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Neoplasia remains one of the major causes of human morbid-
ity and mortality on a global scale. In the United States alone, 1 of 
every 4 deaths can be attributed to cancer.46 Worldwide, primary 
liver cancer is the fifth most common type of cancer diagnosed and 
the third most common cause of cancer related death.5,24 Hepato-
cellular carcinoma (HCC) represents the single most commonly 
diagnosed form of primary liver cancer.14 Given the rising rates of 
hepatocellular cancer both within the United States and globally, in 
2012 the NIH provided $73 million in funding specifically for liver 
cancer research studies.40 Research utilizing animal models of car-
cinogenesis is imperative for understanding the development and 
progression of cancer, as well as aid in the formulation of therapies. 
Transgenic mouse models often mimic human disease. The mouse 
lines Tg(Fabp1–Ccnd1)4Rdb, Tg(Alb1–TGFβ1)1Sst, and Tg(Alb1–
TGFβ1)1Sst × Tg(Fabp1–Ccnd1)4Rdb have all been shown to de-
velop multiple spontaneous hepatocellular neoplasms (adenomas 

and HCC) along with foci of cellular alteration (FCA) within the 
same animal.10,11 Hepatocellular changes in rodents range from 
FCA to adenomas and HCC. FCA have been considered preneo-
plastic lesions in rodents and do not have a well-defined human 
counterpart. In addition, the FCA are phenotypically different from 
adjacent normal hepatocytes, which fuels the concern that they are 
preneoplastic lesions.34

The aforementioned transgenic models develop hepato-
cellular changes through different mechanisms. Tg(Fabp1–
Ccnd1)4Rdb mice (LFABP–cyclin D1 mice) use a liver fatty acid 
binding protein (LFABP) promoter to overexpress cyclin D1, 
which regulates the progression of the cell cycle. LFABP specifi-
cally targets overexpression of cyclin D1 to the liver, causing the 
development of progressive neoplastic lesions (including HCC) 
in that tissue.10,11 Tg(Alb1–TGFβ1)1Sst mice (Alb1–TGFβ1 mice) 
have a modified TGFβ cDNA that is controlled by the regulatory 
portion of the albumin gene. TGFβ governs the inhibition of he-
patocellular growth after hepatic injury and regulates apoptosis 
and the development of fibrosis.45 LFABP1–cyclin D1 × Alb1–
TGFβ1 mice (Tg[Alb1–TGFβ1]1Sst × Tg[Fabp1–Ccnd1]4Rdb) 
overexpress cyclin D1, which overrides the tumor-suppressing 
abilities of TGFβ but maintains some of the tumor-promoting 
effects of TGFβ.10
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cytoplasmic staining in cholangiolar cells and in normal liver is 
expressed in bile duct epithelium. Because the 2 major primary 
hepatic tumors are hepatocellular and cholangiocellular in origin 
and because CK19 is expressed in 85% to 100% of human cholan-
giocarcinomas, we included this marker to aid in the differentia-
tion between HCC and cholangiocarcinoma.1,37,44,58

The aims of this retrospective study were 1) to evaluate and 
compare the utility of an immunohistochemistry panel in 3 mu-
rine models of hepatic carcinogenesis (LFABP–cyclin D1, Alb1–
TGFβ1 and LFABP–cyclin-D1X Alb1–TGFβ1) with published 
reports of human HCC and 2) to determine whether the expres-
sion of the selected markers varies along the spectrum of neoplas-
tic transformation, from FCA to adenomas to various subtypes 
of HCC .

Materials and Methods
Animals. Archived liver samples from 12- to 18-mo-old, male 

and female mice including 15 homozygous LFAPB–cyclin D1 
transgenic mice, 6 littermate WT control animals, 5 double-
transgenic LFABP–cyclin D1 × Alb1–TGFβ1 mice, and a single 
Alb1–TGFβ1 mouse were used for the study. C57BL/6 mice were 
used to establish the transgenic lines. All mice used in the study 
were maintained in accordance with the Guide for the Care and 
Use of Laboratory Animals at Vanderbilt University, an AAALAC-
accredited institution, and all procedures were approved by the 
Vanderbilt University IACUC.

