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Simian T-lymphotropic viruses (STLV) and their human coun-
terparts (HTLV) are collectively referred to as primate T-cell 
lymphotropic viruses.30,52 STLV type 1 (STLV1) is classified as a 
type C member of the Deltaretrovirus genus of retroviruses, and 
is genetically and antigenically closely related to human T-cell 
lymphotropic virus type 1 (HTLV1).21 STLV1 is endemic in many 
populations of wild and captive nonhuman primate species in-
digenous to Africa and Asia, including rhesus macaques (Macaca 
mulatta).2,11,14,32,38 Published reports of STLV1 seroprevalence in 
wild populations vary from 0% to 60% depending on the test algo-
rithm used and the species, age, and sex of animals tested.11,17,18,31,32 
Estimates of STLV1 seroprevalence in captive populations of ma-
caques housed in facilities in the United States range from 3% to 
12%, although hyperendemic populations in which prevalence 
exceeds 60% have also been identified.11,31,32 The seroprevalence 

in the general colony at the California National Primate Research 
Center is 3.7%. Semen, cervical secretions, blood, and breast milk 
exchanged through sexual, fighting, nursing, or iatrogenic actions 
have been identified as sources for virus transmission.14,30,52

In humans, infection with HTLV1 is causally linked to the 
development of adult T-cell leukemia and lymphoma and to a 
progressive immune-mediated neurologic disease, HTLV1-as-
sociated myelopathy–tropical spastic paraparesis.18,26,34 HTLV1 
infection has also been associated with other diseases including 
myositis, uveitis, and infective dermatitis.36,41,55 STLV1 infection 
has been associated with lymphoproliferative disease and T-cell 
leukemia–lymphoma in some African primate species, including 
baboons (Papus spp.), African green monkeys (Chlorocebus spp.), 
and gorillas (Gorilla spp.).5,10,21,22,28,37,42 To date, no counterpart of 
HTLV1-associated myelopathy–tropical spastic paraparesis has 
been recognized in any species of STLV-infected nonhuman pri-
mate. The vast majority of STLV infections remain inapparent, 
and infected primates appear clinically healthy.7,14,30,52 No disease 
or pathology related to STLV infection has been found in the rhe-
sus macaque colony at our institution; therefore animals for this 
study were chosen according to their serologic antibody status.
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7 to 20 y; female: n = 21; age, 2 to 29 y) were identified during 
routine retroviral screening for SPF colony development and in-
cluded in this study. The seropositive group included naturally 
infected macaques both imported and born into the colony. In 
addition, 25 seronegative macaques, matched for age (± 1 y) and 
sex, were selected as controls. Routine clinical laboratory data 
including blood counts and T-cell subset phenotyping collected 
on colony animals has identified age and sex as significantly af-
fecting normal hematologic and immunologic values (data not 
shown). All of the macaques were PCR- and antibody-negative 
for SIV and simian betaretrovirus and seropositive for simian 
foamy virus, which does not appear to induce IFNγ responses.12 
All macaques were anesthetized via intramuscular injection of 
ketamine hydrochloride (10 mg/kg; Schering-Plough, Union, 
NJ) after a nonfeeding period of approximately 8 h. Heparinized 
whole blood was collected from a peripheral vein for culture of 
PBMC and subsequent cytokine and proliferation assays. Ani-
mals were housed indoors and were fed monkey chow (Purina 
Mills, Richmond, VA) twice daily, with ad libitum access to po-
table water. Macaques received fruit and vegetable supplements 
2 times per week. Trained personnel performed daily morning 
health checks to evaluate attitude, hydration, appetite, stool, men-
ses, trauma, breathing, weight, hair coat, motor function, and any 
other abnormal or unusual signs. Any remarkable observations 
were noted in the animal’s health record for appropriate diag-
nostic or therapeutic follow-up. Macaques were maintained in a 
fully AAALAC-accredited facility in accordance with the Animal 
Welfare Act3 and the Guide for the Care and Use of Laboratory Ani-
mals.24 All procedures involving animals used in this study were 
approved by the University of California–Davis IACUC.

