
Comparative Medicine
Copyright 2014
by the American Association for Laboratory Animal Science

Vol 64, No  2
April 2014

Pages 90–98

90

Almost half of a century ago, a few astute microscopists reported a 
unique microbe that remained securely attached to the epithelium of 
the ileum in mice (Mus musculus) and rats (Rattus norvegicus) despite 
the removal of other luminal contents.32,69,71,72 Although the microbe 
was first postulated to be a fungus in light of its size and unusual 
morphology,69 electron microscopy soon revealed the organism to 
be a segmented bacterium containing ‘round forms,’ some of which 
appeared to be in the process of dividing. In addition, one end of the 
microbe appeared to be specialized for integration into and attach-
ment to the epithelial brush border. A very similar organism in the 
ileum of chickens (Gallus domesticus)25 and dogs (Canis familiaris) was 
soon reported,12 although the relationship among the microbes from 
the various hosts remained unclear. The first report of the habitat, 
ultrastructural morphology, and proposed life cycle of what are now 
commonly referred to as segmented filamentous bacteria (SFB) was 
published in 1974.13 There are abundant anecdotal reports among 
users of animal models regarding the loss or alteration of model 
phenotypes when using animals purchased from different vendors 
or when housing animals under different husbandry conditions. 
These changes have often been attributed to genetic drift of rodent 
strains maintained at different institutions or to unknown factors of 
the host microbiota. Recent studies comparing mice from different 
vendors19,37,38 have identified SFB as a pivotal member of the com-
mensal microbiota that affects the ontogeny and function of the host 

immune system. Accordingly, what was once an incidental finding 
on histologic examination of the gastrointestinal tract should now be 
considered a variable with the potential to affect outcomes in several 
disease models. Identification of involved models and the extent to 
which they are affected is a critical need in biomedical research.

Unique Morphology
SFB are gram-positive, spore-forming, filamentous bacteria rang-

ing between 0.7 and 1.8 µm in diameter and as long as 80 µm in 
length10 that selectively colonize the ilea of mice and rats shortly 
before weaning43,71 (Figure 1). The first segment of the microbe pos-
sesses a nipple-like appendage, called a holdfast, that projects into 
the plasma membrane of the enterocyte, without actually ruptur-
ing or penetrating the host cell wall4,10,13,21,79 (Figure 2). It should be 
noted, however, that attachment of SFB induces focal displacement 
of the microvillar brush border and alterations in the electron-den-
sity of the enterocyte plasma membrane and apical cytoplasm. Ac-
tin polymerization occurs at the apical surface of enterocytes at the 
site of attachment,40 suggesting pedestal formation, an active host 
cellular response similar to that induced by invasive or adherent 
pathogens such as Escherichia coli22 and Salmonella typhimurium.23 
The remainder of the microbe is septate, with each mature segment 
of the body containing between 0 and 2, but typically 1, intraseg-
mental body, originally thought to be spores.

Presumed Life Cycle and Transmission
There are 2 morphologically distinct types of intrasegmental 

bodies that are either developing holdfasts or spores, suggesting 
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of SFB status in a mouse colony. Current diagnostic modalities in-
clude histologic examination of the ileum and PCR-based methods. 
Histologic examination requires an experienced pathologist to dif-
ferentiate SFB from the myriad smaller filamentous microbes in 
the gastrointestinal tract and is a postmortem assay. Alternatively, 
multiple primer sets designed against the 16S rRNA gene have 
been published,24,77 allowing for noninvasive screening of feces 
from rodents. This evaluation can easily be performed in-house, 
and these services are commercially available for rats and mice.