Transgenic mouse lines were raised inhouse, and any animal 
manipulations required used microisolation techniques. All mice 
in the study were housed in individually ventilated caging, main-
tained on CareFresh Bedding (Absorption Corporation, Jesup, 
GA), and food and water were provided free choice. Mice were 
fed a standard chow diet (Lab Diet 5001, PMI Nutrition Interna-
tional, St Louis, MO), and acidified water was supplied by an au-
tomatic watering system through lixit valves. The housing rooms 
were maintained on a 12:12-h light:dark cycle with ambient room 
temperatures of 72 °F (± 2 °F; 22.2 ± 1.1 °C). Soiled-bedding sen-
tinels were used for health monitoring and tested quarterly for 
common murine pathogens including endoparasites, ectopara-
sites, ectromelia virus, epizootic diarrhea of infant mice virus, 
Theiler murine encephalitis virus, K virus (mouse pneumonitis 
virus), lymphocytic choriomeningitis virus, mouse adenovirus 1 
and 2, mouse hepatitis virus, Mycoplasma pulmonis, minute virus 
of mice, and mouse parvovirus (although mouse parvovirus is 
endemic in the facility where the animals were housed). Helico-
bacter testing of the mice was not performed, given that these spe-
cies are not excluded pathogens in this facility.

Human tissue collection. De-identified formalin-fixed paraffin-
embedded HCC samples were chosen from 5 surgical resections 
from the surgical pathology archives; 4 of the 5 samples also con-
tained adjacent nonneoplastic liver. All human tissue samples 
had been fixed in 10% neutral buffered formalin for at least 24 h 
prior to routine processing and paraffin-embedding.

Mouse tissue collection. For tissue collection and immunohisto-
chemistry, sections from the left liver lobe of mice were harvested 
and placed in 4% paraformaldehyde for 4 to 8 h prior to process-
ing. Some samples then were transferred to 70% ethanol prior to 
processing. Fixed tissues were then routinely processed by dehy-
dration and embedded in paraffin. Sections (5 μm) were trimmed 
and placed on charged slides for staining with hematoxylin and 
eosin and the selected battery of immunohistochemical markers. 

Many approaches exist in diagnosing hepatocellular neo-
plasms, but the standard remains the histologic evaluation of 
tissue. Immunohistochemistry is used to help define the char-
acteristics of hepatocellular tumors and provide insight into 
determining adenomas from HCC. No single marker has been 
found that is completely specific for HCC, so various panels have 
been developed as diagnostic aids. Data regarding the relative 
immunohistochemical staining characteristics of murine FCA, 
adenomas, and HCC (along with their comparison to Human 
HCC) are sparse, even though these animals are used as models 
in studying cancer development. To characterize the comparative 
immunostaining characteristics of the hepatocellular tumors of 
mice and humans, we selected a panel of antibodies in light of 
their specificity for hepatocellular neoplasia in human samples 
and their well-described and published performance profile. We 
evaluated immunohistochemical markers: arginase 1 (Arg1), β-
catenin, glutamine synthetase (GS), glypican 3 (Glyp3), hepato-
cyte paraffin 1 (HepPar1), and cytokeratin 19 (CK19). Of these, 
Arg1 and HepPar1 are expressed in normal human hepatocytes 
and are consequently particularly useful in defining neoplasms of 
hepatic origin.4,38,41,52,60 The Arg 1 metalloenzyme is present in the 
urea cycle and is responsible for converting arginine into urea and 
ornithine. This protein is expressed in normal liver with diffuse 
cytoplasmic or cytoplasmic and nuclear expression60 and may 
have either diffuse or focal expression in HCC.52 The HepPar1 an-
tibody measures carbamoyl phosphate synthetase 1, found in the 
urea cycle of the mitochondria.4,38 Granular cytoplasmic localiza-
tion is evident and associated with mitochondrial expression.38,56 
This immunostain serves as a positive marker for liver cells and 
shows high sensitivity and specificity for both well-differentiated 
neoplastic and normal hepatocytes. Decreased sensitivity is noted 
in poorly differentiated human HCC.8,41,56 The hepatocellular en-
zyme GS is associated with the metabolism of ammonia and is a 
noted downstream target of the Wnt signaling pathway. Zonal 
expression (zone 3 hepatocytes) of GS is high in normal liver and 
follows a pericentral hepatocellular pattern. Normal pericentral 
hepatocytes and neoplastically transformed cells display a homo-
geneous cytoplasmic pattern of staining.16,30 Altered location and 
activity of GS is noted in neoplastic development.19,20

