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Hematology is an important adjunct to both clinical medicine 
and biomedical research, with more than 1700 currently funded 
NIH projects109 and more than 3400 research articles published 
over the past 5 years using mouse models.120 There are now more 
than 6000 genetically engineered mouse (GEM) models of dis-
ease, with 500 new GEM created each year at the Jackson Labora-
tory alone, and several large projects are underway to thoroughly 
phenotype each new mutant mouse strain (https://www.komp.
org/).13,176 A mouse tumor database (http://tumor.informat-
ics.jax.org/mtbwi/index.do) is available to provide informa-
tion regarding mouse models of human cancer, and the Mouse 
Phenome Database at the Jackson Laboratory provides links to 
phenotypic data for many GEM models (http://phenome.jax.
org/).8 The defined components to complete the phenotyping 
of GEM models have been recently reviewed.13,157,176 In addition, 
21 inbred strains of mice are commonly used for investigations 

into such topics as response to infectious and genetically induced 
disease and dietary and pharmacologic therapies. These com-
monly used laboratory mouse strains have, for example, inherent 
differences in immunology or iron trafficking, which can affect re-
search outcomes.16,47,137 These interstrain differences are important 
to recognize and understand as a component of effective study 
design and prior to strain selection for laboratory investigations, 
especially when hematologic responses to disease need to be con-
sidered.13,16,137

For any appropriately designed experiment, concurrent age-, 
sex-, and strain-matched control mice must be included to ac-
curately compare the effects of a disease, genetic manipulation 
or therapeutic intervention;13,155 alternatively, individual mice can 
be used as their own controls in some studies. Several important 
guidelines exist to ensure that appropriate numbers of experi-
mental and control mice are incorporated into a study design to 
maximize statistical power yet minimize waste.13,40-42,71,72,176 Dur-
ing and between studies, consistent blood collection methods are 
essential for accurate comparative analyses. Species-appropriate 
hematologic instrumentation and timely analysis of fresh blood 
are necessary to minimize preanalytic hematologic errors.3,37,71 
Especially important for mice and their restricted available blood 
volume are the use of practical, accurate, species-specific, and up-
to-date hematologic methods.

Here we comprehensively review murine hematology and he-
matopathologic responses to disease in the context of biomedical 
research, discovery, and phenotyping studies. To maximize the 
opportunity for detecting phenotypes, disease, and responses to 
therapeutic interventions in mice, we focus on providing a practi-
cal summary of methods and analysis for accurate hematologic 
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Methods for Collecting High-Quality Blood 
Samples and for Accurate Hematologic Analyses

Study Design. The sample size for any experimental design ul-
timately depends on the variability of the outcomes; for hematol-
ogy, variability can be established by using appropriate control 
groups. Pilot studies can be helpful for predicting variability. A 
statistician should participate in the determination of sample 
size by power analysis to ensure that hematologic data meet test 
assumptions and to account for experimental error176(http://
www.uml.edu/Research/OIC/animal-use/helpful-links.aspx). 
Experimental design for animal studies has been reviewed else-
where.41,42,71,72,131,155 The goal should always be minimizing use of 
animals while allowing for sufficient power to determine the ef-
fects of an intervention.

Blood collection. Volume. The average reported blood volume 
in mice is 7.8 mL per 100 g of body weight.37,90 Therefore the total 
blood volume in 9- to 10-wk-old mice is approximately 2 mL, 
making the maximal volume that can be collected safely at a sin-
gle survival time point approximately 200 μL. Previous studies in 
rodents indicate that although serial blood sampling is possible, 
it requires a postphlebotomy recovery period that depends on 
the withdrawn volume;20,37 the maximal collection of 15% blood 
volume with a 4-wk recovery period has been recommended for 
mice.37,90 More frequent or greater blood volume collection than 
this recommendation has been reported, with recovery defined 
as the return of mean Hgb values to within 2 SD of mean base-
line values provided that no weight loss, behavioral changes, or 
clinically significant anemia has occurred.123 However, adhering 
to these alternative criteria may lead to important changes in the 
hemogram that could alter study outcomes.

Collection site. The method and site of blood collection in ro-
dents can influence results.87,100 The submandibular venipunc-
ture blood collection method is recognized to obviate the need 
for anesthesia, thus removing that potentially confounding vari-
able while minimizing animal distress.39,48 When performed by 
trained personnel and with immediate and appropriate mix-
ing of anticoagulated blood samples, we have found that blood 
collection by submandibular venipuncture can significantly 
reduce platelet clumping. Although excessive bleeding after 
submandibular collection in mice with abnormal coagulation is 
reported,61 this complication can occur at any collection site in 
these models, which may therefore require prolonged compres-
sion and monitoring after blood collection. Scientific studies 
frequently report platelet clumping as an issue when collecting 
blood from mice; therefore some authors subsequently either 
do not report platelet counts or report artifactually low counts 
when clumping is suspected.94,105 Because platelet clumps lead to 
decreased automated platelet counts, such data always warrant 
review of a blood film84,90 to verify thrombocytopenia. Another 
site historically included for survival blood collection is the ret-
roorbital sinus, but this site is no longer recommended in light 
of tissue trauma, contaminated and clumped samples, postcol-
lection morbidity, and the need for anesthesia.37,59,87,155 For ter-
minal samples, cardiocentesis can be performed in sufficiently 
anesthetized mice and, when performed quickly and efficiently, 
enables the collection of large sample volumes without platelet 
clumping. Care must be taken during cardiocentesis to avoid 
puncturing other viscera and potential contamination of the 
sample with nonblood cells. Other perimortem collection sites 
include the aorta and caudal vena cava.37

studies and on describing the morphologic assessment of mouse 
hematopathology in peripheral blood and bone marrow in ways 
that will be useful to those—veterinarians and researchers alike—
who work with murine species.

Murine Hematology: General Considerations
Minimizing preanalytic variables. Several factors impact the 

ability to obtain meaningful hematologic results from blood sam-
ples in mice with limited available blood volume. Frequency of 
blood collection, size and age of the mice, and available hemato-
logic instrumentation all play a role in blood volume limitations 
and ultimately in the quality of the data generated. In particular, 
variability in fasting or anesthetic protocols or blood collection 
site can affect results.142,155 For example, fasting protocols not stan-
dardized between studies may introduce preanalytic variation 
because mice consume less water while fasting than otherwise, 
potentially resulting in hemoconcentration36 and causing an ar-
tifactual increase in Hct. Preanalytic factors to consider include 
sex, strain, age, altitude, and vendor116 and environmental vari-
ables such as diet, housing, and SPF status of the mouse colony.13 
A factor specific to hematologic analyses is the propensity for 
mouse platelets to clump.105,176 Therefore, the use of a consistent 
collection site and method, handling that minimizes stress and 
allows for the collection of a sufficient volume of blood, and ap-
propriate anticoagulation are imperative to minimizing preana-
lytic variables and thus ensuring accurate hematologic analysis 
and interpretation.

Features of peripheral blood. Mice have small erythrocytes 
(RBC), compared with other mammalian species, and the lifes-
pans of erythrocytes and platelets in mice are generally shorter 
than those in humans and other veterinary species. Consequently 
mice maintain a somewhat regenerative state, normally having 
between 1% to 6% circulating reticulocytes, resulting in polychro-
masia and slight anisocytosis on Wright–Giemsa-stained blood 
films.37,130 ‘Ringform’ nuclear morphology, characterized by a cir-
cular nucleus, is a normal feature of mouse neutrophils, eosino-
phils, and monocytes.10 Mice have very high platelet counts (9 to 
16 × 105/μL) compared with those of other mammals,37,100,105,119 a 
contributing factor to the aforementioned potential for platelet 
clumping.