Collection and culture of PBMC. PBMC were separated by den-
sity gradient centrifugation (Ficoll Hypaque, ICN Biomedicals 
INC, Aurora, OH) and resuspended at a concentration of 3× 106 
cells per mL in RPMI 1640 medium (Mediatech, Herndon, VA) 
supplemented with 20% FBS (Gemini Bio-Products, West Sac-
ramento, CA), 1 mM L-glutamine, and gentamicin (Mediatech, 
Herndon, VA). The cell suspensions were incubated in a humidi-
fied chamber at 37 °C with 5% CO2. At specified time points (24, 
48, 72, and 96 h), the cell suspensions were pelleted by centrifuga-
tion (1500 × g) and the supernatants removed and stored at −70 
°C until assayed.

Cytokine assays. Levels of IFNγ, TNFα, IL2, and IL10 in culture 
supernatants were measured by using commercially available en-
zyme immunoassays for Old World monkeys (U-Cytech, Utrecht, 
The Netherlands) according to the manufacturers’ instructions. 
Cytokine standards ranging from 5 to 200 pg/mL were tested 
with each assay to construct a standard curve for quantitation. 
These assays and reagents have been validated and optimized for 
use in rhesus macaques. Briefly, cytokine in supernatant was cap-
tured in the antibody-coated wells of microtiter plates. Captured 
cytokine was bound to a biotinylated detector antibody followed 
by an enzyme-labeled streptavidin polymer. A chromogenic sub-
strate then was introduced to produce a colored product, which 
was measured spectrophotometrically.

Proliferation assay. PBMC cultures from a subset of STLV1-
infected macaques (n = 5) and uninfected matched controls (n = 
5) were analyzed for evidence of spontaneous proliferation by 
using flow cytometric analysis of the carboxyfluorescein succin-
imidyl ester dye dilution method.33 Briefly, PBMC were isolated 
by density gradient centrifugation, washed, and suspended in 

STLV1 and HTLV1 are highly cell-associated viruses, with a 
predominant cellular tropism for CD4+ and CD8+ T-lympho-
cytes.15,34,45,46 Both viruses establish persistent, lifelong infec-
tions,13,15,34 and replication in vivo involves the clonal expansion 
of infected T cells.15,23,34 STLV1 and HTLV1 both induce tumor 
formation in a small percentage of infected subjects, usually after 
a long period of infection; the respective tumors in humans and 
nonhuman primates are indistinguishable.52

Although the association of HTLV and STLV infections with 
overt clinical disease is relatively rare, there are some reports of 
HTLV1-associated alterations of T-cell surface marker expres-
sion, including increased expression of CCR4, CD4, CD25, and 
HLADR42,45,46,53 and downregulation of the CCR5 and CC che-
mokines.4 Other HTLV studies, however, have reported normal 
function of lymphocytes obtained from HTLV-seropositive pa-
tients.40 Elevated total leukocyte and absolute lymphocyte counts 
have been obtained in STLV1-seropositive African green mon-
keys when compared with seronegative controls.37 We previously 
reported the absence of significant differences in hematologic 
parameters, T-cell subsets, and cell-surface marker expression be-
tween clinically healthy STLV1-infected rhesus macaques and un-
infected age- and sex-matched controls.7 Similarly, the absence of 
significant differences in T-cell subsets has been reported between 
clinically healthy STLV1-infected and uninfected mandrills (Man-
drillus spp.).45 Previous studies in humans infected with HTLV 
have noted altered levels of IFNγ, TNFα, IL1a, IL2, IL5, IL6, and 
IL10.1,8,27,36,42,53 A role for increased levels of inflammatory cyto-
kines, importantly IFNγ, in both the pathology and progression 
from healthy carriers to HTLV1-associated myelopathy–tropical 
spastic paraparesis has been proposed.16,19,43 Increased serum lev-
els of IL5 and IL10 are associated with HTLV disease progression 
and are considered indicators of unfavorable prognosis in pa-
tients with HTLV-related adult T-cell leukemia–lymphoma, a pe-
ripheral T-cell neoplasm that leads to severe immunocompromise 
and poor prognosis in most patients.23 Several STLV-transformed 
cell lines have been found to constitutively release TNFα, granu-
locyte–macrophage colony-stimulating factor, fibroblast growth 
factor β, and IL6.29 No significant differences in serum cytokine 
levels were found when mandrills with naturally acquired STLV 
infection were compared with uninfected control animals, with 
the exception of a single STLV-positive mandrill that had signifi-
cantly elevated levels of IL2, IL6, IL10, IFNγ, and TNFα.46

