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Cardiovascular disease is the leading cause of mortality in the 
United States, accounting for nearly 37% of all deaths.43 Cardio-
vascular disease encompasses a number of conditions including 
atherosclerosis, the hardening and narrowing of arteries as a re-
sult of plaque buildup that can progress to myocardial infarction, 
stroke, and peripheral vascular disease. Atherosclerosis involves 
chronic vascular inflammation and, although both genetic and 
environmental features have been identified as risk factors, these 
alone do not completely account for all incidences of disease.11 
For this reason, much consideration has been given to the role of 
infectious pathogens in atherosclerosis. Many pathogens, both 
viral and bacterial, have been reported as having positive seroepi-
demiologic association with atherosclerosis.11,31,36,37,45

Chlamydia pneumoniae (Cpn), an obligate intracellular bacteri-
um and prevalent respiratory pathogen in humans, is among the 
most studied agents implicated in atherosclerosis.1,5,6,23,30,36,37,45 In 
addition to a positive correlation between exposure to Cpn and 

cardiovascular disease, the organism has been localized to and 
cultured from human atherosclerotic plaques.6,23 Notably, the cau-
sality between this bacterium and disease has been demonstrated 
in various animal models, including hyperlipidemic rabbits, rats, 
and mice.1,5,6,15,30 In addition, viruses including cytomegalovirus, 
influenza A, and HIV, have been implicated in promoting vascu-
lar inflammation.2,3,16,28,31,45

These infectious agents are thought to affect atherosclerosis 
through both direct and indirect mechanisms. Direct effects result 
from pathogen residence at the site of plaque formation. Local-
ization of the pathogen can induce and increase inflammation, 
cause dysfunction and proliferation of vascular cells, or alter lipid 
accumulation locally.36 However, it also has been proposed that 
pathogens can accelerate atherosclerosis without residing at the 
sites of plaque formation through their systemic effects.11,36 Such 
indirect mechanisms include changes in circulating cytokine lev-
els and in immune cell phenotypes.10,21,36,38

Hyperlipidemic animal models have been useful tools in 
understanding the pathogenic mechanisms of these infectious 
agents in atherosclerosis.5,6 Typically these animals are maintained 
SPF, meaning they are free of bacteria and viruses that are known 
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or suspected to interfere with research studies, but they may still 
be enzootically infected with agents of unknown effects. Murine 
norovirus (MNV), a highly infectious and highly prevalent RNA 
virus is an enzootic agent of laboratory mice for which the effects 
of infection in mouse models of disease is still under investiga-
tion.13,35 MNV infection typically is clinically silent and therefore 
has the potential to alter disease models without being noticed.13,42 
Initial in vitro studies with MNV revealed that the virus had a 
tropism for macrophages and dendritic cells.44 For this reason, its 
effect on models of chronic inflammatory disease in which mac-
rophages and dendritic cells play an important role—including 
obesity, inflammatory bowel disease, and atherosclerosis—has 
been investigated.17,18,20,25,26,32-34

Previously, our laboratory showed that MNV infection in 
mouse models of atherosclerosis may alter plaque development, 
but these effects might depend on genetics, timing of infec-
tion, or dietary fat content.17,32,34 For example, MNV infection in 
Ldlr−/− mice promoted atherosclerotic lesion development and 
was associated with increased macrophage content in the lesion.34 
However, this effect was dependent on the timing of infection.32 
In addition, MNV infection altered atherosclerosis in ApoE−/− 
mice fed a standard chow diet, but this effect was unpredictable.17 
Given the varied effects of MNV on atherosclerosis in hyperlip-
idemic mice, we chose to investigate the potential of MNV to 
change Cpn-accelerated atherosclerosis in the ApoE−/− mouse 
model by both direct and indirect mechanisms. We hypothesized 
that concurrent infection with MNV would alter macrophage and 
monocyte phenotypes, cytokine production, and ultimately result 
in larger atherosclerotic plaques in ApoE−/− mice as compared 
with animals infected with Cpn alone. We found, however, where-
as Cpn infection increased atherosclerotic plaque size as expected, 
concurrent infection with MNV did not alter the atherosclerosis 
induced by Cpn infection.

