitivity during diestrus. In addition, insulin was 
delivered through a peripheral vein, rather than the portal vein 
(its normal secretion route), in the previous study.14 The direct 
effect of insulin on the liver is dominant over its indirect effects 
(primarily on fat tissue) in the control of hepatic glucose produc-
tion under basal conditions.12

Our current report is the first to examine insulin sensitivity 
during estrus or diestrus, with delivery of insulin according to its 
physiologic route of secretion. In the current experiments, arterial 
plasma insulin concentrations increased modestly at the lower 

Discussion
The menstrual cycle in humans causes small changes in insulin 

sensitivity.3,36 Likewise, the estrus cycle is a recognized cause of 
canine insulin resistance,14,30 and the development of insulin-re-
sistant diabetes mellitus associated with the estrus cycle in older 
dogs has been suggested to be a model of gestational diabetes in 
humans.29,31 Consistent with this idea, the PE group demonstrated 
a marked loss of whole-body insulin sensitivity during P2, as 
evidenced by reductions in the glucose infusion rate, nonhepatic 
glucose uptake, and tracer-determined glucose disposal. Under 
hyperinsulinemic euglycemic conditions, the reduction in nonhe-
patic glucose uptake is primarily related to loss of muscle insulin 
sensitivity.18

Although proestrus and estrus are associated with insulin re-
sistance, to our knowledge their effect on the liver’s response to 
hyperinsulinemia had not been assessed previously. Insulin sensi-
tivity during diestrus (45 d after estrus discharge) was previously 
evaluated in a group of 6 beagles by using the euglycemic hyper-
insulinemic clamp technique, with the finding that the glucose 
infusion rate was reduced approximately 40% compared with the 
normal control group, consisting of 10 male and female beagles.14 
Although the findings of the previous study14 are consistent with 
those in our current report, it is noteworthy that the single dose 
of insulin (1.5 mU/kg/min) used in those studies was more than 
sufficient to suppress hepatic glucose production completely in 
the dogs.10,12,38 Maximal suppression of hepatic glucose output 
is evident at a point much lower on the insulin dose–response 
curve than are the responses of other insulin-sensitive tissues. 

Table 2. Arterial blood lactate, alanine, glycerol, β-hydroxybutyrate, 
and nonesterified fatty acid concentrations (µmol/L) and net hepatic 
balances (µmol/kg/min) during the 3 experimental periods

Basal P1 P2

Lactate
Arterial blood concentration
  control 623 ± 170 585 ± 115 752 ± 84
  PE 496 ± 79 511 ± 39 534 ± 75
Net hepatic uptake
  control 2.7 ± 1.1 1.6 ± 1.9 0.6 ± 1.0a

  PE 1.9 ± 1.7 1.4 ± 0.9 0.6 ± 0.6
Alanine

Arterial blood concentration
  control 333 ± 76 324 ± 62 270 ± 38
  PE 287 ± 30 271 ± 21 220 ± 14
Net hepatic uptake
  control 1.1 ± 0.6 1.2 ± 0.6 1.2 ± 0.6
  PE 1.9 ± 0.3 2.1 ± 0.4 2.0 ± 0.4

Glycerol
Arterial blood concentration
  control 93 ± 25 84 ± 29 57 ± 12a

  PE 98 ± 6 84 ± 8 59 ± 14a

Net hepatic uptake
  control 0.9 ± 0.4 0.9 ± 0.5 0.7 ± 0.4
  PE 1.4 ± 0.1 1.4 ± 0.2 1.0 ± 0.2a

Nonesterified fatty acids
Arterial blood concentration
  control 955 ± 145 722 ± 192a 191 ± 69a

  PE 1111 ± 80 743 ± 118a 213 ± 33a

Net hepatic uptake
  control 1.9 ± 0.5 1.1 ± 0.7 0.5 ± 0.4a

  PE 2.0 ± 0.3 1.7 ± 0.4 0.5 ± 0.1a

β-hydroxybutyrate
Arterial blood concentration
  control 57 ± 22 40 ± 16 7 ± 3a

  PE 42 ± 13 23 ± 3 12 ± 1a

Net hepatic output
  control 0.9 ± 0.4 0.6 ± 0.3 0.1 ± 0.1a

  PE 0.8 ± 0.1 0.4 ± 0.1a 0.1 ± 0.0a

Values are given as mean ± SEM (control, n = 6; PE, n = 5) of 3 sample 
times during the final 30 min of each period. 
aValue significantly (P < 0.05) different from basal value within the same 
group. There were no significant differences between groups.

Figure 2. Tracer-determined rates of (A) endogenous glucose appear-
ance and (B) glucose disappearance in control (n = 6) and PE (n = 5) 
dogs. P1, 0–120 min; P2, 120–240 min. Data are given as mean ± SEM. *, 
Value differs significantly (P < 0.05) between groups.
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glucose metabolism. The stage of the menstrual cycle apparently 
has much less of an effect on human glucose metabolism than is 
apparent in dogs during PE compared with anestrus.3,11 Therefore 
metabolic studies predicated on normal muscle and whole-body 
insulin sensitivity should avoid using female canines while they 
are in proestrus or estrus. This accommodation increases research 
costs, given that the animals must either be replaced or housed 
until they enter anestrus. In contrast, the liver appears to retain 
its insulin sensitivity despite of the presence of PE.
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