Host Specificity
There is now evidence that SFB-like bacteria exist in a broad 

range of species, including rhesus macaques (Macaca mulatta),48 

that SFB exist in both vegetative and dormant forms.10 Both types 
of intrasegmental body appear to increase during maturity in the 
proximal to distal direction, and functional holdfasts or spores are 
thought to be released from the mature distal segments of the mi-
crobe. However, much of the knowledge of the life cycle of SFB has 
been deduced from microscopy and, because all attempts to culture 
the organism have been fruitless,14,46 there are still many uncertain-
ties regarding these microbes. For example, one can infer that SFB 
must complete a full life-cycle within 2 to 3 d, given the rapid turn-
over of intestinal epithelial cells in rodents. Similarly, because SFB 
are considered obligate anaerobes and because spores are seen free 
in the lumen of infected rodents,69 SFB presumably spread via in-
oculation with spores. Although several factors, including diet and 
the immune status of both the dam and pup, affect colonization by 
SFB,43,47,52 once the organisms are introduced into a colony, they are 
transmitted vertically and have the potential to become endemic.13 
Longitudinal studies of the developing ileum have confirmed that 
SFB appear in juvenile mice at around 20 d of age and that, during 
the earliest stage of colonization, the SFB themselves are transiently 
colonized by other rod-shaped bacteria.51 Soon thereafter, SFB pro-
liferate to the point that they are one of the dominant bacterial gen-
era present in the gut (Figure 3) before receding to the levels seen 
in adults.78 Given these features, the first few weeks after weaning 
may represent the optimal testing window for the determination 

Figure 1. Photomicrographs of a section of segmented filamentous bac-
teria (SFB) in the ileum of a weanling (age, approximately 3 to 4 wk) 
female C57BL/6 mouse. Hematoxylin and eosing stain; magnification, 
200× (A), 1000× (B).

Figure 2. Transmission-electron–microscopic images demonstrate the 
holdfast of a segmented filamentous bacterium (SFB) attached to the 
ileal epithelium of a weanling (age, approximately 3 to 4 wk) female 
C57BL/6 mouse. Magnification: 27,000× (A); 90,000× (B).
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humans as well, although there are conflicting data regarding 
the persistence of colonization of adults. In the first published 
report of SFB in humans, SFB were visualized via light micros-
copy and were adherent to biopsied tissue from 1 of the 6 adults 
examined.48 Conversely, a recent attempt to confirm the presence 
of SFB in humans by searching for any part of the SFB genome 
in 263 human metagenomic data sets was unsuccessful. Simi-
larly, attempts to detect SFB by using PCR designed to amplify 
5 different SFB-specific genes from 8 freshly evacuated human 
fecal samples were fruitless also.73 These divergent findings may 
be rectified by a recent study wherein SFB were found to colo-
nize humans in an age-dependent manner. SFB were detected by 
PCR in 25% (2 of 8) of infants younger than 6 mo of age and in 
78.6% (11 of 14) of infants 7 to 12 mo of age.95 However, the same 
study reported a prevalence of only 6.2% (10 of 162) in subjects 
between the ages of 3 and 75 y. Therefore, it appears that SFB 
commonly colonize the gut of humans early in life but then are 
cleared in most persons by 3 y of age. An age-dependent decrease 
in SFB colonization may occur in other species (for example, dogs, 
chickens, horses, and pigs) as well.33,58 Also of interest is a recent 
retrospective histologic survey of the ileocecal valves of patients 
diagnosed with ulcerative colitis or Crohn disease (the 2 primary 
forms of inflammatory bowel disease) and patients without a his-
tory of intestinal inflammation.8 Whereas 100% (6 of 6) patients 
with ulcerative colitis were colonized by high levels of SFB, the 
organism was found in none (0 of 6) of the patients with Crohn 
disease and was present only at low levels in 50% (3 of 6) of the 
control samples. Clearly the relationship between SFB and in-
flammatory bowel disease or other conditions in humans merits 
further investigation.

SFB selectively colonize the ilea of all species examined (with 
the exception of rainbow trout and carp, which lack well-differ-
entiated ilea, and chickens, in which SFB also colonize the cecal 
tonsils28). Because SFB are highly dependent on other organisms 
for nutrients, it is tempting to speculate that the microbes colonize 
the gut in such a site-specific manner due to a relatively greater 
availability of a particular host-derived factor, such as cobalamin 
(vitamin B12), in that region. Alternatively, the ileum is also the 
region of the gut wherein bacterial densities increase dramatically, 
potentially providing some essential microbially produced factor. 
There are also species-specific differences in the predominant site 
of SFB attachment within the ileum. In pigs and most rodents, 
SFB adhere to both absorptive villi and the follicle-associated epi-
thelium overlying Peyer patches; in mice and horses, however, 
there is a reported preference for attachment to the follicle-asso-
ciated epithelium.7,40,46,58 Alternatively, microscopic examination 
of ilea from dogs,35 cows,75 and rabbits33 revealed SFB attached 
primarily to the absorptive villi. At the cellular level, SFB appear 
to be capable of binding to the apical surface of classic absorptive 
enterocytes, specialized M cells, and goblet cells, as well as to the 
tight junctions between these cells.7,40,63 In addition, another study 
documented SFB in direct contact with intraepithelial mononu-
clear cells.63 The portion of the filament in contact with the host 
cell appeared to be degenerating, leading to the speculation that 
the microbe was in an early stage of phagocytosis, a process that 
has been noted elsewhere.94