Materials and Methods
Animals. Male B6.129P2-Apoetm1Unc/J (ApoE−/−) mice (age, 6 wk) 

were purchased from The Jackson Laboratory (Bar Harbor, ME) 
and acclimated for 2 wk prior to study. Mice were certified by 
the vendor to be free of specific rodent pathogens including ec-
tromelia virus, Theiler virus, Hantaan virus, K virus, LDH el-
evating virus, lymphocytic choriomeningitis, mouse hepatitis 
virus, mouse minute virus, mouse norovirus, mouse parvovirus, 
mouse thymic virus, pneumonia virus of mice, polyoma virus, 
reovirus 3, rotavirus, Sendai virus, Bordetella spp., CAR bacillus, 
Citrobacter rodentium, Clostridium piliforme, Corynebacterium bovis, 
Corynebacterium kutscheri, Helicobacter spp., Mycoplasma pulmo-
nis, Pasteurella spp., Salmonella spp., Streptobacillus moniliformis, 
Klebsiella spp., Pneumocystis murina, Proteus mirabilis, Pseudomonas 
spp., Staphylococcus aureus, Streptococcus spp., Encephalitozoon cu-
niculi, and ectoparasites and endoparasites including fleas, lice, 
mites, tapeworms, and pinworms. Mice were maintained un-
der SPF conditions (except for experimental infections with Cpn 
and MNV) according to sentinel surveillance. All mice were fed 
irradiated rodent chow (Picolab Rodent Diet 20 number 5053, 
PMI Nutrition, Brentwood, MO), provided autoclaved acidified 
water in bottles, and were housed by infection status in IVC (Al-
lentown, Allentown, NJ) containing autoclaved corncob bedding 
(The Andersons, Maumee, OH). Standard operating procedures 
were used to restrict MNV and Cpn infection to only those mice 
experimentally infected with each or both agents. These proce-

dures included handling cages in a class II biosafety cabinet (Nu-
Aire, Plymouth, MN) disinfected with chlorine dioxide (dilution, 
1:18:1; Clidox S, Pharmacal Research Laboratories, Naugatuck, 
CT) prior to handling cages and in between infection groups. In 
addition, gloves were changed between experimental groups. By 
using fecal RT-PCR, MNV infection status was confirmed prior to 
and at the end of each in vivo study.18 All animal procedures were 
approved by the University of Washington’s IACUC.

Infection of bone marrow-derived macrophages (BMDM). Bone 
marrow was harvested from ApoE−/− mice (age, 9 to 12 wk), 
pooled, and differentiated as previously described.18 Differenti-
ated macrophages were plated at a density of 1 to 1.4 × 106 cells 
per well (6-well plates) in RPMI 1640 media containing 1% Nutri-
doma-SP (Roche, Indianapolis, IN), 1% penicillin–streptomycin, 
20 µg/ mL gentamicin, and 10 µg/mL oxidized LDL (oxLDL). For 
each treatment group, triplicate wells were infected and evaluat-
ed: (1) uninfected, (2) MNV monoinfected, (3) Cpn monoinfected, 
and (4) MNV and Cpn coinfected. BMDM were inoculated with 
Cpn AR39 at a multiplicity of infection (MOI) of 5 in RPMI 1640 
medium or mock-infected (groups 1 and 2) by using RPMI 1640 
media alone through centrifugation at 700 to 800 × g and incu-
bated for 1 h at 37 °C in 5% CO2. The inoculum from all samples 
was removed after this 1-h incubation and replaced with RPMI 
1640 media. At 24 h after Cpn infection, cells were infected with 
MNV at a MOI of 0.2 or mock-infected (groups 1 and 3) by using 
clarified RAW 264.7 cell lysates free of MNV. Cells were allowed 
to incubate for an additional 24 h All samples were harvested at 
48 h after initial Cpn infections for RNA extraction (RNeasy kit, 
Qiagen, Valencia, CA).