For β-catenin and Glyp3, which are not found in normal liver 
tissue, the overexpression of these proteins is indicative of neo-
plastic transformation.47,58,59 β-catenin is a component of both 
the cellular adhesion complex and the Wnt signaling pathway, 
which controls zonal regulation of many genes within the adult 
liver. Rodent studies have shown that normal hepatocytes usually 
have membranous localization, whereas neoplastic hepatocytes 
(adenomas and HCC) show both membranous and cytoplasmic 
staining in an oxazepam-induced model.30 Normal human liver 
may have a thin membranous outline of hepatocytes.54 Once the 
degradation of β-catenin is instigated by stimulation of the Wnt 
signaling pathway, it translocates to the nucleus.2 Nuclear trans-
location has been noted in rodent hepatic tumors.6 The heparin 
sulfate proteoglycan Glyp3 binds to the outer surface of plasma 
membranes and regulates the signaling controlling the activity 
of various growth factors. Glyp3 expression has commonly been 
noted as cytoplasmic, membranous, and sometimes canicular.38,59 
Glyp3 typically is not present in normal adult human liver tissue, 
but has been shown to be expressed in fetal liver and poorly dif-
ferentiated HCC.26,59,61 Cytokeratin 19 is an intermediate filament 
protein that is present in many epithelial cells. It shows strong 
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lesions of interest were immunostained and evaluated. FCA were 
routinely circular or oval, and only vacuolated foci (Figure 2 A) 
and clear-cell foci (Figure 2 B) were identified in the sections ex-
amined; no eosinophilic, basophilic, or mixed foci were noted. 
FCA embedded within a distinct HCC tumor were categorized 
as a part of the representative HCC. The numbers of each FCA or 
tumor are listed in Table 1 according to transgenic mouse strain. 
Because multicentric development of hepatocellular neoplasia 
has been reported to occur in the mouse strains used, each tumor 
was counted separately10,11. In addition, individual sections of 
mouse liver in the current study often showed multiple types of 
tumors (adenoma and different HCC variants) andFCA.

In the 25 mice, a total of 108 FCA and tumors were identified 
(Table 1). WT mice (n = 6) showed no evidence of distinct neopla-
sia, although one sample included a single clear-cell focus. The 
Alb1–TGF β1 mouse had a single clear-cell focus and 2 tumors, 
whereas the 13 LFABP–cyclin D1 mice had an average of 5.7 FCA 
or tumors per mouse. The 5 LFABP–cyclin D1 × Alb1–TGF β1 
mice had an average of 3.4 FCA or tumors per animal.

Vacuolated foci (n = 12) were seen in 3 mice. One lesion was 
found in the liver of each of 2 LFABP–cyclin D1 mice, and 10 
distinct vacuolated lesions were found in the liver of a single 
LFABP–cyclin D1 × TGF β1 mouse. In addition, 13 clear cell foci 
were noted in 6 mice (1 WT, 1 Alb1–TGFβ1, and 4 LFABP–cy-
clin D1 mice). Adenomas (n = 7) were present in 7 different mice 
(1 Alb1–TGFβ1, 3 LFABP–cyclin D1, and 3 LFABP–cyclin D1 × 
Alb1–TGFβ1 mice).A total of 59 adenoid HCC were present in 
2 LFABP–cyclin D1 mice. Nine mice had 15 solid HCC (1 Alb1–
TGFβ1, 5 LFABP–cyclin D1, and 3 LFABP–cyclin D1 × Alb1–TGF 
β1 mice), whereas 22 trabecular HCC were identified in 10 mice 
(1 Alb1–TGFβ1, 6 LFABP–cyclin D1, and 3 LFABP–cyclin D1 × 
Alb1–TGFβ1 mice). The staining pattern of tumors of the same 
subtype often varied within the same animal.

For all FCA and tumors, overall immunostaining (with the ex-
ception of β-catenin) was counted as positive when 5% or more 
of the cells within a FCA or tumor showed expression. This set 
point was established based on a previously published scoring 
system useful with a majority of the antibodies.32,38 For β-catenin, 
we chose a positive set point of 1% or more of the cells within the 
FCA or tumor cells with nuclear expression. A summary of the 
staining results is noted in Table 2.