Spontaneous proliferation of cultured lymphocytes in the ab-
sence of stimulation is well documented in humans infected with 
HTLV1, with as many as 50% of all HTLV-infected patients exhib-
iting this phenomenon.25,40,46 Reports of spontaneous proliferation 
of cultured lymphocytes from STLV-infected nonhuman primates 
are lacking.

The purposes of this study were to investigate differences in 
cytokine profiles, specifically constitutive cytokine release by un-
stimulated peripheral blood mononuclear cells (PBMC) in vitro 
between healthy STLV1-infected rhesus macaques and uninfected 
controls and to determine whether PBMC obtained from healthy 
STLV carriers undergo spontaneous proliferation in the absence 
of stimulation.

Materials and Methods
Study population and specimen procurement. As in our pre-

vious study of phenotypic T-cell subset markers,7 25 STLV1-
seropositive rhesus macaques (Macaca mulatta; male: n = 4; age, 
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increased levels of IFNγ. Similarly, cells from uninfected controls 
showed no spontaneous proliferation during the 96-h observa-
tion period. Increased proliferative responses to stimulation with 
concanavalin A occurred in a time-dependent (24 to 96 h) fashion 
in PBMC from both infected and uninfected macaques. In addi-
tion, the constitutive release of IFNγ from cells of STLV-infected 
subjects was exacerbated when the same cells were exposed to 
a reportedly inert dye used in the proliferation assay. No such 
potentiation of IFNγ release was observed in cells from the unin-
fected controls.

Discussion
The purpose of this study was to determine the effects of STLV 

infection on the immune system of clinically healthy rhesus 
macaques. Results clearly demonstrate differences in cytokine 
profiles of clinically healthy STLV1-infected rhesus macaques 
compared with uninfected controls. In absence of stimulation, 
PBMC from asymptomatic STLV-infected rhesus macaques con-
stitutively released significantly higher levels of IFNγ in vitro than 
did PBMC from STLV1- negative rhesus macaques matched for 
age and sex. In addition, our data demonstrate that PBMC from 
a subset of the STLV1-positive macaques produced higher levels 
of IL2 than did controls. Spontaneous proliferation of PBMC ob-
tained from healthy STLV carriers or their matched controls did 
not occur in the absence of stimulation.

These findings are consistent with the results of previous hu-
man studies demonstrating increased levels of IFNγ and IL2 in 
the supernatants of lymphocyte cultures from asymptomatic 
HTLV1 carriers.1,8,19,43,44,49 However, we did not observe abnor-
mally elevated levels of TNFα or IL10 in our macaques, as has 
been reported in several published studies of HTLV1-infected 
humans.8,16,19,36,43,44 Increased production of IFNγ and other cytok-
ines has been reported in both asymptomatic HTLV1-infected 
humans and in those with HTLV-related myelopathy–tropical 
spastic paraparesis.8,15,16,23,43,54 Some of these reports also suggest 
that changes in cytokine profiles may be useful for monitoring the 
development and progression of disease.15,16,36,43 In HTLV-infected 
humans, high levels of IFNγ may play an important role in the de-
velopment of parasitic9 or opportunistic44 infections. Other reports 
suggest that altered cytokine levels produced by HTLV1-positive 
cells in humans are involved in inflammatory diseases such as 
uveitis41 and osteoarthritis.55 Although the naturally infected 
STLV-positive macaques used in the present study constitutively 
released significantly higher levels of IFNγ than did controls, all 
of the animals appeared clinically healthy without evidence of 
secondary infection or other illness reported in their daily health 
records. Because we were unable to determine the duration of 
infection for these naturally infected animals, no data were avail-
able to establish a correlation between duration (and progression) 
of infection and cytokine release.