Infections and tissue collection. To evaluate changes in ath-
erosclerotic plaque development, ApoE−/− mice were assigned 
to 1 of 4 treatment groups: (1) uninfected control mice (n = 21),  
(2) MNV-monoinfected mice (n = 21), (3) Cpn-monoinfected 
mice (n = 18), or (4) MNV–Cpn-coinfected mice (n = 16). For Cpn 
infections, 8-wk-old ApoE−/− mice were intranasally dosed with 
Cpn strain AR39. Mice were anesthetized with ketamine–xyla-
zine and administered 3 × 107 inclusion-forming units of Cpn 
in 20 μL sterile PBS or sham-infected with 20 μL sterile PBS, as 
previously described.1,5 This procedure was repeated at 9 and 
10 wk of age to establish a persistent infection. Two weeks later, 
mice were orally gavaged with 1 × 106 pfu MNV4, passage 7, 
in 200 μL RAW 264.7 cell lysate or sham-infected with clarified 
RAW 264.7 cell lysate free of MNV. At 8 wk after MNV infec-
tion, when mice were 20 wk old, they were anesthetized with 
ketamine–xylazine and perfused with formalin, after which the 
heart was collected and stored in formalin for plaque analysis. 
A 2- to 3-mm portion of the descending thoracic aorta was col-
lected and stored in RNAlater (Ambion, Austin, TX) and frozen 
at –80 °C. The propagation and preparation of MNV4 has been 
described previously.17,18

To evaluate early changes associated with atherosclerosis 
development, a separate group of mice was assigned to 1 of 4 
treatment groups and infected as outlined earlier: (1) uninfected 
control mice (n = 10), (2) MNV-monoinfected mice (n = 10), (3) 
Cpn-monoinfected mice (n = 9), or (4) MNV–Cpn-coinfected mice 
(n = 9). ApoE−/− mice were euthanized by using an inhaled over-
dose of CO2 1 wk after MNV infection, when mice were 13 wk 
old. Blood was collected by cardiocentesis and heparinized (20 
units heparin per 1 mL blood) for flow cytometric analysis. Peri-
toneal macrophages were collected by using peritoneal lavage 
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Results
Effect of MNV on gene expression of IL6, IL1β, and MCP1 in 

Cpn-infected ApoE−/− BMDM. To evaluate the effects of MNV and 
Cpn on inflammatory cytokines and chemokines, ApoE−/− BMDM 
were infected in the presence of oxLDL with MNV alone, Cpn 
alone, or both agents combined, and gene expression related to 
macrophage activation and recruitment, including the genes for 
IL6, IL1β, and macrophage chemoattractant protein 1 (MCP1), 
was evaluated. Infections were performed in the presence of ox-
LDL to better mimic the in vivo plaque environment, which is 
rich in lipids. MNV infection alone resulted in a significant (P 
< 0.05) increase in MCP1 transcripts but not those of IL6 or IL1β 
as compared with their expression in uninfected BMDM. Cpn 
monoinfection resulted in a 170 ± 85 (mean ± SEM) fold increase 
(P < 0.05) in IL1β expression and a 8.0 ± 0.1 fold increase (P < 0.05) 
in MCP1 expression compared with that in uninfected BMDM 
(Figure 1). Coinfection with MNV and Cpn led to a significant (P 
< 0.05) increase in IL6 and MCP1 but not IL1β expression as com-
pared with that in Cpn-monoinfected cells (Figure 1). IL6 expres-
sion increased 752 ± 51 fold and MCP1 expression increased 10.0 ± 
0.3 in coinfected BMDM as compared with uninfected cells. These 
data suggest that MNV infection enhances IL6 and MCP1 gene 
expression in ApoE−/− BMDM that are already infected with Cpn.