The first piece of evidence that SFB exhibit host specificity came 
from experiments wherein germ-free rats and mice were gavaged 
with ileal homogenates from both species, in which SFB could 
subsequently be found in only those animals that had received the 

crab-eating macaques (M. fascicularis),48 vervet monkeys (Cer-
copithecine aethiops),6 African gorillas (Gorilla spp.),67 South Afri-
can claw-footed toads (Xenopus laevis),48 carp (Cyprinus carpio),48 
rainbow trout (Oncorhynchus mykiss),17,92 wood mice (Apodemus 
sylvaticus),48 guinea pigs (Cavia porcellus),46 rabbits (Oryctolagus 
cuniculus),33 horses (Equus caballus),58 cattle (Bos taurus),75 pigs 
(Sus scrofa domestica),70 cats (Felis catus),48 turkeys (Meleagris gal-
lopavo),5,68 jackdaws (Corvus monedula),48 and magpies (Pica pica).48 
Perhaps not surprisingly, SFB have been reported to occur in 

Figure 3. Scanning-electron–microscopic images of segmented filamen-
tous bacteria (SFB) in the ileum of a weanling (age, approximately 3 
to 4 wk) female C57BL/6 mouse. Magnification: 1500× (A); 4500× (B); 
35,000× (C).
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bly are secreted.67 Expectedly, there are also many genes involved 
in sporulation and germination homologous to those found in 
clostridial species, although the triggers for these processes are 
unknown. Although exposure to oxygen is presumably one cause 
for sporulation, the fact that spores are constitutively released in 
the ileum69,75 suggests that sporulation may be an ongoing process 
in the life cycle of SFB. In addition, the presence of genes encod-
ing peroxidase and catalase proteins implies that SFB may be able 
to survive in microaerophilic environments.

The presence of multiple coding DNA sequences of bacterio-
phage origin in the genomes of both rat and mouse SFB imply 
that SFB are subject to foreign invading DNA. Some of these cod-
ing DNA sequences are highly similar to those found in Clostridi-
um spp., suggesting horizontal gene transfer may have occurred. 
In addition, the genomes of both mouse and rat SFB contain clus-
tered, regularly interspaced, and short palindromic repeat (CRIS-
PR) loci, which function as acquired components of prokaryotic 
immune systems. These loci are found in a large percentage of 
sequenced bacteria and archaea and are thought to serve as an 
indicator of past exposure to invading DNA.3,60

One of the most fascinating findings in the genomes of rat and 
mouse SFB is the presence of genes encoding multiple flagellar as-
sembly proteins, including 4 different flagellin loci in rat SFB and 
367 or 454 in mouse SFB. Although no evidence of SFB motility has 
ever been documented, the presence of a complete set of chemot-
axis genes and an absence of recognizable pseudogenes in the 
flagellin gene sets suggest that SFB may possess chemotactically 
driven flagellar motility.54 That being said, rat SFB also possess 
genes encoding several type IV pilus proteins,67 previously shown 
to be involved in a twitching motility.61 In addition, flagellar as-
sembly proteins can be applied to uses other than motility, such 
as type 3 secretion systems or as adhesins.73 Therefore, the exact 
method of motility used by SFB remains a mystery, although the 
presence of multiple genes involved in chemotaxis, along with the 
organism’s ability to penetrate the mucus layer lining the intesti-
nal epithelium, suggest that SFB are at least transiently motile.

Effects on Host Physiology
SFB historically have been considered members of the com-

mensal microbiota. However, it is now becoming very clear that 
their presence can have a profound influence on models of intes-
tinal disease as well as systemic immune-mediated diseases. How 
often has the laboratory animal veterinarian heard the comment 
“My model worked fine at my old institution”? Could such an-
ecdotes of altered model phenotypes be associated with subtle 
changes in commensal microbiota, such as the addition of SFB? 
The following paragraphs highlight the current knowledge re-
garding the influence of SFB on the development and homeosta-
sis of several components of the mucosal immune system. Given 
that our understanding of SFB is still in its infancy, the reader is 
encouraged to regularly review the literature for new informa-
tion that is likely to emerge about these bacteria, as well as other 
members of the commensal microbiota.