Arg1. Cytoplasmic or nuclear immunoreactivity (or both) for 
Arg1 was noted in all WT mouse liver sections and in the trans-
genic mouse samples Arg1 staining intensity varied markedly 
(Figure 3 A through C). Although Arg1 stained FCA (77% to 92%) 
and adenomas (71%) more frequently than the HCC subtypes, in 
some cases, normal liver and FCA showed only nuclear or vari-
able cytoplasmic staining (Figure 3 C). Of the adenoid, solid and 
trabecular HCC, only 37%, 47% and 45% showed positive stain-
ing, respectively. In the human tissue examined, 4 of the 5 HCC 
samples stained positively.
-catenin. All normal mouse liver sections, including WT, had 

faint nonspecific staining along hepatic sinusoids. Bile ducts and 
neoplastic and nonneoplastic hepatocytes showed membranous 
expression. Nuclear expression (translocation) was never as 
prominent as either cytoplasmic or membranous staining. All 
FCA were negative for β-catenin nuclear expression, whereas pos-
itive nuclear staining was found in representatives of all tumor 
types. In particular, 2 of the 7 adenomas had nuclear translocation 
(Figure 3 D), whereas 22 of 96 HCC (all variants) showed some 
positivity. This total includes adenoid (1 of 59 samples), solid (7 of 

All unstained slides were deparaffinized prior to immunohisto-
chemical staining. All incubations were done at room tempera-
ture. To block nonspecific staining when Arg1, β-catenin, and 
HepPar1 were used, samples were treated with Mouse Ig Block-
ing Reagent (Vector Labs, Burlington, CA) for 60 min followed by 
a 15-min incubation in Serum Free Block (Dako, Carpenteria, CA).

Immunohistochemistry. Information regarding antibodies and 
antigen retrieval is outlined in Figure 1. All sections underwent 
antigen retrieval, antibody dilution, incubation times, and non-
specific protein blocking as described in Figure 1, followed by 
detection (Envision + HRP Labeled Polymer, Dako) for 20 min 
and application of DAB chromagen with a 5-min incubation to 
visualize reaction products. Slides were allowed to cool to room 
temperature. Normal liver was used as positive and negative con-
trol tissue, was included in every immunohistochemistry run, 
and was evaluated as appropriate to the marker. Inherent internal 
liver staining was evaluated for each stain. For CK19 staining, all 
steps except dehydration, clearing, and coverslipping were done 
on an automated stainer (Bond Max, Leica, Buffalo Grove, IL). 
Briefly, slides were deparaffinized; heat-induced antigen retrieval 
was performed by using Epitope Retrieval 2 solution (Leica) for 
10 min. Slides were incubated with antiCK19 (dilution, 1:100) 
for 1 h. The Bond Refine Polymer detection system (Leica) was 
used for visualization. Slides were then dehydrated, cleared, and 
coverslipped.

Histologic evaluation. Liver samples from mice were stained 
with hematoxylin and eosin and evaluated for histologic evidence 
of neoplasia. FCA, adenomas, and HCC subtypes were diagnosed 
according to published criteria.12,35,51 FCA were identified by their 
tinctorial staining characteristics, typical round to oval shape, and 
lack of disruption of overall normal liver architecture. FCA that 
are commonly diagnosed in rodent livers include vacuolated, 
clear-cell, eosinophilic, and basophilic foci.12,51 Adenomas were 
defined as circumscribed lesions composed of well-differentiated 
hepatocytes that compressed adjacent hepatocytes. Hepatic plates 
were 1 to 3 cell-layers thick, with an irregular pattern of growth 
and loss of normal lobular architecture (Figure 2 C). HCC were 
diagnosed as tumors in which marked cellular pleomorphism 
was evident, with abnormal lobular architecture, increased mi-
totic figures, and any evidence of infiltration or invasion. In ad-
dition, HCC were subclassified by growth patterns as adenoid, 
solid, or trabecular. Adenoid HCC were defined as those tumors 
showing clear spaces surrounded by one or more layers of neo-
plastic hepatocytes (Figure 2 D). Solid HCC were identified by 
pleomorphic, poorly differentiated hepatocytes, with increased 
mitoses, atypia, and lack of an identifiable growth pattern (Figure 
2 E). Trabecular HCC were defined by the presence of distinct 
cords of hepatocytes varying in cellular thickness and separated 
by sinusoidal spaces (Figure 2 F).23,51

Murine sections showing no evidence of neoplastic changes 
were reported as normal. All antibody localization was evaluated 
according to location as cytoplasmic, membranous, or nuclear.