Upregulation of the HTLV tax gene induces substantial increase 
of expression of the IL2 receptor and secretion of IL2 in HTLV1-
infected humans, contributing to the pathogenesis of HTLV1-
associated diseases.19,39,49 We hypothesized a similar increased IL2 
expression in STLV-infected rhesus macaques. However, we did 
not observe significant differences in the IL2 levels of the major-
ity (12 of 17) of infected and uninfected animal pairs (IL2 con-
centration, 12 pg/mL or less in both groups). In this regard, the 
asymptomatic status of these animals may (directly or indirectly) be  
related to the lack of significant differences in IL2 levels. Therefore, 

RPMI 1640 medium as described previously. Cells were counted, 
and a subset of the cell population was pelleted and resuspended 
in prewarmed (37 °C) 1× PBS (Gibco, Carlsbad, CA) containing 
carboxyfluorescein succinimidyl ester dye (Molecular Probes, Eu-
gene, OR) at a final concentration of 3 μM. After 15 min at 37 °C, 
dye uptake was stopped by addition of ice-cold (0 °C) RPMI 1640 
followed by a 5-min incubation on ice. Cells were washed 2 more 
times in RPMI 1640 containing 10% FBS to ensure that dye bound 
to proteins in the supernatant was completely removed, prevent-
ing any subsequent uptake into bystander cells. Dye-labeled and 
unlabeled (control) cells were plated into 96-well plates for ex-
periments and analyses. Mitogen stimulation of PBMC was per-
formed by using concanavalin A (Sigma-Aldrich, St Louis, MO) at 
a final concentration of 10 µg/mL. Cell viability, when applicable, 
was assessed by the trypan blue exclusion test47 and flow cyto-
metric analysis using forward- and side-scatter characteristics.

Statistical analyses. Data analysis was performed by using JMP 
software (version 10.0.0, SAS, Cary, NC). Normality of the data 
was assessed by using the Shapiro–Wilk W test. In addition, log- 
and power transformation and outlier exclusion treatments were 
applied to the data. Data from each pair (STLV-infected and unin-
fected) of macaques was treated as a matched pair and analyzed 
using the Wilcoxon matched-pairs signed rank test for nonpara-
metric distributions. By using Gaussian approximation, the medi-
ans of the 2 groups were compared for significance. A P value of 
0.05 or less was considered to indicate statistical significance.

Results
The sex, age, and IFNγ and IL2 levels of our STLV1-infected 

and uninfected rhesus macaques are shown in Table 1. In pre-
liminary studies, cytokine levels on PBMC from pairs of STLV1-
infected and uninfected animals were determined at 24, 48, and 
72 h (data not shown). In these pilot studies, the highest levels of 
IFNγ were seen at 72 h and of IL2 at 48 h; levels of IL10 and TNFα 
were below the limits of detection (< 5 pg/mL) at all time points 
analyzed and in both infected and uninfected macaques. Statisti-
cal analysis of the data (including log- and power-transformation 
and outlier exclusion treatments) by using the Shapiro–Wilk W 
test for goodness of fit demonstrated that the IFNγ and IL2 data 
were not normally distributed. Therefore, we used the Wilcox-
on matched-pairs signed rank test for determining significance. 
The concentration (mean ± SEM) of IFNγ at 72 h from PBMC of 
STLV-infected monkeys (Figure 1) was 123.96 ± 46.16 pg/mL 
compared with 7.48 ± 1.72 pg/mL for uninfected controls. The 
concentration of IL2 at 48 h in supernatants of STLV1-infected 
PBMC (Figure 2) was 14.35 ± 3.32 pg/mL compared with 7.18 ± 
0.56 pg/mL for uninfected controls. As shown in the insets, the 
median IFNγ level for STLV-infected monkeys was 70 pg/mL 
compared with 5 pg/mL for uninfected controls (P < 0.0001); and 
the median IL2 level for STLV-infected monkeys was 8 pg/mL 
and 6 pg/mL for uninfected controls (P = 0.0929). In the majority 
(12 of 17) of animal pairs, the level of IL2 release was low (≤ 12 
pg/mL for both groups). However, in the other 5 pairs, cytokine 
concentrations were elevated in the infected as compared with 
the uninfected monkey.