Interest in a functional role of SFB in host health was initially 
spurred by evidence suggesting that SFB contributed to coloniza-
tion resistance to the enteric pathogen Salmonella enteritidis.27 One 
group showed that in rats experimentally infected with a virulent 
strain of S. enteritidis, the presence of SFB and Salmonella on the 
ileal epithelium of individual villi is mutually exclusive, implying 

ileal microbiota derived from its cognate host species.84 Studies 
performed with mice and chickens reached a similar conclusion,1 
yet the phylogenetic relation of these host-specific SFB to each 
other and to other microbes remained unclear. A breakthrough in 
the study of SFB occurred with the successful monoassociation of 
germ-free mice via intraileal inoculation with ethanol-treated ileal 
contents of donor mice.49 In the absence of an effective method 
of culture, this protocol yielded a pure sample for sequencing of 
the 16S rRNA gene in mouse SFB.76 Comparison of the 16S rRNA 
sequence of mouse SFB with metagenomic data from rats, chick-
ens, and macaques revealed that the microbes belong to a distinct 
group within the phylum Firmicutes, putatively serving as a novel 
genus in the order Clostridiales.36,76,77 Sequencing of the complete 
genomes of rat and mouse SFB has confirmed that they are in-
deed closely related to—but distinct from—recognized Clostridi-
um spp.67 In addition, comparison of 16S rRNA sequences of SFB 
isolated from mice and rats with existing sequences generated 
from fecal samples of multiple diverse species including gorilla,57 
macaque,36 dog,81 and rainbow trout92 demonstrated 94% to 98% 
nucleotide identity, forming a distinct cluster separate from other 
Clostridium spp. (Figure 4). It should be noted that although SFB 
have also been reported to occur in numerous invertebrate spe-
cies, including myriapods, termites, cockroaches, isopods, and 
beetles,46,56 16S rRNA analysis has placed those microbes in the 
family Lachnospiraceae, rather than Clostridiaceae, and thus dis-
tinct from the SFB found in vertebrate species.85,86 Similarly, re-
ports of long segmented filamentous organisms associated with 
visceral granulomatous disease,34 stunting syndrome,2 diarrhea, 
and increased mortality29 in chickens, turkeys, and quail must 
be evaluated cautiously. Considering the presence of these long 
segmented filamentous organisms in the jejunum,2,29 their occa-
sional branching morphology,2 and their association with overt 
disease, it is more likely that these are microbes distinct from SFB, 
such as perhaps Actinomycetes spp. or Nocardia spp. The fact that 
microbes more akin to the SFB characterized in rodents have been 
identified in the cecum of healthy turkey poults5,68 makes this 
interpretation even more likely. Regardless, molecular techniques 
will need to be used to answer this question definitively.

Genome and Molecular Biology
Considering the mutualism implied by the close association 

of SFB with the ileal enterocytes and lack of inflammation, Davis 
and Savage posited that SFB coevolved with mice and rats and 
that the microbe may rely on the host for nutrients.13 Providing 
strong support for that insight, 3 groups have now independently 
sequenced the complete genome of mouse SFB54,67,73 with one of 
them also sequencing the genome of rat SFB. In addition, a fourth 
group has performed single-cell sequencing of 5 individual SFB 
filaments.65 The genome of mouse SFB encodes a single circular 
chromosome of between 1.57 and 1.62 Mb with a G+C content of 
approximately 28%, similar to that found in other obligate symbi-
onts. SFB possess a remarkably reduced genome relative to closely 
related Clostridium spp. and lack genes responsible for the syn-
thesis of the majority of amino acids, nucleotides, vitamins, and 
cofactors. Conversely, several transporter and permease genes, 
necessary for the uptake of extracellular nutrients, are found in 
the genomes of both rat and mouse SFB. In addition, SFB likely 
facilitate the acquisition of nutrients through the degradation of 
host and dietary proteins; the rat SFB genome contains putative 
genes for 28 proteases and 53 peptidases, several of which proba-
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Effects on the Host Immune System
With the possible exception of rainbow trout,15-18 no host has 