Human specimens were all diagnosed as HCC by a surgical 
pathologist (MKW) according to standard diagnostic criteria.22 All 
immunostains were scored by a single reader (KJS).

Results
Hematoxylin- and eosin-stained sections of murine liver (n = 

25) were screened for the presence of FCA, adenomas, and HCC 
(adenoid, solid, and trabecular variants). Sections containing 
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Figure 1. Antibodies and antigen retrieval systems used for immunohistochemistry in the current study.

15), and trabecular (14 of 22) HCC tumors. Among the 5 human 
samples, only 1 (20%) showed positive nuclear β-catenin activity 
(Figure 3 E). This figure is slightly less than the reported range of 
25% to 32% positivity.21,58

GS. WT mouse liver sections and nontumorous areas from all 
liver sections (mouse and human) showed positive expression 
(cytoplasmic, membranous, and nuclear) of GS in zone 3 pericen-
tral hepatocytes (Figure 4 A). All murine tumors were GS-positive 
(Figure 4 C through E), whereas FCA showed positivity in 77% 
of clear-cell foci and 92% of vacuolated foci. The tumors were 
so well stained and differentiated from adjacent liver that it was 
often easy to identify tumors within the liver without placing 
the slide under the microscope. GS-positive FCA and tumor cells 
showed cytoplasmic and membranous, but only rarely nuclear, 
immunoreactivity. Some clear-cell foci were adjacent to, or ly-
ing within, zone 3 (Figure 4 B). Whether the staining in the clear 
cell foci was due to location or to preneoplastic proliferation was 
difficult to assess. In addition, 2 of the 5 human tumors showed 
distinct immunoreactivity, and the remaining 3 samples showed 
scattered rare positive cells (Figure 4 F).

Glyp3. Glyp3-positive hepatoctyes showed faint membranous 
or cytoplasmic staining (or both) which made differentiation diffi-
cult in the mouse sections (Figure 3 F). Staining that was increased 
in intensity was routinely present in the biliary epithelium. One 
third (4 of 12) of the vacuolated foci were positive with a minimal 
amount of staining, whereas 62% of the clear-cell foci showed 
some staining. Overall more of the mouse tumors were positive 
than were the FCA, with positive staining in 86% of adenomas, 
60% of solid HCC, 86% of trabecular HCC, and 90% of adenoid 
HCC. All human HCC sections showed lightly positive membra-
nous or cytoplasmic staining (Figure 3 G).

HepPar1. Tumors and FCA in the mouse sections showed cyto-
plasmic immunostaining of scattered individual or small groups 
of hepatocytes with HepPar1. Nontumorous sections of mouse 

liver showed positive but inconsistent cytoplasmic immunore-
activity. Fewer FCA (23% to 25%) showed positive staining for 
HepPar1 when compared with the tumors (adenomas at 43% and 
HCC ranging from 40% to 73%). Figure 3 H shows HepPar1 stain-
ing of a murine trabecular HCC variant. Nontumorous liver from 
human sections showed positive granular cytoplasmic expression 
of HepPar1 in normal and neoplastic hepatocytes (Figure 3 I).

CK19. All liver sections showed intense cytoplasmic staining 
of biliary epithelium. With the exception of 4 trabecular HCC, 
all murine FCA and tumors were negative for CK19 immuno-
staining. The 4 CK19-positive trabecular HCC were present in 
LFABP–cyclin D1 (n = 3) and LFABP–cyclin D1× Alb1–TGF β1 
(n = 1) mice. CK19 has been shown to be expressed in very low 
numbers in HCC, and when positive, it produces patchy staining 
(Figure 3 K). In these mouse liver sections, scattered cells, which 
were mostly in the center of the neoplasm, showed cytoplasmic 
and membranous staining. All human tumors were negative for 
CK19 staining (Figure 3 L). CK19 has been reported as a marker 
for progenitor cells in the liver, thus perhaps explaining the pres-
ence of CK19 in some HCC.13,28