Features of bone marrow. A complete assessment of hemato-
logic status in mice should include evaluation of bone marrow 
and spleen in addition to peripheral blood. Preparation of bone 
marrow samples for cytology in mice is best accomplished by 
using the ‘paintbrush technique’ (see Methods), which preserves 
cellular morphology and evenly distributes cells on glass slides.37 
Bone marrow cellularity is higher for mice than other species 
and does not decrease with age, as it does in humans, but the 
proliferative capacity of murine hematopoietic stem cells is de-
creased.37,100,130 Both granulocytic and monocytic precursors can 
have ring-shaped nuclei.

Features of the spleen. In mice, the spleen is the primary 
site for body iron storage114,153 and remains an active site for 
hematopoiesis throughout life. The potential for exuberant 
extramedullary hematopoiesis in response to anemia must be 
recognized in this species.16,17,156 Therefore, the role of the spleen 
should be considered in any evaluation of hematopoiesis, and 
this organ should be evaluated in addition to the bone marrow 
to fully characterize a hematologic phenotype or response to 
therapy.47,127
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on one end. The tube then is spun in a microhematocrit centrifuge 
for more than 3 min, separating the blood components into 3 lay-
ers—plasma, buffy coat (WBC), and packed erythrocytes. Icterus, 
lipemia, and hemolysis can be detected by holding the capillary 
tube against a white background. The total protein concentration 
can be estimated by breaking the tube and loading the plasma 
into a refractometer. Reticulocyte counts can be obtained from 
some automated analyzers (ProCyte, Advia), if validated, or can 
be performed manually. For manual reticulocyte enumeration, 
whole anticoagulated blood is mixed with new methylene blue 
(NMB) and allowed to incubate for 10 to 20 min, after which a 
blood film is made (Figure 1 D).62 An absolute reticulocyte count 
is achieved by multiplying the percentage of reticulocytes (usu-
ally determined by counting the number of reticulocytes per 500 
to 1000 RBC) by the absolute RBC count.28

Reference Intervals
Historical reference intervals are available in textbooks,66,100,119 

journal articles94,105,116 and on the Internet (Jackson Laboratory’s 
Mouse Phenome Database, Knockout Mouse Project, https://
www.komp.org/). However, because of variability due to labora-
tory instrumentation, methods, collection sites, strain, age, sex, 
and environmental factors, reference intervals are best gener-
ated inhouse for any specific experimental population.105,155 In-
dividual mice in study groups can be compared with their own 
baselines, or group comparisons can be made.127 In addition, in-
dividual reference intervals are starting to gain popularity162 and 
can be an option for mice now that serial, survival CBC counts 
are practical given the availability of microvolume, automated 
analyzers. Reference intervals should be used as a tool, not as 
the sole guide to determine normalcy.119 In our experience, the 
single best way to detect an important hematologic phenotype, 
effect of disease, or response to therapy is to generate concur-
rent age-, strain-, and sex-matched controls for experiments, by 
using consistent sample collection and analysis methodologies 
including collection time, site, fasting status, and automated 
analyzer.

Peripheral Blood: General Considerations and 
Responses to Disease

Erythrocytes in health and disease. Murine RBC are spherical, 
anucleate biconcave discs with central pallor (Figure 1 C) that are 
approximately 4 to 7 μm in diameter. In general, total RBC counts 
range from 7800 to 10,600 per microliter.87,119 However, because 
counts vary with mouse strain, automated analyzer, and other 
factors, experiment-specific age-, strain-, and sex-matched con-
trols should always be included to detect important experimental 
differences. Hct, which is a measure of RBC volume, is lower in 
very young and very old mice because of their lower RBC ab-
solute count and expanded plasma volume, respectively.37,130 In 
healthy control mice, Hct ranges from 35% to 52%, and in general, 
should be 3 times the Hgb concentration.37,100,130,166,168 Importantly, 
when automated analyzers use spectral analysis, hemolysis can 
alter MCV and therefore the calculated Hct value. A spun PCV 
analysis, which is essentially a manual Hct determination, can 
be performed to confirm an automated Hct value and should 
be used when there is a mismatch of the 3:1 Hct:Hgb ratio. Mice 
have small RBC compared with that of most other mammalian 
species, with an average MCV of 45 to 55 fL in health. The normal 

Sample handling. Blood samples can be collected directly into 
an anticoagulant, such as EDTA. Because EDTA (K2 or K3) causes 
less postcollection platelet clumping and provides better staining 
characteristics, it is preferred over heparin as an anticoagulant 
for rodent blood.37,51,82,155 In addition, EDTA is the preferred anti-
coagulant for most automated analyzers. For greatest accuracy, 
blood films should be prepared (Figure 1 A) and samples ana-
lyzed by automated methods within 4 h and not longer than 24 
h after collection. One study using an automated analyzer found 
increased MCV, RBC distribution width (RDW), and MPV and 
decreased MCHC and monocyte counts in CD1 mice after storage 
of blood for 24 h at 4 °C.3 Blood collection tubes should be filled to 
recommended volume to ensure the correct blood:anticoagulant 
ratio, and blood should be mixed by inversion gently and im-
mediately after collection to ensure adequate distribution of the 
anticoagulant. To avoid artifactual hemolysis of samples (Figure 
1 B), the blood tube should not be shaken, and the needle should 
be removed from the syringe prior to dispensing blood into the 
collection tube to avoid shearing of cells. Although mouse blood 
samples can be diluted for automated analyzers that require large 
sample volumes, the accuracy and precision of diluted samples 
are highly variable,37 and modern automated veterinary analyz-
ers require relatively small sample volumes for CBC analysis (for 
example, 20 μL [Heska HemaTrue], 50 μL [Idexx ProCyte]), mak-
ing survival and sequential sampling designs feasible.

Slide preparation. Fresh blood films should be prepared at 
room temperature and stained within 4 h of collection by using 
anticoagulated blood that is well-mixed. Mixing is important and 
can be performed manually by gently inverting the tube 5 to 10 
times or by placing on a tilting or rotating rack designed for mix-
ing blood. A clean microhematocrit tube or pipette then is used 
to dispense a drop of blood onto one end of a clean microscope 
slide. A second slide is placed at an angle of 30° to 45° in front 
of the drop of blood and then is backed into the drop of blood. 
Once the blood droplet has spread along the edge of the angled 
slide, it is then pushed forward in a single rapid motion to create 
the classic ‘half-moon’ profile that provides a monolayer for cell 
counting (Figure 1 A).168 To avoid cellular morphology artifacts, 
the blood film must be allowed to air dry fully (typically at least 
30 to 45 min, depending on humidity and temperature) before 
being stained with a Romanowsky-type stain for review (Figure 
1 C).62,168 Unfixed slides can be saved for future use (for example, 
additional stains, confirmation of results).