ever been documented to show an inflammatory response, either 
grossly or microscopically, to naturally occurring colonization 
with SFB. That being said, SFB are clearly not idle bystanders 
in their interactions with the complex mucosal immune system. 
Compared with germ-free mice, mice monoassociated with SFB 
have significantly higher numbers of intestinal IgA-secreting cells 
and significantly higher IgA titers in the intestines and serum. Re-
markably, monoassociation of germ-free mice with SFB restores 
the production of IgA to levels close to those seen in SFB-negative 
SPF mice.50,91 One group extended these findings to show that 
SFB induce not only specific IgA production but also ‘natural’ 
nonspecific IgA production, with SFB-specific IgA production 

that SFB not only physically compete with pathogenic microbes 
for binding spots on enterocytes but that they also induce a lo-
cal response that hinders the ability of S. enteritidis to adhere to 
the epithelium. Similarly, the presence of SFB on the ileal villi of 
rabbits correlates with resistance to enteropathogenic Escherichia 
coli, another microbe known to enter the host through ileal Peyer 
patches.33 Using mice in which the microbiota differed by only the 
presence or absence of SFB, one group showed that SFB increases 
resistance to colonization by another microbe of the family Entero-
bacteriaceae, Citrobacter rodentium.37 Notably, the influence of SFB 
on colonization resistance likely requires the presence of other 
commensal microbes, because SFB-monoassociated mice fare no 
better than do germ-free mice when challenged with S. enterica 
serovar Typhimurium.11

Figure 4. Phylogenetic tree based on 16S rRNA sequences of segmented filamentous bacteria (SFB); the 16S sequences from mouse and rat SFB and 
3 additional sequences identified in reference 67; 3 published sequences from chicken, rainbow trout, and monkey SFB; and 28 Clostridium strains. A 
distinct clade composed of 16S sequences derived from 8 hosts, including mouse and rat, is boxed. Reprinted from reference 67 with permission of the 
publisher.
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microbes.30,90 In addition, SFB have been found to contribute to in-
nate immunity via enhanced production of IFNγ by NK cells and 
the induction of RegIIIβ and RegIIIγ on intestinal epithelium,45 a 
result that was duplicated by a different research group.37

Effects on Animal Models
As our understanding of the role of SFB in the maturation 

of the immune system has grown, several researchers have ap-
plied SFB as an experimental variable to assess its effect on in-
flammatory disease models. In one commonly used model of 
inflammatory bowel disease, CD4+CD45RBhigh effector subsets of 
T cells isolated from the spleen of conventional mice are adop-
tively transferred to SCID mice to induce severe colitis whereas 
cotransfer of CD4+CD45RBlow cells prevents the development of 
inflammation.66 As in most models of inflammatory bowel dis-
ease, the development of inflammation in the described model 
is dependent on the presence of intestinal microbiota. Efforts to 
determine the minimal bacterial community needed to allow for 
inflammation demonstrated that SCID mice monoassociated with 
SFB do not develop colitis after transfer of CD4+CD45RBhigh T 
cells,44 whereas SCID mice colonized with a very limited defined 
(SPF) microbiota develop mild to moderate inflammation by 12 
wk after transfer.80 Interestingly, the addition of SFB to the SPF 
microbiota consistently results in severe colitis in recipient mice, 
suggesting that SFB exert a synergistic effect with other commen-
sal bacteria in providing an environment conducive to intestinal 
inflammation.80

Collectively, the above findings highlight the importance of SFB 
in the development and modulation of several components of the 
mucosal immune system including innate, humoral, and cell-me-
diated components. Given the importance of mucosal immunity 
to virtually all models of intestinal disease, the fact that SFB has 
such profound influence on this system raises many questions re-
garding its effect on models of intestinal disease. Moreover, there 
is growing evidence that the mucosal immune system has key 
interactions with the development and homeostasis of systemic 
immunity. Therefore the breadth of models potentially altered by 
the presence or absence of SFB is expanded greatly. For example, 
other groups have now shown that SFB exacerbates inflammation 
in models of extraintestinal disease as well, including experimen-
tal autoimmune encephalomyelitis55 and autoimmune arthritis,93 
in a TH17-dependent manner. Interestingly, SFB appear to con-
fer protection from diabetes in nonobese diabetic mice, and in a 
sex-dependent manner,53 raising another potentially crucial set of 
questions regarding differential effects of SFB, and perhaps other 
microbes, on male and female subjects.