Discussion
This proof-of-principle project shows that some immunomarkers 

used for the diagnosis of human HCC can be applied successfully 
to the evaluation of FCA and primary hepatocellular neoplasms in 
mouse models. Not every tumor will stain for all markers, and this 
variability in immunophenotype often complicates diagnosis. An 
understanding of each immunomarker’s performance is essential 
for interpretation. Markers that are expressed in normal hepatocytes 
(Arg1, GS, and HepPar1), are expected to show loss of function or 
aberrant zonal expression in poorly differentiated HCC. Markers 
that are not typically present in normal liver may show upregulation 
(Glyp3) or nuclear translocation (β-catenin). Distinguishing the 2 
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seen in cholangiocarcinomas and include thickened hepatic cords re-
sembling trabeculae or solid-tumor formation.12 CK19, which stains 
cholangiocytes, can be used to help in this differentiation.

primary hepatocellular tumors (HCC and cholangiocarcinoma) is es-
sential, and histologic evaluation is often sufficient except in the case 
of poorly differentiated tumors. Histologic features of HCC can be 

Figure 2. Murine Foci and HCC variants: hematoxylin and eosin stain. (A) Vacuolated foci; magnification, 20×. (B) Clear-cell foci; magnification, 20×. 
(C) Adenoma (arrows, margin); magnification, 20×. (D) Adenoid HCC; magnification, 10×. (E) Solid HCC variant; magnification, 20×. (F) Trabecular 
HCC variant showing thickening of hepatic plates (star); magnification, 20×.
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high risk for HCC development.3,48 Both murine adenomas show-
ing nuclear β-catenin translocation were GS-positive (data not 
shown). Given the variability of β-catenin as an immunomarker, 
its use in mice is of questionable benefit, and its value would de-
pend on the molecular features of the model being studied.

Hepatocellular neoplasms diffusely express GS, without limi-
tation to the normal pericentral (zone 3) expression.20 Normal 
GS-positive cells other than pericentral hepatocytes include: chol-
angiocytes, endothelial cells and macrophages. In mice, hepa-
tocellular adenomas express differing levels of GS depending 
on the type of mutation within the neoplasm. For example, Ha-
ras–mutated lesions have almost undetectable GS levels, whereas 
Catnb-mutated lesions are clearly positive.19 Decreased GS stain-
ing has been reported to occur in congested livers (including 
congestive heart failure and hepatic cirrhosis) and diseases that 
result in venous occlusion.16 In our study, GS represented the 
single most-sensitive marker for identifying murine hepatocel-
lular neoplasms. All tumors showed some positive staining of 
cells outside of zone 3 hepatocytes, and this distribution seems 
to be indicative of neoplastic transformation in the mouse liver. 
A less dramatic response has been reported in humans, in which 
GS stains 54% to 70% of HCC.33,49 Positive staining for GS was 
consistently present in all HCC variants, adenomas, and FCA 
in the current study (Figure 4). Some clear-cell foci were located 
quite near zone 3 hepatocytes (Figure 4 B), causing us to wonder 
whether these foci are commonly zonal in location such that their 
GS staining positivity reflects their microanatomy. In addition, 
vacuolated foci stained positive, prompting the concern that they 
are preneoplastic lesions. Previously reported evidence suggests 
that FCA are preneoplastic lesions that can progress to neoplasia, 
given that these lesions can be induced by hepatocarcinogens and 

Murine Arg1 followed a similar staining pattern to reports in 
the human literature, with more FCA (77% to 92%) and adenomas 
(71%) expressing positivity than HCC (Table 2). The Arg1 positiv-
ity of mouse HCC staining ranged from 37% to 47%, whereas av-
erages of 84.1% to 85% have been reported for human HCC.15,29,38,42 
Arg1 reactivity in human tumors decreases from 100% in well-
differentiated HCC to 96.2% for moderately differentiated HCC 
and 85.7% for poorly differentiated HCC.60 Arg1 is important for 
distinguishing the hepatocellular origin of tumors. In the mouse 
sections we evaluated, the overall Arg1 staining decreased with 
the progression from FCA to adenomas to HCC. Individual mice 
showed variation in Arg1 staining between tumors.