Manual WBC counts and correction for nucleated RBC (nRBC). 
A manual leukocyte differential count is important for hemato-
logic analyses in all species, and mice in particular, given that 
available veterinary analyzers have not yet been validated fully 
for use in mice;94,158 in this analysis, 100 (or 200 to 500, for im-
proved accuracy) WBC are counted and categorized.62 Cell-type 
percentages then are multiplied by the total WBC count (gen-
erally obtained from an automated analyzer) to determine the 
absolute count for each cell type. To correct the WBC count when 
nRBC comprise greater than 5% of the total nucleated cell count 
(TNCC), the number of nRBC per 100 nucleated cells is deter-
mined through blood-film review, and the TNCC (or total WBC 
count), typically from an automated analyzer, is multiplied by 100 
/ (no. of nRBC + 100).148

Ancillary tests. At the time of slide preparation, it is also useful 
to perform a PCV or spun Hct measurement. A small aliquot of 
blood is drawn into a capillary tube and sealed with tube sealant 

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



Murine hematopathology: a comparative review

99

Figure 1. Features of mouse peripheral blood: RBC and platelet morphologies. (A) Example of a blood film stained with a Romanowsky type stain 
showing the classic ‘half-moon’ appearance and feathered edge (arrow); bracket highlights the monolayer counting area. (B) Examples of hemolyzed 
plasma, which is due to poor collection method or disease and can interfere with automated hematologic analyses. (C) Normal erythrocytes and plate-
lets with a normal percentage (approximately 1% in this case) of polychromatophilic erythrocytes (arrows). (D) New methylene blue staining show-
ing remnant RNA in reticulocytes (arrowhead). (E) Prussian blue staining showing atypical iron inclusions in an erythroid precursor (top arrow) and 
erythrocyte (bottom arrow). (F) A megaplatelet (arrow) is markedly larger than surrounding erythrocytes. (G) Giant platelets (arrow) are approximately 
the same size as erythrocytes, compared with the much smaller, normal platelets (arrowhead). (H) Circulating atypical nucleated erythrocyte (nRBC) 
undergoing nuclear division. (I) Sickled RBC (arrowheads) induced by a genetic mutation. (J) Iron deficiency induced by a genetic mutation (tmprss6−/−) 
has led to anisocytosis, fragmented (thin arrows) and microcytic RBC (arrowhead). (K) Echinocytes (spiculated RBC, arrowhead) in a mouse model of 
polycystic kidney disease (CD1pcy/pcy) with anemia and renal failure. Wright–Giemsa staining except where noted; original magnification, ×100.

mouse MCHC usually is 30 to 38 g/dL; the RDW, which reflects 
variation in RBC size, can fluctuate greatly depending on instru-
mentation119 and the number of circulating larger immature (poly-
chromatophilic) RBC, even in healthy mice.

Anisocytosis (that is, variation in RBC size) is a common fea-
ture seen on Wright–Giemsa-stained blood films because of the 
normal presence of polychromatophilic cells, which are larger 
than mature RBC, and is reflected in the RDW value. Mouse RBC 
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pathogenesis in many diseases, and characteristics identified by a 
simple blood film review can aid tremendously in the interpreta-
tion of disease model phenotypes. Some examples of disease and 
their characteristic RBC morphologies include iron deficiency 
(schistocytes, microcytes, keratocytes; Figure 1J), liver disease 
(target cells, acanthocytes), disseminated intravascular coagula-
tion (schistocytes), immune-mediated hemolytic anemia (sphero-
cytes), renal disease (echinocytes; Figure 1K), and myelofibrosis 
(dacryocytes).

Leukocytes in health and disease. The typical WBC count in 
mice is 2000 to 10,000 per microliter.100,119 In general, an automated 
total WBC count is more precise and accurate than is a manual 
count, because many more cells are counted during automated 
analysis. However, reviewing the blood film is an important 
quality-control check, especially when results are beyond the 
normal range, to confirm TNCC and automated WBC differential 
counts, define severe leukopenia or leukocytosis, determine left 
shifts (increased number of immature granulocytes in peripheral 
blood), and identify cells with atypical morphology (Figure 2 E, 
G). A quick scan of the feathered edge (Figure 1 A) is an important 
component of any slide review and serves to identify large atypi-
cal cells, platelet clumps, mast cells, nonhematopoietic cells, and 
parasites.168 Many disease phenotypes can be better character-
ized and diagnosed after careful review of a stained blood film. 
Automated analyzers tend to undercount mouse monocytes, for 
example, and often will not differentiate atypical lymphocytes, 
granulocyte types (Figure 2 A, B), bands and early myeloid pre-
cursors, nRBC, or neoplastic cells.4,7,17,53,,113,145 Differentiating types 
of leukocytes can pose a challenge in mice due to their unique 
morphologic characteristics including, for example, the ring 
forms normally seen in both granulocytic and monocytic lineages 
(Figure 2 C, D).10 As nucleated cells, nRBC will be automatically 
included by automated veterinary analyzers in the TNCC and not 
differentiated as nRBC and thus will increase total WBC counts 
artifactually. Therefore, nRBC should be enumerated as a percent-
age during blood film review. Correction of the total WBC count 
is recommended when nRBC account for more than 5% of the 
TNCC (see Methods section). Newer technology in automated 
analyzers shows promise for identifying the presence of nRBC 
and bands.118

Lymphocytes. Lymphocytes are the predominant leukocyte in 
most strains of healthy wild-type mice, making up 70% to 80% of 
the WBC differential count.37,87,119 They are typically 10 to 15 μm in 
diameter with scant blue cytoplasm, a smooth chromatin pattern, 
and a round, oval, or slightly indented central nucleus (Figure 
2 I).37,56,87 However, lymphocyte morphology can vary even in 
health, and variants include larger forms with more dispersed 
chromatin patterns and increased cytoplasm, which ranges from 
pale to dark blue and can include azurophilic granules (large 
granular lymphocytes).87

In mice, lymphocyte counts can decrease with handling or 
other stressors135 and with age as neutrophil counts increase,66,119 
again demonstrating the need for strain- and age-matched con-
trols in all studies. Vacuolated lymphocytes can be seen in murine 
lysosomal storage disease models including juvenile neuronal 
ceroid lipofuscinosis (Figure 2 J, K), sialic acid storage disease, 
mannosidosis, and Pompe disease63,95,124,147,178 as well as in chronic 
active inflammation with lipidosis.17 The numbers of activated 
lymphocytes (Figure 2 H) and large granular lymphocytes in cir-
culation can increase due to lymphoma or leukemia, immune 

have a halflife of 38 to 52 d, which is shorter than that in humans 
and other veterinary species.37,100,130 Polychromasia is identified 
on Wright–Giemsa-stained blood films as increased cytoplasmic 
basophilia due to increased RNA content. Polychromatophilic 
erythrocytes are anucleate and generally larger relative to the 
orange-red mature RBC (Figure 1 C), and when increased in 
number, indicate an erythropoietic response to anemia. Reticu-
locytes are polychromatophilic erythrocytes that are identified 
and manually counted by using NMB-stained preparations, in 
which RNA networks are visible as aggregates of dark-blue stain 
(Figure 1 D). Alternatively reticulocytes can be counted by using 
automated analyzers with murine-validated reticulocyte enu-
meration capability. Reticulocyte counts are reported as a per-
centage of the total RBC count or as an absolute number, with 
absolute numbers generally preferred for the interpretation of a 
regenerative response.28,119 In addition, low numbers of nucleated 
RBC precursors or metarubricytes (<5%) can occur in peripheral 
blood films of healthy mice and increase during both physiologic 
and pathologic erythroid regenerative responses.100,174 Correction 
of the WBC count is recommended when nucleated RBC (nRBC) 
are greater than 5% of the TNCC (see Methods section). In addi-
tion, Howell–Jolly bodies (micronuclei) can occur in mouse RBC 
(Figure 2 H).37,100 The number of nRBC or Howell–Jolly bodies (or 
both) may increase in response to diseases causing anemia, inad-
equate splenic function, or myelodysplastic syndrome and my-
eloproliferative disorders.37,64,101,121,125,133,174 Heinz bodies, which are 
cellular inclusions of denatured hemoglobin, result from oxida-
tive injury, such as occurs after phenylhydrazine administration.23