Effect of MNV on macrophage phenotype in Cpn-infected 
ApoE−/− BMDM. To evaluate the effect of MNV and Cpn on mac-
rophage phenotype, gene expression was measured for markers 
of classically activated macrophages (M1), including the genes for 
inducible nitric oxide synthase (iNOS), IL12β, and TNFα, as well 
as alternatively activated macrophages (M2), including the argi-
nase 1 (Arg1) and IL10 genes. The M1 and M2 phenotypes, which 
have both been demonstrated in atherosclerotic plaques, have op-
posing functions in that M1 macrophages promote inflammation, 
whereas M2 macrophages are regulatory and help to dampen and 
control local inflammatory responses.10,21,24

Cpn monoinfection significantly (P < 0.05) increased IL12β gene 
expression by 700 ± 70 fold and TNFα expression by 10.0 ± 0.4 
fold compared with that in uninfected BMDM. Cpn monoinfec-
tion did not change iNOS expression as compared with that in 
uninfected controls (Figure 2 A). The addition of MNV to BMDM 
already infected with Cpn (coinfected group) induced a signifi-
cant increase (P < 0.05) in iNOS and TNFα transcripts when com-
pared with that in BMDM infected with Cpn alone, corresponding 
to a 59767 ± 9610 fold increase in iNOS expression and a 13 ± 1 
fold increase in TNFα expression relative to uninfected BMDM. 
The addition of MNV to BMDM already infected with Cpn (that 
is, the coinfected group) did not alter IL12β expression when com-
pared with that associated with Cpn infection only. There were 
no significant changes in iNOS, IL12β, or TNFα in MNV-monoin-
fected BMDM as compared with uninfected controls. In addition, 
Cpn monoinfection elicited an M2 response, with a 11.0 ± 0.6 fold 
increase (P < 0.05) in Arg1 expression as well as a 2.5 ± 0.3 fold 
increase (P < 0.05) in IL10 expression as compared with that in 
uninfected BMDM (Figure 2 B). Coinfection partially dampened 
this M2 response, as indicated by a significant (P < 0.05) decrease 
in the relative expression of Arg1 as compared with that in Cpn-
monoinfected BMDM. Coinfection did not alter IL10 gene expres-
sion as compared with that in Cpn-monoinfected BMDM. MNV 
monoinfection had no effect on M2-associated genes (Figure 2 
B). These findings suggest that Cpn elicits an M1 proinflamma-
tory macrophage phenotype that is exacerbated by concurrent 

with 10 mL of sterile PBS, and cells were resuspended in RPMI 
1640 media containing 10% FBS and 1% penicillin–streptomycin 
and incubated in 6-well plates for 1 h at 37 °C. After incubation, 
adherent cells (macrophages) were lysed in RLT buffer (RNeasy 
kit, Qiagen, Valencia, CA) for RNA extraction. The aortic arch 
and a 2- to 3-mm portion of the descending thoracic aorta was 
dissected free from surrounding adventitial tissue and stored at 
–80 °C for RNA extraction.

RT-PCR. RNA from BMDM and peritoneal macrophages was 
extracted by using the RNeasy kit (Qiagen) according to the man-
ufacturer’s instructions. RNA from the aortic arch was extracted 
by using Lysing Matrix D tubes (MP Biomedical, Santa Ana, 
CA) and the RNeasy Fibrous Tissue Kit (Qiagen), whereas the 
descending thoracic aorta was extracted by using Lysing Matrix 
D tubes and the RNeasy kit. RNA was converted to cDNA by us-
ing SuperScript First-Strand Synthesis System (Invitrogen, Carls-
bad, CA). Real-time RT-PCR analysis was performed with Power 
SYBR Green Master Mix (Applied Biosystems, Warrington, UK) 
and a Stratagene Mx3005P analyzer (Agilent Technologies, Santa 
Clara, CA). The primer sequences used for various genes were 
previously described.9,12,14,18,22,27,29 Target gene expression in aortic 
arch samples was normalized to β-actin and expressed as fold 
change relative to a control sample (RNA from aortic tissue of 
an uninfected mouse) that was run on every plate as a calibrator. 
Target gene expression for peritoneal macrophages and BMDM 
was normalized to the housekeeping gene hypoxanthine-gua-
nine phosphoribosyltransferase and presented as the fold change 
relative to the average value obtained from uninfected animals or 
uninfected cells. RT-PCR analysis for the detection of MNV4 was 
performed using primers as previously described18 on samples of 
the aortic arch and descending aorta from the mice described ear-
lier, which were used to evaluate early changes associated with 
atherosclerosis development; the descending aorta samples from 
the mice which were used to evaluate atherosclerotic plaque de-
velopment were analyzed also.