Immunomarkers associated with neoplastic transformation (for 
example, β-catenin and Glyp3) rather than cellular differentiation 
are more difficult to interpret in mice. A study evaluating hepatic 
neoplasia development in mice treated with oxazepam found 
that all neoplasms (n = 10) showed membranous and cytoplasmic 
localization of β-catenin, although no nuclear activation was iden-
tified.30 Variability in nuclear β-catenin localization has been re-
ported and depends on the underlying genetic mechanisms of the 
particular tumor. Nuclear translocation of β-catenin was identi-
fied in subsets of rodent hepatic tumors, including those in c-myc 
and c-myc–TGFβ1 transgenic mice.6 Increased nuclear staining in 
tumors with β-catenin mutations in conjunction with increased 
proliferation rates (as indicated by increased Ki67 staining) has 
been noted in some neoplasms.54 Activation of β-catenin is associ-
ated with the expression of other zonal genes, including GS.9 In 
the current study, 2 of the 7 murine adenomas showed nuclear ex-
pression. This pattern might represent a well-differentiated HCC 
or a nuclear β-catenin–positive adenoma subtype, similar to that 
in the previously mentioned GS-coexpressing human tumors, or a 

Table 2. Summary of positive immunohistochemistry results from mouse and human liver samples

Mouse FCA Mouse 
adenoma

Mouse HCC Human HCC

Vacuolated Clear-cell Adenoid Solid Trabecular This study Reported range

HepPar1 3/12 
(25%)

3/13 (23%) 3/7 (43%) 34/59 (58%) 6/15 
(40%)

16/22 
(73%)

5/5 
(100%)

26%29 to 70%42

Glyp3 4/12 
(33%)

8/13 (62%) 6/7 (86%) 56/59 (95%) 9/15 
(60%)

19/22 
(86%)

5/5 
(100%)

40%58 to 79%29

Arg1 11/12 
(92%)

10/13 (77%) 5/7 (71%) 22/59 (37%) 7/15 
(47%)

10/22 
(45%)

4/5 
(80%)

~85%15,29,42

GS 11/12 
(92%)

10/13 (77%) 7/7 (100%) 59/59 (100%) 15/15 (100%) 22/22 (100%) 4/5 
(80%)

54%49 to 70%33

β-catenin 0/12 
(0%)

0/13 (0%) 2/7 (29%) 1/59 
(2%)

7/15 
(47%)

14/22 
(64%)

1/5 
(20%)

25%21 to 32%58

CK19 0/12 
(0%)

0/13 (0%) 0/7 
(0%)

0/59 
(0%)

0/15 
(0%)

4/22 
(18%)

0/5 
(0%)

10%13 to 27%57

Table 1. Numbers of FCA, adenomas, and HCC variants

Vacuolated FCA Clear-cell FCA Adenoma Adenoid HCC Solid HCC Trabecular HCC

Mouse genotype n
No. 
foci

No. 
mice

No. 
foci

No. 
mice No. sites

No. 
mice

No. 
sites

No. 
mice No. sites

No. 
mice

No. 
sites

No. 
mice

WT (control) 6 0 0 1 1 0 0 0 0 0 0 0 0

ALB1-TGFβ1 1 0 0 1 1 1 1 0 0 1 1 2 1

LFABP–cyclin D1 13 2 2 11 4 3 2 59 2 10 5 7 6
LFABP cyclin D1 
 × Alb1–TGF β1

5 10 1 0 0 3 3 0 0 4 3 13 3

Total 25 12 3 13 6 7 7 59 2 15 9 22 10
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Figure 3. (A) Mouse Solid HCC showing Arg1-positive cytoplasmic and nuclear staining; magnification, 10×. (B) Human HCC showing Arg1-positive 
cytoplasmic and nuclear staining; magnification, 20×. (C) Mouse vacuolated foci showing some Arg1-positive nuclear staining of vacuolated hepato-
cytes; magnification, 20×. (D) Mouse trabecular HCC showing nuclear staining of tumor cells with β-catenin (arrow); magnification, 20×. (E) Human 
HCC showing nuclear staining of tumor cells with β-catenin (arrow) and β-catenin-positive mitotic figures (star); magnification, 20×. (F) Glyp3-positive 
mouse Trabecular HCC showing light membranous staining; magnification, 20×. (G) Glyp3-positive human HCC showing light cytoplasmic and 
membranous staining; magnification, 20×. (H) Mouse trabecular HCC showing cytoplasmic staining for HepPar1; magnification, 20×. (I) Human HCC 
showing cytoplasmic staining for HepPar1; magnification, 20×. (J) Normal mouse liver showing typical intense staining of cholangiolar cells with 
CK19; magnification, 40×. (K) Mouse trabecular HCC showing intense cytoplasmic staining of scattered tumor cells with CK19; magnification, 20×. (L) 
CK19-negative human HCC; magnification, 20×.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2024-12-26