Abnormalities in total RBC numbers or cellular morphology 
can be detected on review of Wright–Giemsa-stained blood films. 
Decreased RBC counts (anemia) occur secondary to conditions 
that include blood loss, immune-mediated hemolysis, inflam-
matory disease, renal disease, iron deficiency, myelodysplastic 
disease, genetic disorders, and neoplasia.16,17,26,74,89,147,152,174 CD47 
is important to the recognition of RBC by phagocytes, because 
the absence of this protein leads to severe immune-mediated he-
molytic anemia.110 Mice with exuberant regenerative responses 
to anemia can have increased anisocytosis (increased RDW) or 
macrocytosis (increased MCV) and low numbers of circulating 
early erythroid precursors, such as rubriblasts, prorubricytes, and 
metarubricytes, which are all nucleated forms of RBC. Impor-
tantly, GEM models of disease and disease states such as myelo-
dysplasia and neoplasia can present with erythroid dysplastic 
changes including increased numbers of circulating megaloblas-
tic rubricytes, sideroblasts, and siderocytes (identified by using 
Prussian blue staining; Figure 1 E), normochromic macrocytes 
and other nuclear:cytoplasmic asynchrony, and nuclear changes 
including multiple (Figure 1 H), fragmented, or lobulated nuclei; 
atypical mitoses; abnormal chromatin patterns; and prominent 
nucleoli.11,125,147,159,174 An increased RBC count (polycythemia) may 
be relative or absolute. Relative polycythemia is caused by hemo-
concentration secondary to dehydration, high altitude, myelo-
dysplasia, or neoplasia.37 Absolute polycythemia may be caused 
by increased erythropoietin production in response to anemia or 
hypoxia or by genetic mutations, such as overexpression of the 
Kit protein, that cause increased erythropoiesis.15,32,130

Poikilocytosis (variation in RBC shape) can take many forms, 
including acanthocytes, dacryocytes, eccentrocytes, echinocytes, 
keratocytes, schistocytes, spherocytes, stomatocytes, and tar-
get cells (Figure 1 I, K). RBC morphology can provide clues to 
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by mouse strain.79,144 The circulating neutrophil count depends 
on the rate of their release from the bone marrow, the distribu-
tion between the marginal and circulating pools, and the rate of 
migration into tissue.144

Increased neutrophil counts (neutrophilia) are associated with 
responses to stress or excitement135 and infectious diseases, and 
typically increase in cases of bacterial infection and acute inflam-
mation16,17,38,88 given their primary phagocytic and microbiocidal 
roles. Neutrophil counts can also increase during myeloprolifera-
tive disease and myelo- and myelomonocytic leukemia.174 Due to 
the small storage pool of neutrophils, both immature and toxic 
neutrophils may circulate during inflammatory diseases. Imma-
ture neutrophils have band or horseshoe-shaped nuclei (that is, 
nuclei are not yet lobulated); band cells typically are larger than 
are mature neutrophils. Dysplastic changes include cytoplasmic 
hypogranulation, bizarre granulation, nuclear hyposegmentation 

stimulation, and some viral infections,108,177 and circulating lym-
phoblasts can be seen with lymphoid leukemia in aged mice (Fig-
ure 2 G).

Neutrophils. Neutrophils generally comprise 20% to 30%119 of 
the WBC count in mice and are the most common granulocyte. 
Specific morphologic characteristics include pale, finely granu-
lar cytoplasm and a segmented nucleus with areas of both pale 
and condensed chromatin (Figure 2 A). Unique features of mouse 
neutrophils include ringform and ‘figure 8’ nuclei (Figure 2 B)10,114 
and high numbers (5 or 6) of nuclear indentations, which can 
be interpreted mistakenly as hypersegmentation.119 Neutrophils 
have a small storage pool and a 7- to 10-h circulating halflife.6 
Once released from the bone marrow, neutrophils are allocated 
into the marginal pool and the circulating pool; the circulating 
pool is included in the leukocyte count. The proportion of neu-
trophils in the marginal compared with the circulating pool varies 

Figure 2. Features of mouse peripheral blood leukocytes: WBC morphologies. (A) Normal mature neutrophil (segmented neutrophil), characterized 
by faint, finely granular cytoplasm and dense chromatin. (B) ‘Figure-8’ segmented neutrophil, a common finding in peripheral mouse blood. (C) Ring-
form monocyte, characterized by abundant pale blue-gray cytoplasm, open chromatin pattern, and cytoplasmic vacuoles. (D) Ringform eosinophil, 
characterized by multilobed nucleus with typical dense chromatin pattern and abundant eosinophilic cytoplasmic granules. (E) Pseudo-Pelger–Huet-
type anomaly in a mouse with myelodysplasia (Xist−/−), showing hyposegmented nucleus with mature dense chromatin in a neutrophil. (F) Atypical 
trilobed leukocyte in a mouse with myelodysplasia (Xist−/−). (G) Circulating lymphoblasts representative of lymphoid leukemia in an aged mouse. (H) 
Reactive lymphocyte (arrowhead) and Howell–Jolly bodies (arrows) in erythrocytes; the presence of low numbers of Howell–Jolly bodies is considered 
a normal finding. I. A reactive lymphocyte (arrowhead) in comparison to a normal small lymphocyte. (J) Vacuolated lymphocyte (arrow indicates a 
vacuole) in a murine model of juvenile neuronal ceroid lipofuscinosis. (K) Vacuolated lymphocyte (arrow) and eosinophil (arrowhead) in a mouse 
model of juvenile neuronal ceroid lipofuscinosis. Wright–Giemsa staining; original magnification, ×100.
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and promonocytes can be seen during neoplastic conditions.174 
When present on freshly prepared blood films, hemophagocyto-
sis should be noted and may accompany monocytosis, neoplastic 
disease,174 or hemolytic anemia. Circulating immature monocytes 
should be differentiated as part of the phenotypic description of 
disease models.174

Platelets in health and disease. Compared with other mam-
mals, mice have very high platelet counts (900,000 to 1,600,000 
per microliter).37,100,119 Platelet activation in mice can be spontane-
ous and strain-dependent.37 Adenosine diphosphate, collagen, 
arachidonate, and thrombin are potent agonists of platelet clump-
ing in mice.23 Platelets originate from megakaryocytes in the bone 
marrow and spleen of mice, and their primary growth factor is 
thrombopoietin, which is predominantly produced in the liv-
er.21,103,104,122,149 The lifespan of platelets in mice, approximately 5 d, 
is shorter than that in other species.23,37 Automated analyzers of-
ten underestimate platelets counts in mice, due to both the small 
size of platelets and their propensity to clump (Figure 3 D).37,87 For 
example, one analyzer (the Advia 120) may falsely report platelet 
clumps as eosinophils, because the highly variable size and gran-
ularity of these clumps cause them to appear as a heterogenous 
population in the area of the dot plot where eosinophils normally 
appear. As for other veterinary species, the feathered edge of a 
blood film (Figure 1 A) should be scanned for platelet clumps to 
aid in judging the accuracy of automated platelet counts in mice.

