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Increasingly advanced imaging methods are introduced to the 
treatment of exotic animals and rodents to improve diagnostic 
accuracy, determine prognosis, and select the optimal treatment. 
Most of those methods have already been used in companion ani-
mals, but they have to be modified for use in small mammals and 
reptiles due to differences in anatomy and physiology.27 The low 
body weight (240 to 850 g) of these animals also influences MR 
image quality.26 MRI and CT are popular 3D imaging methods in 
experiments involving animal models (rats, mice, rabbits) to in-
vestigate the pathophysiology of human diseases.25 For example, 
MRI has been used experimentally in small mammals to study 
pyelonephritis, spinal abscesses, synovitis, and bacterial sinusitis 
in rabbits.23,34 In research, MRI is regarded as a transitional stage 
between in vitro and in vivo studies.14

Pet owners’ interest in both CT and MRI for birds, amphibians, 
fish, and small mammals has increased, although the owners 
were more likely to opt for CT due to the lower cost and greater 
availability of the procedure.27 CT supports the acquisition of 3D 
images and the visualization of early pathologic changes that 
cannot be detected by conventional radiography. CT is a highly 
useful technique, in particular in dentistry, because it prevents 
skull bone structures from overlapping and obstructing dental 
evaluations. In addition, contrast media are used during CT to 
diagnose tumors, including those involving the skull.27 However, 
the dose of ionizing radiation generated by a CT scanner is much 
higher than that emitted by an X-ray machine, and in this regard, 
MRI, which does not use ionizing radiation, offers a considerable 
advantage over CT. Due to the growing availability of MRI scan-
ners in veterinary medicine, including private clinics,16 MRI is a 
preferred imaging method for exotic animals (Figure 1).

Subject Preparation
MRI involves long scanning times, and the animal typically is 

immobilized by using general anesthesia.37 Alternatively, seda-
tion minimizes respiratory movements and the number of heart 
contractions and reduces the risk of artifacts.25,41 General anesthe-
sia poses a risk in all animal species,20,33 but the risk is greater in 
small animals, such as reptiles, rodents, and rabbits, than in cats 
and dogs.7,39 The anesthesia-associated risk in small animals is 
exacerbated by stress responses during the induction of anesthe-
sia; their high surface-area:volume ratio, which can lead rapidly 
to hypothermia; technical challenges associated with intubation; 
frequent vascular inflammation associated with venous access; 
and subclinical respiratory disorders.39 Species-specific and in-
terindividual differences may require the adaptation of standard 
anesthesia protocols. Protocols for the anesthesia and immobili-
zation of animals are available in the literature, and they can be 
modified to suit individual needs.

For example, guinea pigs have been sedated for MRI by inhala-
tion of a 2% to 3% mixture of isoflurane, followed by the admin-
istration of intravenous buprenorphine at 0.05 mg/kg.13 By using 
a mixture of intramuscular xylazine (5 mg/kg) and ketamine (35 
mg/kg), rabbits can be immobilized for 30 to 45 min, which is 
generally sufficient to complete the examination.5,38 Nembutal 
(pentobarbital sodium) can be administered intraperitoneally to 
hamsters at 70 to 90 mg/kg body weight.18 In mice, rats, and rab-
bits, a propofol injection can be used to induce short-term seda-
tion lasting around 5 min;34 however, this protocol is not highly 
effective for MRI studies because the sedative has to be admin-
istered several times, thus increasing the risk of displacement 
inside the coil.

Turtles typically do not require pharmacologic sedation, and 
only the head and limbs have to be mechanically immobilized 
during an examination. However, anxious turtles require phar-
macologic sedation, to prevent the head and limb movements 
that can produce artifacts,27,37 and all turtles undergoing direct 
MRI examinations of the head or limbs must be sedated.27 The 
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manganese-enhanced MRI is the potential hepatotoxicity and 
cardiotoxicity of Mn2+ ions.6