Quantification of atherosclerosis. Quantification of plaque 
size in 20-wk-old ApoE−/− mice was performed as previously 
described by using Movat pentachrome stain and scored by a 
researcher blinded to treatment groups.32,34

Flow cytometric analysis of peripheral blood. RBC in heparin-
ized blood were lysed by using Gey solution, cell count was deter-
mined, and samples were blocked with antiCD16/CD32 antibody 
(BD Biosciences, San Jose, CA). Antimouse antibodies were then 
used to label cell surface markers including lineage (Lin; (NK1.1, 
CD90.2, B220, Ly6G, Ter119, and CD49b), Ly6C, CD11b, CD11c, 
IA/IE, and F4/80 (all obtained from BD Biosciences). Leuko-
cytes were gated on forward-scatter A and side-scatter A, and 
single cells were gated on forward-scatter A and forward-scatter 
W parameters. Lin– cells were further gated to identify mono-
cytes (Lin–CD11b+F4/80–class II–CD11c–). In addition, monocytes 
were characterized on the basis of Ly6C expression. Samples with 
fewer than 80 events in the monocyte gate were excluded from 
analysis (low-number artifact). Data were collected on a BD LSRII 
and analyzed by using FlowJo (Tree Star, Ashland, OR).

Statistics. Data was analyzed by using Prism statistical soft-
ware (GraphPad Software, La Jolla, CA). One-way ANOVA 
with posthoc testing (Tukey multiple comparison) was used for 
comparison among 4 groups, whereas a t test was used for the 
comparison of 2 groups. P values less than 0.05 were considered 
significant.
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Figure 1. Alterations in gene expression of (A) IL6, (B) IL1β, and (C) MCP1 by MNV infection in Cpn-infected ApoE−/− BMDM. Gene expression levels in 
ApoE−/− bone marrow-derived macrophages infected with MNV, Cpn, or both agents (triplicate wells per group). BMDM were treated with Cpn (MOI 
= 5) or mock-infected for 24 h and then with MNV (MOI = 0.2) or mock-infected for another 24 h in the presence of oxLDL. At 48 h after initial Cpn 
infection, RNA was extracted and evaluated for gene expression by real-time RT-PCR. Expression levels are expressed as fold change compared with 
transcript levels in uninfected oxLDL-exposed BMDM. Data are given as mean ± SEM (error bars). One-way ANOVA with posthoc Tukey multiple-
comparison testing was used to determine significant (P < 0.05) differences between groups. Value significantly (P < 0.05) different from that in unin-
fected BMDM (*), in MNV-monoinfected BMDM (Δ) and in Cpn-monoinfected BMDM (φ).

Figure 2. MNV exacerbates a proinflammatory macrophage phenotype in Cpn-infected ApoE−/− BMDM. Gene expression of (A) iNOS, IL12β, and TNFα 
(M1-associated genes) and (B) Arg1 and IL10 (M2-associated genes) in ApoE−/− bone marrow-derived macrophages (BMDM) infected with MNV, Cpn, 
or both agents (triplicate wells per group). BMDM were treated with Cpn (MOI = 5) or mock-infected for 24 h, and then with MNV (MOI = 0.2) or 
mock-infected for another 24 h in the presence of oxLDL. At 48 h after initial Cpn infection, RNA was extracted and evaluated for gene expression by 
real-time RT-PCR. Expression levels are expressed as fold change compared with transcript levels in uninfected oxLDL-exposed BMDM. Data are given 
as mean ± SEM (error bars). One-way ANOVA with posthoc Tukey multiple-comparison testing was used to determine significant (P < 0.05) differences 
between groups. Value significantly (P < 0.05) different from that in uninfected BMDM (*), in MNV-monoinfected BMDM (Δ), or in Cpn-monoinfected 
BMDM (φ).

MNV infection. In addition, there is evidence that, although Cpn 
monoinfection elicits an M2 phenotype indicated by increases in 
Arg1 and IL10 gene expression, coinfection may partially attenu-
ate this regulatory M2 macrophage response through significant 
decreases in Arg1 gene expression.