Figure 3 compares the spontaneous and mitogen-induced pro-
liferative responses of PBMC from STLV1-infected and uninfected 
macaques. During a time course of 96 h, no evidence of spon-
taneous proliferation was seen in PBMC from STLV1-infected 
macaques, which constitutively released significantly (P < 0.0001) 
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macaques could provide a model for emerging studies of im-
mune senescence, the phenotypic and functional changes associ-
ated with the aging immune system. Recent publications have 
demonstrated that chronic immune stimulation from persistent 
pathogens and the progressive inflammation associated with ag-
ing have deleterious effects such as reduced naïve T cell output, 
altered innate and adaptive effector functions, declining respon-
siveness to vaccines, increased susceptibility to common patho-
gens, and reactivation of latent pathogens.6,20

The focus of our study was to evaluate changes in the cytokine 
release profile of lymphocytes from rhesus macaques naturally 
infected with STLV1. A wide range of pathogenic and nonpatho-
genic effects have been observed in various primates infected 
with different strains of STLV1 typically found in their own or 
another species.52 For example, T-cell leukemia and lymphoma 
have been reported in STLV1-infected African green monkeys.42,50 
Similarly, cross-species transmission of an STLV1 of rhesus origin 
resulted in a dramatic increase in the incidence of T-cell leukemia–
lymphoma in baboons, a rate much higher than that observed in 
baboons naturally infected with baboon strains of STLV.51 In ad-
dition, transiently increased serum concentrations of IFNγ have 
occurred in pig-tailed macaques (Macaca nemestrina) during acute 
infection with the human ACH isolate of HTLV1.35 Each of these 
virus–host interactions provides valuable insights for under-
standing the effects of STLV infection on the nonhuman primate 
immune system, which potentially can serve as a useful model for 
the study of various aspects of HTLV1 infection of humans.

the increased production of IL2 in the remaining 5 pairs of ma-
caque may be an indication of progressive infection and subse-
quent development of clinical signs. Recent studies in humans 
infected with HTLV1 have identified differential cytokine release 
profiles in T-cell subsets at various time points during the course 
of infection.19,48,53 Monitoring immune profile changes over time 
could lead to the discovery of useful signatures associated with 
disease development and progression. Similar studies investigat-
ing the role of various T-cell subsets over time in STLV-infected 
animals are needed.

In humans, a common response to HTLV1 infection is the de-
velopment of spontaneous T-cell proliferation.39,49 Both HTLV and 
STLV can cause and maintain in vitro transformation of suscepti-
ble T cells by virus-induced autostimulation of cell proliferation.52 
Such transformed cell lines have been shown to constitutively 
release various cytokines.29 In the current study, we did not find 
evidence of spontaneous proliferation of STLV1-infected PBMC in 
the absence of stimulation. Lack of proliferation without stimula-
tion is in agreement with published findings30,35,46 and supports 
the notion that lymphoproliferative disease is rare and unusual in 
STLV-infected macaques. However, several groups have reported 
the occurrence of lymphoproliferative disorders in humans only 
after prolonged periods of infection.14,30,32 In this regard, perhaps 
the cohort of STLV-infected macaques we used were at a stage 
of infection prior to cell transformation. Long-term, longitudi-
nal studies are necessary to address these questions. In addition, 
such studies of chronic asymptomatic STLV infection in aging 

Table 1. Sex, age, and IL2 and IFNγ levels of paired STLV1-infected and -uninfected rhesus macaques

STLV-infected STLV-uninfected

Macaque Sex Age (mo) IL2 (pg/mL) IFNγ (pg/mL) Macaque Sex Age (mo) IL2 (pg/mL) IFNγ (pg/mL)