On blood films, mouse platelets are 1 to 4 μm in diameter, 
anucleate, with discoid, spheroid, or elongated or spindloid 
morphology, and central basophilic, eosinophilic, or metachro-
matic granules scattered throughout faintly pink to gray cyto-
plasm.37,87,119 Cell membranes may have a few fine threadlike 
surface projections. Both mature and reticulated (young) plate-
lets can be counted by flow cytometry.119,130 In addition, mice may 
have circulating giant or megaplatelets, described as such when 
they are equal in size to or larger than an RBC, respectively (Fig-
ure 1 F, G). Giant platelets increase in number in response to ac-
celerated hematopoiesis; this morphology can be correlated with 
an increased MPV.66

The main function of platelets is primary hemostasis, and plate-
let production can increase due to inflammatory disease, myelo-
proliferative disease and neoplasia, and iron deficiency.57,119,138 
Conversely, platelet production can decrease due to myelopro-
liferative disease, neoplasia, and erythropoietin administration 
and in various GEM models.58,97,125 Dysplastic changes, including 
retained nuclei, circulating micromegakaryocytes,76 and atypical 
cytoplasmic granulation,174 are associated with myeloproliferative 
disorders, for example. Giant and megaplatelets can occur with 
leukemias, myelofibrosis, thrombocythemia, and polycythemia 
vera83,139,174 and are released from the bone marrow in response to 
thrombocytopenia and when the peripheral blood halflife of nor-
mal circulating platelets is decreased (Figure 1 F, G).37 Populations 
of giant and megaplatelets as well as microcytic and fragmented 
erythrocytes can overlap in automated analyzers that sort cells 
according to size, thus skewing both cell counts (Figure 4 E).75,152 
The MPV is a sensitive indicator of increased platelet production 
and increases in response to hypoxia-induced thrombocytope-
nia70,97 and various genetically or physiologically induced causes 
of thrombocytopenia.23

Other cells. Circulating mast cells (Figure 3 C) occur occasion-
ally, depending on the blood collection site, and must be differ-
entiated from basophils (described earlier). In addition, epithelial 

and bilobation (pseudo-Pelger–Huet anomaly, Figure 2 E), and 
atypical chromatin condensation.2,27,125,140,174 In addition, a sponta-
neous mutant mouse model (mouse ichthyosis) of Pelger–Huet 
anomaly with a laminin B receptor gene mutation, is similar to 
that detected in the human disease.143 The immature neutrophils 
seen during inflammation can include both bands and young 
forms such as metamyelocytes and myelocytes, with less ma-
ture forms being consecutively less abundant.144 Bone marrow is 
the predominant site for increased granulopoiesis during acute 
inflammation, whereas the spleen is the predominant site for in-
creased erythropoiesis during acute erythropoietic responses.17,37 
The main growth factors for neutrophils include GM-CSF and 
G-CSF, and their primary chemoattractants include the IL8 homo-
logs MIP2, LIX, and KC.37,60,81,86,117

Eosinophils. Eosinophils are granulocytes that are character-
ized by bright orange to red, round, cytoplasmic granules that are 
uniformly sized with indistinct borders.119 These cells generally 
comprise 0% to 7% of the murine WBC differential count.119 The 
nuclei of mature eosinophils typically are multilobulated with 
condensed chromatin and can be ringform (Figure 2 D). Imma-
ture eosinophils are band in form. Eosinophils are involved in 
parasitic and allergic reactions, and their counts are increased in 
some GEM models of neoplasia, including chronic eosinophilic 
leukemia.173 IL5 is thought to function as their main growth factor 
and eotaxin as their primary chemoattractant.37,173 The cytoplasm 
of eosinophils contains discrete vacuoles in mice with juvenile 
neuronal ceroid lipofuscinosis (Figure 2 K).

Basophils. Basophils are rare in mice; these cells have few but 
large, round, deeply basophilic cytoplasmic granules and seg-
mented nuclei. Basophils, like eosinophils, increase in number 
during parasitic and allergic responses.44,166 Basophils must be 
differentiated from mast cells, which occasionally are present in 
the circulation of mice with inflammatory disease, necrosis, tissue 
injury, or severe regenerative anemia.65 Mast cells are larger than 
are basophils and have round, nonsegmented nuclear morphol-
ogy and more dense metachromatic cytoplasmic granules (Figure 
3 C).66,166 Basophil counts may be increased when blood is col-
lected from the tail, as the cells are squeezed from the tissue into 
the blood during collection.100 IL3 is the primary growth factor37 
for basophils, and they produce IL4.98,136

Monocytes. Monocytes are the largest leukocyte and typically 
make up less than 2% of the total WBC count in mice.100 How-
ever, automated analyzers may undercount this population of 
cells, and values should be verified by manual review of blood 
films.4,6,17,53,,113,145 Monocytes are characterized by their abun-
dant pale gray-blue cytoplasm which often contains vacuoles 
and occasional faintly eosinophilic granules; nuclei have loose 
chromatin and are generally bi- or trilobed, reniform, or horse-
shoe-shaped.37,87 Monocytes can, also display ringform nuclear 
morphology (Figure 2C).10 Mouse monocytes have a 17-h halflife 
in circulation; 40% of the population of peripheral blood mono-
cytes is circulating, whereas 60% of monocytes are marginat-
ed.37,85,160 The main monocyte growth factors are M-CSF, GM-CSF, 
and IL3,37,85 and MCP1 is a primary chemoattractant.32 Monocytes 
are a major source of cytokines in the blood, including IL1β, 
TNFα, and IL6, and monocytosis has been associated with intra-
cellular bacterial infections,29 chronic inflammation,16,17,141,166 and 
neoplasia.174 Monocytosis also occurs with experimental hemo-
parasitism, such as trypanosomiasis and malaria,30,111 and with vi-
ral infections, as with mouse cytomegalovirus.141 Immature forms 

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



Murine hematopathology: a comparative review

103

procedure and be compared with a ‘gold-standard’ method, such  
as a manual method or a previously validated instrument.50,91,161 
The leukocyte differential is one component of the automated  
CBC analysis that has still not replaced manual methods as the 
gold standard in veterinary medicine.161 Mice have several physi-
ologic variables that may decrease the efficacy of automated anal-
yses including small RBC, relatively high numbers of circulating 
immature and nucleated RBC, variable leukocyte morphology, 
and platelet clumping. Therefore, manual leukocyte differential 
and blood-film review are still warranted. In addition to these 
physiologic factors, the mouse’s utility for biomedical research 
includes the ease with which its physiology and genetics can be 
manipulated. These manipulations can lead to unpredictable 
changes in hematologic variables; therefore it is important to con-
sult a blinded, well-trained observer familiar with veterinary, and 
particularly murine, clinical pathology to detect and appropri-
ately interpret changes in blood cell counts and indices, distribu-
tion, and morphology by using appropriately matched controls.

Genetic mutations, iron deficiency, and inflammatory disease 
are examples of disorders that can cause changes in cell morphol-
ogy or size, thus resulting in overlap of various cell populations 
by automated analyzers. Therefore, evaluating not only a blood 

cells can be seen secondary to a poorly performed cardiac punc-
ture when other internal organs are aspirated inadvertently. For 
example, when the liver is aspirated during cardiocentesis, hepa-
tocytes might collect along the feathered edge of the blood film 
(Figure 3 A). Furthermore, blood parasites sometimes are present 
in blood films from various mouse models with infections such as 
malaria (Figure 3 B), babesiosis, and trypanosomiasis.12,52,92

Automated Methods in Mouse Hematology
Several options are available for automated veterinary analyz-

ers, including impedance, laser, and combination instruments. 
Given the cellular differences we already have described, human 
automated analyzers will not provide accurate results for mice. 
Although veterinary analyzers are more often evaluated and re-
viewed for companion animal medicine,7,74,113 both Bayer (Tarry-
town, New York) and Abbott (Abbott Park, Illinois) have software 
for WBC differentiation for mice,37 and Heska (Loveland, Colo-
rado) and Idexx (Westbrook, Maine) have recently added mouse-
specific software and microvolume sample options (Figure 4 A–C). 
Instrument operators must be trained in maintenance procedures, 
error flags, troubleshooting, and appropriate quality control,168 
and instruments should go through a standardized validation 