Effect of MNV infection on Cpn-accelerated atherosclerosis in 
ApoE−/− mice. Given our in vitro findings that MNV increased 
MCP1 and IL6 gene expression, as well as exacerbated the pro-
inflammatory macrophage phenotype in Cpn-infected ApoE−/− 
BMDM, we hypothesized that concurrent infection with MNV 
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Adhesion molecules can contribute significantly to athero-
genesis because they, in part, regulate the rate and number of 
monocytes and macrophages entering developing lesions.10 To 
this effect, we examined expression of intracellular adhesion mol-
ecule 1 in the aortic arch tissue, where MNV might exert a direct 
effect, as well as in peritoneal macrophages. There were no sig-
nificant differences in relative expression of intracellular adhesion 
molecule 1 among infection groups in either the aortic arch or in 
peritoneal macrophages (Figure 6).

MNV is not detectable in aortic tissue of infected ApoE−/− mice. 
To determine whether MNV localizes to sites of atherosclerosis in 
ApoE−/− mice acutely after infection and during the early lesion 
development process, RT-PCR for MNV was performed on the 
aortic arch and descending aorta tissue at 1 wk after MNV infec-
tion in 13-wk-old ApoE−/− mice. MNV was not detected in the 
aortic tissue of any of the mice, regardless of Cpn status. To de-
termine whether MNV localizes to the site of lesion development 
during chronic stages of atherosclerosis, RT-PCR for MNV was 
performed on the descending aorta of 20-wk-old mice, that is, at 8 
wk after MNV infection. Similarly, MNV was not detected in any 
mice regardless of Cpn status. To confirm that mice gavaged with 
MNV were infected, MNV RT-PCR was performed on pooled 
feces from each mouse cage. All fecal samples from cages of mice 
experimentally infected with MNV were positive by MNV RT-
PCR at both 1 and 8 wk after infection, and feces from uninfected 
cages were confirmed to be MNV-negative.

Discussion
Atherosclerosis is a leading cause of morbidity in humans and 

involves chronic systemic vascular inflammation. The innate im-
mune system is a major contributor to this process, and macro-
phages and monocytes are key components of atherosclerotic 
plaques.10,11,24,38 Local and systemic changes in these cells, such as 
those that occur in response to infection, are thought to under-
lie pathogen accelerated atherosclerosis. Considerable evidence 
in humans, as well as from animal studies, has implicated the 
common respiratory pathogen C. pneumoniae as a risk factor for 
cardiovascular disease. Hyperlipidemic animal models have been 
used to understand how this pathogen augments atherogenesis, 
and Cpn infection in ApoE−/− mice has been reported to increase 
the size of atherosclerotic plaque lesions.2,5,30 Our laboratory pre-
viously demonstrated that MNV, an enzootic viral infection of 
laboratory mice, alters atherosclerosis in both Ldlr−/− and ApoE−/− 
mouse models, but this effect is dependent on the timing of infec-
tion or dietary fat content.17,32,33 Given the potential of this virus to 
interfere with atherosclerosis, we investigated the effect of coin-
fection with MNV and Cpn in ApoE−/− mice and hypothesized 
that coinfection would lead to increased expression of inflamma-
tory cytokines and chemokines and exacerbate atherosclerotic 
lesion size as compared with the results of Cpn monoinfection. 
We were interested in determining whether a virus and bacterium 
could work together to alter disease as compared with infection 
with either agent alone, given that previous evidence indicates 
that coinfection with a bacterium and virus may indeed alter dis-
ease progression in other mouse models.2,20,25