Implications Regarding Other Commensal  
Microbes

The growing evidence that SFB can modulate mucosal health 
and subsequently alter rodent model phenotypes raises the ques-
tion “What about other members of the microbiota?” Clearly, SFB 
are not the first autochthonous bacteria to be identified as having 
an effect on disease models. Helicobacter spp., still prevalent in 
many research colonies but often unreported in the literature, can 
be considered commensal microbes in some strains of mice but 
also may be necessary components for the phenotypes of vari-
ous disease models.59 As with SFB, Helicobacter spp. may influ-
ence host physiology, such as by affecting immune responses to 

comprising less than 1.4% of total IgA.83 Conversely, maternal IgA 
production has been shown to inhibit SFB colonization of pups 
during suckling,43 perhaps explaining early reports from conven-
tionally housed mice that SFB is not evident in pups until just 
before weaning.71 SFB undergo robust proliferation after weaning 
but then decline to a basal level shortly thereafter, presumably 
due to host-derived IgA.9,64 The presence of IgA apparently im-
pedes the proliferation of SFB in adults also, because mice lack-
ing activation-induced cytidine deaminase, an enzyme critical in 
hypermutation of IgA, experience a selective overgrowth of SFB 
despite the presence of other commensal organisms.82

In addition, SFB influence the development of the T-cell rep-
ertoire. SFB enhance the development of activated CD45RBlow 
CD4+ T-helper cells in Peyer patches83 and the expansion of both 
ααTCR-11 and αβ TCR-bearing intraepithelial lymphocytes.90,91 In 
stark contrast to experiments performed with mice monoassoci-
ated with various members of the dominant bacterial phyla in 
the gut (including Bacteroides thetaiotaomicron, B. vulgatus [phylum 
Bacteroidetes], 3 different Clostridium spp. from the Altered Schae-
dler Flora [phylum Firmicutes], and E. coli [phylum Proteobacteria]), 
monoassociation with SFB recapitulates many of the immunolog-
ic effects of a complex microbiota.26 To this end, SFB induce a full 
retinue of homeostatic CD4+ T-helper–cell profiles including TH1, 
TH2, TH17, and Treg cells, with the most pronounced effect being on 
the TH17 type. The TH17 response induced by SFB is linked to the 
induction of antimicrobial responses and increased colonization 
resistance to pathogenic Enterobacteriaceae.37 This outcome is likely 
due to the protective effects of IL22, a canonical TH17 cytokine 
known to induce the production of antimicrobial peptides effica-
cious against bacteria capable of inducing attaching and effacing 
lesions such as C. rodentium and certain strains of E. coli.96

The presence of flagellar proteins may explain the ability of 
SFB to induce IgA production as well as TH17 immune responses. 
One laboratory showed that recombinant gene fusion proteins of 
3 of the 4 mouse SFB flagellins activated the NFκB signaling path-
way in a Toll-like receptor (TLR) 5-dependent manner.54 TLR5 
is a pattern recognition receptor of the innate immune system 
expressed primarily on the CD11chiCD11bhi subset of intestinal 
dendritic cells, and binding of flagellin has been shown to induce 
class-switching to IgA and the differentiation of TH17 cells.88,89 
Of note, this subset of dendritic cells was demonstrated to be 
solely responsible for the differentially greater production of IL17 
in the gut of C57BL/6 mice harboring SFB (from Charles River 
Laboratories) relative to C57BL/6 mice lacking SFB (from The 
Jackson Laboratory).19 The binding sites of flagellin and TLR5 
have been identified39 and, notably, the specific motif capable of 
binding TLR5 is highly conserved in the flagellar proteins of SFB, 
whereas this motif is absent in all commensal Clostridium spp. 
examined except C. sporogenes.67 Therefore, it seems plausible that 
SFB invoke the production of IgA and the differentiation and pro-
liferation of TH17 cells through the sensing of SFB-specific flagel-
lin proteins by TLR5 expressed by the CD11chiCD11bhi subset of 
intestinal dendritic cells.

In addition to adaptive immunity, colonization with SFB in-
fluences the innate immune system. Colonization of germ-free 
mice with SFB—but not a mixture of Clostridium spp.—leads to 
increased expression of MHC class II molecules on intestinal 
epithelial cells.90,91 SFB also influence the glycosylation of entero-
cytes, specifically inducing the expression of fucosyl asialo GM1 
glycolipids, posited to inhibit the attachment of other adherent 
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149:1578–1593. 
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34:194–206.
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murine gastrointestinal tract. Infect Immun 10:948–956.