Figure 3. Other cells that can be seen in mouse blood films. (A) Hepatocytes on feathered edge after aspiration of liver during cardiocentesis. (B) Plas-
modium sp (arrowhead) infecting approximately 50% of erythrocytes and markedly increased polychromasia in an anemic mouse; mouse model of 
malaria. There are also lymphocytes (L) and a neutrophil (N) in this field. (C) Mast cell (atypical finding in mouse peripheral blood) at feathered edge. 
(D) Large platelet clump at the feathered edge; automated platelet counts will be artifactually low due to clumping. Wright–Giemsa staining; original 
magnification, ×100.
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Methods for Collecting Quality Samples and 
Analysis of Bone Marrow

Collection for cytology. The optimal method for generating 
samples for mouse bone-marrow cytology is the brush prepara-
tion. When properly performed, this method preserves cellular 
morphology without dilutional or mechanically induced cellular 
damage. Samples should be collected immediately postmortem 

film but also instrument-generated cell-population histograms 
(Figure 4 D, E) becomes necessary.23,168 Previous studies show 
that markedly microcytic or fragmented erythrocytes (as well as 
other cell debris) can overlap with the size-based platelet popula-
tion,17,43,152,168 thus skewing both RBC and platelet counts (Figure 4 
E). Results from automated analyzers should always be verified 
by manual blood film review, especially when the automated 
analyzer reports atypically high or low values.

Figure 4. Features of an automated analyzer, the Heska Hematrue. The manual micropipette adapter (MPA, 20 µL) enables analysis of small volume 
blood samples. Using the MPA, blood is withdrawn by capillary action into (A) a specialized microhematocrit tube held by provided forceps. The 
microhematocrit tube then is placed into the (B) MPA device and inserted into (C) the MPA holder. The analyzer prints cellular histograms showing 3 
populations (WBC, RBC, and platelets) for evaluation and comparison with results from review of blood films. (D) Histograms from a naïve C57Bl/6 
mouse sample showing normocytic RBC with an MCV of 41.8 fl. (E) Histograms from an anemic transgenic iron-deficient mouse (tmprss6 −/−), showing 
a microcytic RBC population (shifted left on the x axis) with an MCV of 33.8 fl.
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be differentiated by routine microscopy, but some cells contain 
inclusions or storage material that can be used to confirm identi-
fication. In such cases, special stains such as periodic acid–Schiff 
for glycogen inclusions, Masson trichrome for stroma, Prussian 
blue for iron-positive inclusions (Figure 5 F, G), and reticulin for 
bone marrow myelofibrosis (Figure 5 H) may be necessary. In ad-
dition, unstained slides can be used for other special stains and 
cytochemical analyses (Figure 6).

Immunocytochemistry and  
Immunohistochemistry

Immunocytochemistry and immunohistochemistry can be 
performed on fresh unstained blood or bone marrow slides, de-
stained slides,93 or histology sections of bone marrow and other 
tissue. Briefly, slides are fixed with methanol, washed with buffer, 
and incubated with a protein blocker, then a primary antibody, 
followed by a secondary antibody, and finally a color-devel-
opment enzyme solution.19 Specific antibodies useful in blood 
and bone marrow samples include those to CD71, Ter119, B220, 
CD3, CD1b, Gr1, F4/80, Mac2, and CD41.17,22,80,165,174 Immature 
forms can be identified by using various combinations of stem 
cell markers.25 Additional antibodies useful in the hematopathol-
ogy of mice using formalin-fixed, paraffin-embedded material 
are reviewed elsewhere.77,128 Most antibodies tend to yield higher 
signals on frozen tissue (avoids the extra steps required for fixed 
tissues), but frozen samples are suboptimal for assessing tissue 
and cellular morphology. Although immunocytochemistry and 
immunohistochemistry provide important diagnostic informa-
tion, most markers are associated with but are not specific for 
various cell lineages, so panels are often required for cell identi-
fication, and concurrent control samples from age-, sex-, strain-, 
and disease-matched mice are needed.

Bone Marrow: General Considerations  
and Responses to Disease

Bone marrow cytologic evaluation is needed to determine the 
myeloid:erythroid ratio, to differentiate hematopoietic precur-
sors, characterize changes in bone marrow hematopoiesis relative 
to peripheral blood cell counts, assess individual cell morphology, 
differentiate lymphoid and erythroid cells, and assess features 
of myelodysplasia or neoplasia.127 In addition, bone marrow is 
evaluated by histopathology to assess overall cellularity and ar-
chitecture and to identify necrosis, inflammation, or infiltrative 
disease.127,156 Collection sites should remain consistent within and 
between experiments (see Methods), and concurrent controls are 
needed. Bone marrow cytology is especially useful when circulat-
ing atypical cells have been detected and when erythrocyte indi-
ces suggest abnormal hematopoiesis.127 Wright–Giemsa-stained 
preparations are best evaluated by using the 100× objective to 
assess cellular morphologic detail including megakaryocytes 
(Figure 5 C, D) and to determine the myeloid:erythroid ratio and 
cellular percentages (Figure 5 B, I).87 At least 500 cells should be 
counted and classified by type—including myeloid (granulocytic 
and monocytic), erythroid, and megakaryocytic lineages as well 
as lymphocytes, macrophages, plasma cells, mast cells—and cel-
lular stage of maturation.156 Slides should be prepared concur-
rently from appropriate controls to evaluate for hematopathology. 
For complete hematologic evaluation in in mice, bone marrow 
cytologic evaluation is performed as an adjunct to peripheral 

from the sternum or femur.127 Briefly, to allow maximal expo-
sure of the marrow, the bone (usually the femur, for the most 
sample) is bisected lengthwise by using a clean razor or surgi-
cal blade. A small paintbrush dampened with PBS is gently 
brushed along the marrow surface to collect the cells. Then the 
collected cells are brushed gently lengthwise along a slide in long 
rows, as the brush is rotated for each row to deposit the cells in 
a monolayer37,156(Figure 5 A). Other methods of slide prepara-
tion include push slides, squash preps, and cytocentrifugation, 
in which the marrow is flushed similar to preparation for flow 
cytometric evaluation,127 however, these methods often result in 
increased numbers of broken and smeared cells, which cannot 
be evaluated. Bone marrow slides can be stained routinely with 
Wright–Giemsa, Giemsa, or Prussian blue for evaluation by light 
microscopy and are generally stained twice as long as peripheral 
blood films.156,168 Cellularity and morphology will be excellent 
when gentle handling is used.

Collection for histology. Bone marrow from the sternum, ver-
tebrae, humerus, or femur can be collected for histology,36,127 and 
consistency of site collection is recommended for best comparison 
within or between studies. Samples collected at necropsy should 
be fixed as soon as possible (within 20 min) in 10% neutral buff-
ered formalin or Bouin solution and decalcified in a chelating 
agent (for example, EDTA) or a weak organic acid.127,156 Excess de-
calcification should be avoided to preserve cellular morphology 
and when sections are to be used for special staining. Alterna-
tively decalcification may be unnecessary before sectioning very 
small bones. Sections are processed routinely through graded 
alcohols and embedded in paraffin; 3- to 4-μm tissue sections 
are recommended for the best cellular detail. Slides then can 
be stained with hematoxylin and eosin and special stains (dis-
cussed later). Bone marrow histology is most useful for assess-
ing architecture, overall cellularity, neoplastic infiltrates, and 
myelofibrosis.