Coinfection of BMDM exposed to oxLDL, used to mimic the 
hyperlipidemic environment in which plaques form in vivo, re-
sulted in significant increases in gene expression of IL6 and MCP1 
and elicited an M1 proinflammatory macrophage phenotype, 
as evidenced by increases in iNOS and TNFα transcripts and a 

and Cpn would result in the exacerbation of Cpn-accelerated ath-
erosclerosis in vivo. To test this hypothesis, ApoE−/− mice of varied 
infection status (no infection, MNV monoinfection, Cpn monoin-
fection, and coinfection) were examined at 20 wk old (12 wk after 
Cpn infection, 8 wk after MNV infection) for atherosclerotic lesion 
size in the aortic sinus. Infection with Cpn significantly (P = 0.04) 
increased the average aortic sinus lesion area (34,648 ± 5015 µm2) 
by approximately 62% when compared with that of uninfected 
controls (21,443 ± 2305 µm2; Figure 3). Unexpectedly, coinfected 
mice had smaller plaque lesions than did Cpn-monoinfected ani-
mals. Specifically, coinfected mice showed a 56% reduction in the 
average aortic lesion area (22,800 ± 3004 µm2) compared with that 
of Cpn-monoinfected animals (34,648 ± 5015 µm2), although this 
difference did not reach statistical significance (P = 0.057). MNV 
monoinfection did not increase plaque lesion size compared with 
that of uninfected controls.

Effect of MNV on circulating monocyte populations in Cpn-in-
fected ApoE−/− mice. One proposed indirect mechanism by which 
pathogens alter lesion size is through an effect on circulating 
monocytes. Monocytes differ in their recruitment to and function 
within the plaque.38,40 Murine monocytes can be differentiated ac-
cording to their Ly6C surface expression, and Ly6Chi monocytes 
are preferentially recruited to plaques, where they differentiate 
into proinflammatory macrophages.10,39 To determine whether 
MNV infection leads to alterations in the circulating monocytes of 
Cpn-infected mice, peripheral blood was evaluated in uninfected, 
MNV-monoinfected, Cpn-monoinfected, and coinfected 13-wk-
old ApoE−/− mice. No differences were noted between groups in 
the percentage of monocytes in the peripheral blood (Figure 4 A). 
Furthermore, although there were no differences in the percent-
age of Ly6Chi monocytes in Cpn-monoinfected mice compared 
with uninfected controls, the percentage of Ly6Chi monocytes in 
mice coinfected with both MNV and Cpn (10.6% ± 3.7%) was sig-
nificantly (P < 0.05) increased relative to that in uninfected mice 
(1.1% ± 0.3%; Figure 4 B). The percentage of Ly6Chi monocytes 
also differed significantly (P < 0.05) between coinfected (10.6% ± 
3.7%) and MNV-monoinfected mice (2.3% ± 1.1%). These findings 
suggest that, although neither infection alone affects monocyte 
numbers, coinfection with MNV and Cpn increases the propor-
tion of Ly6Chi monocytes.

Effects of MNV on cytokine, chemokine, and adhesion molecule 
expression at the site of lesion development in the aorta and in 
peritoneal macrophages of Cpn-infected ApoE−/− mice. To deter-
mine whether cytokines were directly altered in the local environ-
ment of plaque development in the aorta, gene expression in the 
aortic arch of 13-wk-old ApoE−/− mice of varied infection status 
(no infection, MNV monoinfection, Cpn monoinfection, and coin-
fection) was evaluated. In addition to looking directly at the site 
of lesion formation, gene expression of peritoneal macrophages 
from these mice was assessed because they have the potential 
to influence lesion development indirectly. No significant dif-
ferences were detected in aortic arch MCP1, TNFα, or IL1β gene 
expression between any of the infection groups (Figure 5 A). Like-
wise, no differences in gene expression of MCP1, TNFα, or Arg1 
were seen in peritoneal macrophages (Figure 5 B). Furthermore, 
given that we observed a robust increase in iNOS expression after 
in vitro coinfection of BMDM with MNV and Cpn (Figure 2 A), 
we evaluated iNOS expression in the aortic arch and found no 
differences between any groups (data not shown).
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Figure 3. MNV does not alter Cpn-induced atherosclerosis in ApoE−/− mice. ApoE−/− mice were infected with MNV, Cpn, or both agents, and their aor-
tic sinus lesions were evaluated at 20 wk old. (A) Lesion area was determined by using computer-assisted morphometry. One-way ANOVA with post 
hoc Tukey multiple-comparison testing was used to determine significant (P < 0.05) differences between groups (uninfected control mice, n = 21; MNV-
monoinfected mice, n = 21; Cpn-monoinfected mice, n = 18; and MNV–Cpn-coinfected mice, n = 16). (B) Representative lesions from mice of differing 
infection status at 20 wk old, 8 wk after MNV infection. Data are given as mean ± SEM (error bars). Movat pentachrome stain; magnification, 100×.