MRI of Reptiles
MRI has potential as an effective tool for reptile medicine and 

has been used for turtles and snakes in clinical practice. Radiol-
ogy has limited diagnostic potential in turtles due to the low con-
trast between soft tissues and shell scales.37 Similarly, ultrasound 
scanning is not highly effective in turtles because it does not visu-
alize deep organs or those shielded by bones or gas.2 MRI appears 
to be an advantageous method in turtles because it is by far more 
effective in cross-sectional examinations of internal organs than 
is CT. The intravascular injection of an MRI contrast agent (gado-
linium) further supports the visualization of organ vasculature.25 
Turtles can be placed in the dorsoventral position inside a human 
knee coil.32 In low-field MRI, organs should be scanned in T1-, T2- 
and proton-density–weighted sequences in the sagittal, dorsal, 
and transverse planes. Slice thickness should not exceed 5 mm to 
enhance the visualization of the heart muscle and major vessels, 
stomach, intestines, liver, urinary bladder, and kidneys. Lung 
tissues are characterized by very low signal intensity, so only the 
pulmonary septa is visualized effectively, but mild inflamma-
tory reactions in the lung can be diagnosed in MRI scans.37 Low-
field MRI supports the detection of pathologic changes, including 
tumors, in the abdominal cavity. In a clinical study of a tortoise 
(body weight, 1803 g), MRI (0.5 T; T1-spin echo and T2-fast spin 
echo sequences; dorsal and transverse planes) revealed a hyperin-
tense (T2-weighted) and hypointense (T1-weighted) mass, which 
was identified as cancerous during postmortem histopathologic 
analysis.32 In high-field MRI, a 3D gradient-echo sequence with 
0.5-mm slice thickness is recommended.25

MRI is a minimally invasive imaging method that supports re-
peated measurements of organ size in the same subject. This fea-
ture was used in a study19 of a Burmese python (Python molurus) 
that ranged in weight from 227 to 635 g, and the antemortem MRI 
results were compared with postmortem findings. The snake was 
placed inside the coil of a 1.5-T MRI scanner in a ventral position, 
with distal parts of the body folded parallel to the central part of 
the body. The entire body was scanned simultaneously, and im-
ages were compiled with the use of computer software. Imaging 
involved 2D proton-density multislice spin-echo (slice thickness, 
1 mm; repetition time, 4220 ms; echo time, 73 ms, including a 
prepulse for fat suppression) and 3D T1-weighted gradient-echo 
(repetition time, 9.3 ms; echo time, TE 3.3 ms) sequences. These 
sequences supported measurements of the heart, kidneys, liver, 
pancreas, and small bowel.19

MRI in Rodents
Mice and guinea pigs are the most popular animal models for 

osteoarthritis research, but symptoms of the disease are mani-
fested earlier in guinea pigs. MRI is popularly used to diagnose 
musculoskeletal and joint disorders.34 It is a highly effective and 
minimally invasive diagnostic method that supports evaluations 
of articular cartilage degradation. In addition, MRI is used to as-
sess the effectiveness of pharmacologic treatment for synovial in-
flammation and cartilage degradation.31 In the past, macroscopic 
and histopathologic analyses were the ‘gold standards’ regarding 
evaluations of articular cartilage damage in animals, but those 
methods are highly invasive and often require euthanasia. Alter-

recommended analgesia protocol involves propofol (5 mg/kg) or 
a mixture of ketamine (5 mg/kg IV) and medetomidine (50 μg/kg 
IV).29 All snakes have to be sedated to prevent movement inside 
the coil;1,17,27 the recommended ketamine dose for snakes is 22 to 
44 mg/kg IM.4

Subjects are positioned in accordance with the protocols devel-
oped for dogs and cats;34 dorsal and ventral positions are most 
common. Reptiles should not be examined in the lateral view, 
which causes organ displacement and prevents correct interpreta-
tion of results.27 The imaged area or organ should be positioned 
centrally inside the coil.22 The coil should fully accommodate the 
subject’s size to deliver high-quality images that are character-
ized by a satisfactory signal-to-noise ratio and spatial resolution. 
In addition, coils that are precisely adapted to the subject’s size 
minimize the frequency of artifacts.3 For example, small rodents 
can be examined effectively in a human wrist coil.22 