Collection for flow cytometry. Flow cytometric analysis can be 
a useful adjunct to morphologic assessments. The femur is the 
typical collection site for flow cytometry, allowing for 10 to 30 
million cells from a single bone.23,130 Once the femur is dissected, 
both ends can be removed by using a razor. A 12-mL syringe is 
filled with buffer and, with a 21- to 23-gauge needle attached, is 
inserted into one end of the femur and flushed by using alternat-
ing fast and slow pulses to maximize cell yield. Flow cytometric 
analyses must be performed immediately after cell collection.127 
These analyses are beyond the scope of this paper but have been 
reviewed recently.31,90,127,170 As with most aspects of phenotypic 
characterization, flow cytometric parameters can vary with 
mouse strain and other preanalytic factors.112

Cytochemical Staining of Blood and  
Bone Marrow

Routine staining for bone marrow and blood includes use of 
a Romanowsky-type stain (Figures 1 C, 5 B). Reticulocytes are 
best visualized and enumerated by NMB staining (Figure 1 D). 
Polychromasia can be estimated from Wright–Giemsa-stained 
preparations (Figure 1 C).28 In mouse bone marrow (and periph-
eral blood with certain manipulations) it can be very challenging 
to differentiate immature cell types by morphology alone. For ex-
ample, lymphoblasts, monoblasts, and myeloblasts can overlap in 
morphologic features, as can atypical or immature cells in cases of 
myelodysplasia or neoplasia. In some cases, cellular origin cannot 
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during comparative analyses. The nuclei and cytoplasm should 
mature together, asynchronous maturation is abnormal, and cel-
lular maturation should be complete and orderly for all lineages. 
Megakaryocyte emperipolesis (the passage of an intact leukocyte 
through another cell) is considered a normal finding and is com-
mon in bone marrow from mice (Figure 5 C).119 Bone marrow cel-
lularity tends to increase with inflammatory disease (Figure 5 E) 
and age. However, functional capacity declines with age, and my-
elofibrosis (fibro-osseous lesions) can occur in mice before they 
are 2 y of age.129,151 This abnormality is more common in female 
than male mice and may represent an estrogenic effect.46,132,163 
In addition, myelofibrosis can be an important feature of bone 
marrow disease in younger, especially genetically manipulated, 
mice.73,83,174 As in human hematopathology practice, identification 

blood assessment (CBC and blood film review), bone marrow 
histology, and histopathology of the spleen.17,127,153 Special stains 
used for mouse blood and bone marrow are outlined in Figure 
6. In general, bone marrow cellularity is higher for mice than for 
other species, with as much as 90% to 95% of medullary space in 
the femur and vertebral column occupied by marrow;100,130 strain- 
and age-associated variability is best identified by the evaluation 
of concurrent controls and by using consistent collection sites. 
The detailed architecture of murine bone marrow has been re-
viewed.154 Flow cytometry is a useful adjunct to detailed morpho-
logic assessment of the bone marrow, especially when multiple 
cell-surface markers are used.31,90,127,170

The normal myeloid:erythroid ratio in mice ranges from 0.8 
to 2.8:1 (average, 1.5:1),37 and age and strain must be considered 

Figure 5. Features of mouse bone marrow. (A) Representative slide resulting from the ‘brush preparation’ method for bone marrow cytology. (B) 
Mouse bone marrow sample with normal cellularity and myeloid:erythroid ratio (approximately 1:1 in this case). Wright–Giemsa staining; original 
magnification, ×50. (C) Empiropolesis of a neutrophil (arrow) through a megakaryocyte, a common finding in mouse bone marrow. Wright–Giemsa 
staining; original magnification, ×50. (D) Typical megakaryocyte (arrowhead), characterized by multilobulated nucleus with dense chromatin pattern 
and abundant medium-blue cytoplasm. Wright–Giemsa staining; original magnification, 100×. (E) Myeloid hyperplasia (increased myeloid:erythroid 
ratio, approximately 7:1 in this case), characterized by increased numbers of mature neutrophils; bone marrow cytology from a colony mouse with cer-
vical lymphadenitis. Wright–Giemsa staining; original magnification, ×100. (F) Formalin-fixed, paraffin-embedded bone marrow from control mouse 
showing iron-containing macrophages (arrow). Prussian blue staining; original magnification, ×20. (G) Bone marrow from control mouse showing 
macrophages (arrowhead) containing iron as hemosiderin. Prussian blue staining; original magnification, ×50. (H) Markedly increased reticulin stain-
ing (myelofibrosis, black fibers) in formalin-fixed, paraffin-embedded bone marrow from a 9-mo-old mouse with myeloproliferative disease (Xist−/−). 
Original magnification, ×60. (I) Close-up of normal mouse bone marrow, showing typical ringform neutrophils and their precursors and erythroid 
precursors (darker cells). Wright–Giemsa staining; original magnification, ×100.
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aggregates of RNA which stain with NMB. The final stage of 
erythroid maturation is the mature erythrocyte, which is anucle-
ate and has pink to red hemoglobinized cytoplasm.156 In human 
medicine, the term ‘normoblast’ is used for RBC precursors, with 
pronormoblasts roughly equivalent to rubriblasts, basophilic nor-
moblasts to prorubricytes, polychromatophilic normoblasts to 
rubricytes, and orthochromatic normoblasts to metarubricytes.49 
Erythroid precursors can comprise 20% to 50% of the TNCC in 
bone marrow, and with normal maturation, the more mature 
forms are present in greater numbers than are immature forms. 
The primary erythroid growth factor is erythropoietin, a protein 
secreted by the kidneys.37,156 Dysplastic changes of erythroid cells 
include binucleate precursors, siderocytes and ring sideroblasts, 
nuclear cytoplasmic asynchrony, and atypical mitoses.125,159,174 Or-
derly, progressive maturation or maturation arrest should be as-
sessed and blast percentages enumerated as part of an evaluation 
for myeloproliferative neoplasia.

Myeloid lineage. The granulocytic myeloid lineage normal-
ly progresses from myeloblast (early stage) to promyelocyte, 
myelocyte, and then metamyelocyte.169 Band neutrophils and 
segmented neutrophils (most mature stage) predominate in 
normal maturation (Figure 5 I). The monocytic myeloid lineage 
starts with the same bipotential granulocyte–macrophage colo-
ny-forming unit (CFU-GM) as for the granulocytic lineage but 
then is influenced by IL3, GM-CSF, and M-CSF to accomplish 
monoblastic differentiation.9,85 Promonocytes develop with cy-
toplasmic vacuolation and irregular cell membranes. Myeloid 
precursors account for 30% to 50% of the TNCC in bone marrow. 
Mature forms should outnumber immature forms, with blasts 

and grading of myelofibrosis in murine bone marrow by using 
slides stained with reticulin (Figure 5 H) or trichrome (for type I 
collagen) can be helpful in the assessment of disease.78,174 Adipose 
tissue often increases concurrently with decreasing marrow cel-
lularity, and indeed, adipocytes have been shown to suppress 
hematopoiesis in mice.107,154 Importantly, hematopoietic neoplasia 
occurs with relatively high frequency in different strains of ag-
ing mice (Figure 2 G), and this fact must be considered carefully 
when attempting to differentiate a neoplastic phenotype from a 
strain-related background lesion and to characterize such neo-
plasms correctly.14,77 New genetic mutations are being discovered 
or induced in mice at an ever-increasing rate, and many of these 
have important direct or indirect effects on hematopoietic devel-
opment, can cause immunosuppression, and that must be con-
sidered in the context of the background strain when interpreting 
bone marrow findings.1,137,171