Figure 4. MNV alters circulating monocyte populations in Cpn-infected ApoE−/− mice. Flow cytometry was used to measure the (A) percentage of 
monocytes among total cells recovered from peripheral blood and (B) percentage of Ly6Chi monocytes among total monocytes from 13-wk-old ApoE−/− 
mice of varied infection status. Samples with fewer than 80 events in the monocyte gate were eliminated from analysis. Data are given as mean ± 
SEM (error bars). One-way ANOVA with posthoc Tukey multiple-comparison testing was used to determine significant (P < 0.05) differences between 
groups (uninfected control mice, n = 8; MNV-monoinfected mice, n = 9; Cpn-monoinfected mice, n = 6; and MNV–Cpn-coinfected mice, n = 6).

decrease in Arg1 gene expression. Although we did not specifi-
cally evaluate the macrophages within the vascular tissue of our 
infected mice, our in vitro BMDM findings are in agreement with 
studies demonstrating that Cpn induces M1 macrophages after 
pulmonary infection.19 IL6 and MCP1 are strong macrophage che-
moattractants and have been correlated with increased plaque 

macrophage content.10,24 whereas iNOS and TNFα are potent 
proinflammatory factors that contribute to sustained vascular 
inflammation.11 Macrophage subtypes have been shown to play 
differing roles in plaque development.10,21,24 Classically activated 
macrophages (M1, characterized by iNOS, IL12β, TNFα) contrib-
ute to sustained inflammation, whereas alternatively activated 
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results in significant changes to plaque development. Furthermore, 
a subset of these cells, Ly6Chi monocytes, have been shown to 
both preferentially adhere to inflamed endothelium and give 
rise to proinflammatory macrophages.37 Here we show that,  
although Cpn does not affect the percentage of blood monocytes 
at 1 wk after infection, coinfected animals have an increase in 
the Ly6Chi subset at this time, suggesting that plaque lesion size 
would be increased in coinfected mice.

macrophages (M2, characterized by Arg1 and IL10) appear to 
stabilize the plaque.9,12,21,24 Collectively, our in vitro findings sug-
gest that MNV exacerbates Cpn-accelerated atherosclerosis in 
ApoE−/− mice through changes in either circulating or plaque-
resident macrophages.

A recent publication reported that atherosclerotic lesions in 
ApoE−/− mice were proportional to intralesional monocyte accu-
mulation,40 suggesting that an effect on monocytes in particular 

Figure 5. MNV does not alter cytokine or chemokine gene expression in the aortic arch or peritoneal macrophages of Cpn-infected ApoE−/− mice. 
Gene expression of (A) MCP1, TNFα, and IL1β in the aortic arch and (B) MCP1, TNFα, and Arg1 in unelicited peritoneal macrophages from 13-wk-old 
ApoE−/− mice of varied infection status was measured by using real-time RT-PCR analysis. Data are given as mean ± SEM (error bars); no significant 
differences were detected between groups (uninfected control mice, n = 10; MNV-monoinfected mice, n = 10; Cpn-monoinfected mice, n = 9; and MNV–
Cpn-coinfected mice, n = 9).

Figure 6. MNV does not alter the expression of intracellular adhesion molecule 1 in the aortic arch or peritoneal macrophages of Cpn-infected ApoE−/− 
mice. Gene expression of intracellular adhesion molecule 1 in the (A) aortic arch and (B) unelicited peritoneal macrophages from 13-wk-old ApoE−/− 
mice was measured by using real-time RT-PCR analysis. Data are given as mean ± SEM (error bars); no significant differences were detected between 
groups (uninfected control mice, n = 10; MNV-infected, n = 10; Cpn-infected, n = 9; MNV–Cpn-coinfected, n = 9).
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