Contrast Agents
 Animals are often examined with the use of contrast agents, 

despite the risk of adverse reactions.37 At present, 3 groups of 
contrast media are used in MRI: gadolinium chelates (gadopen-
tetate dimeglumine, gadoteridol, gadodiamide, and gadoterate 
meglumine), manganese chelate (mangafodipir trisodium) and 
iron oxide particles (superparamagnetic iron oxide). Gadolinium 
chelates are widely available, and gadopentetate dimeglumine 
is used most frequently.35 Gadolinium (gadopentetate dimeglu-
mine) is delivered intravenously25,31 or injected directly into 
joints13,24 to visualize individual organs and joints. However when 
administered intravenously to rats, gadolinium chloride report-
edly accumulated in lung and kidney capillaries and led to he-
patocellular and splenic necrosis.36 Because free gadolinium (III) 
ions are toxic, contrast media are rendered chemically stable by 
complexing Gd(III) ions with various compounds; the stability 
of the resulting complex is determined by the physicochemical 
properties of associated compound.15 Anaphylactic shock is the 
key risk associated with the administration of contrast media. 
However, the frequency of adverse reactions is much lower for 
the gadolinium chelates used during MRI than for the iodinated 
contrast media often used for CT.30

Manganese-enhanced MRI, an imaging method that relies on 
Mn2+ ions, is successfully used in experiments targeting the brain. 
Due to their physicochemical similarity to Ca2+ ions, Mn2+ ions 
flow through calcium channels and are capable of binding to their 
receptors. Mn2+ ions shorten T1 and T2 relaxation times and sup-
ports mapping of functional brain activity. The key limitation of 

Figure 1. Species mentioned in the text.
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articular cartilage damage corresponded to changes that were 
observed postmortem in histopathologic examinations.31 The 
recommended protocol for visualizing articular cartilage in 3-kg 
rabbits comprises 3D spoiled gradient–recalled echo (SPGR) and 
2D fast spin-echo (FSE) sequences. In 4-T MRI, the recommended 
3D SPGR sequence was applied in 2 variants: with and without 
attenuation of adipose tissue.3 The scan was performed in the 
sagittal plane by using a transmit–receive cylindrical high-pass 
radio frequency birdcage coil. The results were characterized by 
high sensitivity and specificity, suggesting that the described se-
quences might be used to visualize articular cartilage in other 
animal species other than rabbits.3

MRI was a highly useful tool in diagnosing infectious and 
noninfectious arthritis in rabbits.38 The T1-weighted localizer 
sequence in the coronal plane was followed by a T2-weighted 
sequence and, before and after contrast administration, the T1-
weighted sequence in the sagittal plane with adipose tissue at-
tenuation.38

New Zealand rabbits also were used as animal models in a 
study in which brain changes that accompany Alzheimer disease 
were diagnosed by MRI.28 Specifically, atrophy of temporal lobe 
cells and enlargement of lateral cerebral ventricles were evalu-
ated. Lateral ventricles were analyzed with the use of standard 
tools programmed in the scanner software. The MRI protocol (0.2 
T) involved T1, T2, and 3D gradient–echo sequences in the sagit-
tal plane, which promoted optimal visualization of the examined 
structures.28 In addition, rabbits are useful models in studies of 
spine conditions. In particular, rabbits were used to investigate 
the pathogenesis of degenerative lumbar spine disease result-
ing from ischemia. 11 The size of the analyzed structures (rabbit 
weight, 3200 g) supported the evaluation of microcirculatory 
problems. T1-weighted, fat-suppressed T1-, and T2-weighted se-
quences were used to detect hematomas that exerted pressure on 
spinal cord nerves.11

Conclusions
Reptiles, rodents, and lagomorphs are increasingly popular 

companion animals. The awareness and expectations of animal 
owners have increased considerably in recent years, thus prompt-
ing veterinary professionals to incorporate increasingly advanced 
diagnostic methods and treatments into routine practice. MRI 
imparts high contrast to soft tissues; it therefore is highly effective 
in diagnosing musculoskeletal disorders and visualizing inter-
nal organs that cannot be accessed by ultrasonography. For this 
reason, MRI can be regarded as the ‘gold standard’ diagnostic 
imaging modality for reptiles, rodents. and lagomorphs. Very few 
publications discuss the use of MRI in amphibians, and further 
research is required in this area. The development of protocols for 
visualizing various organs and systems in laboratory animals will 
contribute to the standardization of methods in animal research 
to bridge the gap between in vitro and in vivo studies.
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