Immunohistochemistry of murine hepatic neoplasms

405

of GS staining and the ability to use it for quick evaluation of 
mouse tumors by gross visualization of the slide, this immuno-
marker represents a valuable component of a diagnostic immu-
nohistochemical staining panel.

that hepatocytes within the various foci have a phenotype distinct 
from adjacent hepatocytes.36 Furthermore, there is an association 
between FCA and their progression to adenomas and carcinomas 
in carcinogen-induced hepatocellular tumors.7 Given the sensitivity  

Figure 4. Glutamine synthetase (GS) immunohistochemistry, with most sections showing cytoplasmic and membranous staining of varying intensity. 
(A) Normal liver (mouse): intense GS staining of zone 3 hepatocytes; magnification, 20×. (B) Clear-cell focus (mouse) showing intense GS staining of 
zone 3 hepatocytes that are incorporated into the focus; magnification, 20×. (C) Adenoid HCC (mouse) showing intense GS staining of zone 3 hepato-
cytes, with lighter-staining tumor cells; magnification, 10×. (D) Solid HCC (mouse) with positive GS staining of tumor cells; magnification, 10×. (E) 
Trabecular HCC (mouse) with intense GS staining of tumor cells that are well-outlined and -circumscribed. Normal perivenular staining is present as 
well; magnification, 5×. (F) Human HCC showing moderate cytoplasmic and membranous GS staining of neoplastic cells; magnification, 10×.
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increased HSP70 intensity in immunohistochemically stained 
liver sections has been correlated with elevated serum levels of 
the protein in chronic hepatitis, cirrhosis, HCC, and metastatic re-
lapse of HCC.18,50 Furthermore, α-fetoprotein, an oncofetal protein 
that is specific for hepatocyte differentiation, has been used in the 
past to identify HCC but has a low sensitivity. Markers more sen-
sitive than α-fetoprotein have now been identified, thus reducing 
the benefits of its use.31

Although not determined at the time of the initial experiment, 
the mouse colony was presumed to be positive for Helicobacter 
spp. Helicobacter infection might have potentiated hepatic neopla-
sia in these mice, given that Helicobacter hepaticus infection com-
monly causes chronic inflammation of the liver and subsequent 
development of hepatocellular tumors.55 Because the current 
study focused on defining the immunohistochemical staining 
trends of FCA and tumors in mouse models, the etiopathogenesis 
of the tumors may not be as important as are their staining char-
acteristics. Similarly, development of FCA has been associated 
with H. hepaticus infection, but such samples typically have oval 
cell hyperplasia with or without pseudocholangiolar formation,43 
features that were absent from the current samples.

Limitations of our study include low numbers of mice and, due 
to its retrospective nature, preanalytical variables such as the use 
of paraformaldehyde as a fixative and changing from the use of 
paraformaldehyde to alcohol for the mouse tissues, a modifica-
tion that might have resulted in lower-than-expected positivity 
rates for some of the antibodies, such as Arg1 and HepPar1

In conclusion, we noted several trends in the immunostaining 
results from various mouse FCA and adenomas and mouse and 
human HCC. Antibodies commonly used in medical practice for 
the diagnosis of human HCC may be useful in mouse models to 
characterize the spectrum of primary liver tumor progression 
and to help distinguish primary liver tumors from metastasis 
models in models of neoplasia that may spread to the liver. The 
antibodies we chose to assess have similar performance char-
acteristics—and limitations—in mouse compared with human 
tissue. Consistently performing a full immunopanel comprising 
Arg1, β-catenin, CK19, GS, Gyp3, and HepPar1 is probably cost-
prohibitive and unnecessary, given the current study results that 
GS positivity outside of zone 3 seems to indicate hepatocellular 
alteration. More investigation is still needed with mouse models 
of hepatic neoplasia, but the use of GS appears to be most valu-
able in identifying neoplasia in the transgenic mouse models we 
tested and should be included in immunohistochemistry assess-
ing hepatocellular neoplasia development.
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