 14. Davis CP, Savage DC. 1976. Effect of penicillin on the succession, 
attachment, and morphology of segmented, filamentous microbes 
in the murine small bowel. Infect Immun 13:180–188.

 15. Del-Pozo J, Crumlish M, Ferguson HW, Green DM, Turnbull JF. 
2010. A prospective longitudinal study of ‘Candidatus arthromitus’-
associated rainbow trout gastroenteritis in the UK. Prev Vet Med 
94:289–300. 

 16. Del-Pozo J, Crumlish M, Turnbull JF, Ferguson HW. 2010. 
Histopathology and ultrastructure of segmented filamentous 
bacteria-associated rainbow trout gastroenteritis. Vet Pathol 
47:220–230. 

 17. Del-Pozo J, Turnbull J, Ferguson H, Crumlish M. 2010. A compara-
tive molecular study of the presence of ‘Candidatus arthromitus’ in the 
digestive system of rainbow trout, Oncorhynchus mykiss (Walbaum), 
healthy and affected with rainbow trout gastroenteritis. J Fish Dis 
33:241–250. 

 18. Del-Pozo J, Turnbull JF, Crumlish M, Ferguson HW. 2010. A study 
of gross, histological, and blood biochemical changes in rainbow 
trout, Oncorhynchus mykiss (Walbaum), with rainbow trout gastro-
enteritis (RTGE). J Fish Dis 33:301–310. 

 19. Denning TL, Norris BA, Medina-Contreras O, Manicassamy S, 
Geem D, Madan R, Karp CL, Pulendran B. 2011. Functional spe-
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control Th17 and regulatory T cell responses are dependent on the 
T cell:APC ratio, source of mouse strain, and regional localization. 
J Immunol 187:733–747. 

 20. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, 
Sargent M, Gill SR, Nelson KE, Relman DA. 2005. Diversity of the 
human intestinal microbial flora. Science 308:1635–1638. 

other commensal bacteria present in the gut.41,42 Similarly, several 
conceptual models have been proposed wherein key microbes 
modulate the composition of the microbiota thereby increasing 
its overall inflammatory potential.31,74,87 Therefore, the widespread 
influence of various microbes on other members of the microbiota 
as well as the host, coupled with the fact that the majority of the 
intestinal microbiota is resistant to culture in vitro, make it highly 
likely that other gut microbes with unappreciated effects on dis-
ease models will be identified in the future. In addition, studies 
of the human microbiota in persons with various diseases often 
find correlations between disease and shifts in the relative abun-
dance of higher taxa, such as differences in the ratio of Firmicutes 
to Bacteroidetes. Although many of these findings are correlative, 
they beg the question, “Is there a core microbiota in rodents that 
is necessary for normal mucosal immunity?” If so, what are the 
functions of that microbiota and the effect of subtle alterations in 
its composition? We have already begun a paradigm shift in our 
analyses of the microbiota, through next-generation sequencing 
technologies and bioinformatics-based approaches. These and 
other interdisciplinary methods will be needed for inclusive and 
robust assessments of the microbiota and the identification of 
other commensal microbes that affect animal models of disease.

Conclusions
Although the existence of SFB has been recognized for several 

decades, these organisms have entered the forefront of microbial and 
metagenomic research only in the last several years. Having carried 
multiple erstwhile names (bacillus of Savage, Candidatus Arthro-
mitus, and now Candidatus Savagella62), SFB have rightly attracted 
attention due to their role as a ‘type species’ with the capacity to in-
duce the development of multiple adaptive immune responses in the 
gut. For microbiologists and immunologists, SFB provide a unique 
model organism for investigation of the development of the immune 
system and host–microbe interactions. For all scientists using mice or 
rats in their research, SFB must be considered as a potential variable 
with a potential impact on outcomes. Similarly, SFB is but one organ-
ism within a complex and dynamic mixture of microbes, and the 
entire commensal microbiota needs to be considered when model 
phenotypes are altered or completely lost, particularly when changes 
in diet or environment are present. It must be remembered that only 
a minority of intestinal bacteria are amenable to culture,20 and ev-
erything known about SFB stems from those first observations of 
a bacteria with unique morphology and size. Doubtless, molecular 
metagenomic approaches eventually will identify other microbes 
with profound effects on host immunology and physiology, offering 
new insights into human and animal health.
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