Erythroid lineage. Erythropoiesis begins in erythroblastic is-
lands, which consist of a central ‘nurse’ macrophage surrounded 
by RBC at various stages of differentiation. Rubriblasts are large 
cells with large round nuclei, finely stippled and reddish chroma-
tin, nucleoli, and a narrow rim of deeply basophilic cytoplasm. 
The next stage of maturation is the prorubricyte, with more coarse 
chromatin, and loss of nucleoli. Rubricytes are the most mature 
stage capable of mitosis. These cells are smaller than the earlier 
forms, with very coarse chromatin and light blue to gray cyto-
plasm (Figure 5 I). Metarubricytes are smaller than rubricytes, 
with a pyknotic nucleus and polychromatic cytoplasm. Removal 
of the nucleus from metarubricytes leads to the formation of poly-
chromatophilic erythrocytes, which are reticulocytes that contain 

Figure 6. Examples of common cytochemical stains and their uses for mouse bone marrow.
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during innate immune responses and neutrophil recruitment.45 
Both osteoclast and mast cell numbers in the bone marrow vary 
with mouse strain.45,106

Splenic Extramedullary Hematopoiesis
Because the major hematopoietic tissues of mice include bone 

marrow, spleen, and, to a lesser extent, liver,37,114,153 analysis of 
these tissues should be included with CBC and blood film review 
for complete hematologic evaluation in this species. The spleen 
is the primary site for iron storage in mice,114,153 but the iron stor-
age amounts vary by strain.47 Splenic extramedullary hematopoi-
esis persists throughout life in normal mice and comprises about 
30% of hematopoiesis114,130. Splenic extramedullary hematopoiesis 
produces all 3 hematopoietic lineages: myeloid precursors, ery-
throid precursors, and megakaryocytes.153 This degree of splenic 
extramedullary hematopoiesis is unique to rodents and is an im-
portant consideration in regard to comparative pathology when 
developing or assessing mouse models of human disease.175 Un-
der normal conditions, low levels of extramedullary hematopoi-
esis may occur in the liver as well as other sites, including lymph 
nodes.68,73,167 Lymphoma, histiocytic sarcoma, mast cell tumor, 
hemangioma and hemangiosarcoma, and leukemia can occur in 
the spleens of rodents.153 Whether from anemia, inflammatory 
disease, altered iron trafficking, storage disease, or other patholo-
gies, marked splenomegaly is a unique and common response to 
increased hematopoiesis in mice and should not be misconstrued 
as a neoplastic phenomenon only.16,17,24,47,99,147,153,174 In general, the 
spleen is the primary responding tissue for increased erythropoi-
esis, whereas the bone marrow is the main responder for myelo-
poiesis.17,37,167

Conclusions
Herein we have reviewed murine hematology and provided 

examples of important hematopathologic responses in mice, thus 
demonstrating the value of complete murine hematologic analy-
ses during biomedical research. An important component of bio-
medical research is the potential translation of findings to human 
and veterinary medicine. Appropriately designed studies with 
correct and consistent sample collection and evaluation and rel-
evant controls support the elucidation of important phenotypes, 
hematopathologies, and responsiveness to investigational thera-
peutics. Blinded observations, randomization,115 and studies de-
signed with appropriate statistical power42 enhance the quality of 
research and allow for repeatability and subsequent translation of 
important findings. A strategic plan for hematologic analyses in 
mouse models should include the evaluation of GEM and other 
disease models for both expected and unexpected hematologic 
phenotypes.

High-quality hematologic analyses for laboratory mice are pos-
sible and practical and can provide insight into the phenotypes 
and pathogenesis of mouse models of human and veterinary dis-
eases and the evaluation of responsiveness to novel therapeutic 
investigations. In this manuscript, we describe various practical 
methods for the collection and processing of samples for auto-
mated and manual analyses and provide examples of the utility 
of these laboratory tests for modern biomedical research. We hope 
this article provides a reference framework for improved experi-
mental design, understanding of hematophysiology, interpreta-
tion of results and important findings for murine hematologic 

comprising 2% of the total myeloid component.87 Increased 
blasts may indicate neoplasia of either the myeloid or lymphoid 
lineage.128 Ring forms can be present starting at the promyelo-
cyte stage in neutrophils and eosinophils and in the monocyte 
lineage. Myeloid hyperplasia can occur during infectious dis-
ease and myeloproliferative disease.16,174 Histiocytic sarcoma is 
a common tumor of aging mice and is characterized by sheets 
of round to elongate cells with abundant variably foamy eosino-
philic cytoplasm, vesiculate nuclei, and prominent nucleoli.55 
Erythrophagocytosis and multinucleated giant cells can occur 
with infiltrative histiocytic sarcoma of the bone marrow and 
spleen164,174 and with other lympho- or myeloproliferative neo-
plastic and inflammatory diseases including granulomatous 
diseases67 and intracellular bacterial infections such as salmonel-
losis.16,17,96

Megakaryocytes. Megakaryopoiesis occurs adjacent to the 
sinus endothelium.156 Megakaryocytes are platelet precur-
sors and form in the bone marrow first as megakaryoblasts, 
which are large with 1 to 4 reddish nuclei and a small amount 
of deeply basophilic cytoplasm. These then progress to pro-
megakaryocytes, in which nuclei multiply and may fuse into a 
common mass with a narrow rim of cytoplasm; finally, mega-
karyocytes are formed (Figure 5 D). Megakaryocytes are the 
largest (20 to 160 μm diameter) hematopoietic precursors in 
the bone marrow. They are usually round, with a single, mul-
tilobed nuclear mass, abundant pale cytoplasm, and numer-
ous small azurophilic granules. There are about twice as many 
megakaryocytes in adult mouse bone marrow as compared 
with human.134 Dysplastic changes include hypolobation, atyp-
ical mitoses, small forms, and clustering.35,150,174 Mouse mega-
karyocytes typically have 16 nuclei, but this count varies by 
strain.65,134

Other cells. Lymphocytes are more abundant (7% to 21% of 
nucleated cells) in the bone marrow of mice than other species,119 
and small lymphocytes predominate. Young mice may have 
increased numbers of lymphocytes; bone marrow lymphocyte 
density does not correlate well with peripheral blood lym-
phocyte counts127 and may vary by age, sex, strain, and GEM. 
Although distinguishing lymphoid from erythroid cells in his-
tologic sections can be difficult, mouse-specific lymphoid and 
erythroid markers are available for immunohistochemistry.128 
Erythroid cells can be identified in mice by using the Ter119 an-
tibody.146,174 Lymphoblasts are present in low numbers (less than 
2%) in normal mice, and immunohistochemistry or flow cytom-
etry can be helpful in differentiating cell lineages.31,172 Other cells 
normally present in low numbers in the bone marrow of mice 
include macrophages, plasma cells, osteoclasts, mast cells, and 
endothelial cells. Bone marrow macrophages are often phago-
cytic and notably increase in various infectious diseases16,17 and 
neoplastic conditions.77,174 Plasma cells, which should account 
for less than 3% of the TNCC, are round to oval, with abundant 
deeply basophilic cytoplasm and round eccentric nuclei with 
a perinuclear clear zone, and the cytoplasm may be filled with 
Russell bodies (immunoglobulins).87,172 Osteoclasts are large ir-
regular cells with multiple oval nuclei and pink granular cyto-
plasm, which may increase with bone remodeling, changes in 
hormone and vitamin D levels, and sarcomas.18,44,54 Osteoclasts 
can be differentiated from megakaryocytes by the separated 
nuclei (as compared with as a single mass) and more open chro-
matin pattern of osteoclasts. Mast cell percentages can increase 
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