17006 F 349 not tested 43 7707 F 342 not tested <5
22688 F 281 not tested 62 18485 F 276 not tested <5
32223 F 257 <5 174 32229 F 244 <5 <5
32218 F 243 6 140 32226 F 243 <5 <5
24450 M 241 7 <5 21876 M 232 9 <5
24453 M 231 not tested 133 21779 M 222 not tested <5
32225 F 230 not tested 158 21020 F 229 not tested <5
20994 F 230 6 155 20976 F 230 11 14
21225 F 227 8 36 21100 F 228 8 <5
32217 F 214 6 32 22159 F 227 10 <5
32018 F 175 20 18 24375 F 183 6 <5
32023 F 174 9 130 24681 F 173 5 <5
32019 F 173 6 214 24722 F 173 10 47
32020 F 173 20 <5 24676 F 173 6 <5
24640 M 163 not tested 108 24199 M 174 not tested <5
32021 F 162 55 1187 25568 F 160 <5 <5
32033 F 139 9 119 26618 F 138 8 <5
33596 F 137 32 162 25424 F 150 5 <5
32028 F 137 8 11 26679 F 137 8 <5
25928 F 134 not tested 17 25948 F 134 not tested 14
31923 F 121 32 92 26327 F 131 5 <5
28875 M 90 6 13 28717 M 91 11 <5
32032 F 83 not tested 70 28772 F 85 not tested <5
32037 F 80 9 10 28764 F 77 5 <5
31932 F 73 not tested <5 28982 F 84 not tested 7
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of HIV.1 Unnoticed infections with STLV could have a similar 
effect on experimental protocols that include the use of infectious 
pathogens such as SIV.

In summary, we have shown that natural STLV infection per-
turbs normal immune system homeostasis in infected but clini-
cally healthy rhesus macaques. Significantly elevated levels of 
constitutively released IFNγ from PBMC from STLV-infected 
macaques were present, but spontaneous proliferation of un-
stimulated PBMC was absent. Elevated IL2 levels in the STLV-
infected members were demonstrated in a subset of 5 pairs of 
macaques, but the difference did not reach statistical signifi-
cance for the entire study population. No differences in TNFα 
or IL10 levels were observed. If a similar nonproliferative status 
can be demonstrated during disease progression, it could be an 
important difference between macaques and humans. These 
potential differences (and similarities) in the immune responses 
of macaques to STLV infection are relevant in regard to the char-
acterization and use of nonhuman primates as a suitable model 
of human HTLV infection. With the increasing availability of 
nonhuman primate-specific immunophenotyping, cytokine 
and chemokine reagents, and multiplexed techniques, it will be 
possible to further characterize the cytokines and chemokines 
released by specific cell subsets, leading to a detailed under-
standing of how STLV affects various components of the rhesus 
macaque immune system.
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The altered constitutive release of IFNγ and IL2 in STLV1-in-
fected rhesus macaques suggests possibly deleterious effects of 
STLV on the immune system of asymptomatic STLV-infected ani-
mals. Therefore, interaction between STLV and the immune sys-
tem and potential changes on immunologic profiles of clinically 
healthy animals carrying STLV represent potential confounding 
variables in research protocols that use rhesus macaques of un-
determined STLV infection status. A recent publication showed 
that humans coinfected with HTLV and HIV presented higher 
levels of Th1 cytokines than did patients infected with either virus 
alone, suggesting that HTLV1 infection exacerbates the effects 

Figure 1. Constitutive IFNγ release (mean ± SE) at 72 h in PBMC from 25 
pairs of clinically healthy STLV antibody-positive and -negative rhesus 
macaques matched for age (± 1 y) and sex. The inset (Tukey boxplot) 
demonstrates the median and 25th and 75th percentiles of the data. Any 
individual values greater than the sum of the 75th percentile and the 
interquartile range (difference between 25th and 75th percentiles) were 
plotted as outliers (dots). The median values of the 2 groups were sig-
nificantly (P < 0.0001) different.

Figure 3. Time-dependent proliferative responses in PBMC from 5 pairs 
of rhesus macaques. Proliferation in mitogen-stimulated and unstimu-
lated cells from (A) STLV-infected macaques and (B) uninfected (STLV-
negative) age- and sex-matched controls. Results are expressed as mean 
± SEM.

Figure 2. Constitutive IL2 release (mean ± SE) at 48 h in PBMC from 17 
pairs of clinically healthy STLV antibody-positive and -negative rhesus 
macaques matched for age (± 1 y) and sex. The inset (Tukey boxplot) 
demonstrates the median and 25th and 75th percentiles of the data. Any 
individual values greater than the sum of the 75th percentile and the 
interquartile range (difference between 25th and 75th percentiles) were 
plotted as outliers (dots). The median values of the 2 groups were not 
significantly different (P = 0.0929).
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