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Sleep Disorders
Problems with sleep affect a large part of the general popula-

tion, with more than half of the people in the United States report-
ing difficulties with sleep or excessive sleepiness at some time 
during their lives and with about 40 million affected on a chronic 
basis.113,119 During the past 30 y, knowledge about sleep physiol-
ogy and the health consequences of sleep loss and sleep disor-
ders has grown substantially. This information—together with 
growing awareness of the causal or contributory effect of sleep 
loss and sleepiness on catastrophic accidents, motor vehicular 
accidents, and performance—has heightened awareness of the 
effects of insufficient sleep on health, safety, mood, productivity, 
and quality of life.10,56 However, societal and individual efforts to 
limit or manage sleep loss can be offset by the personal or societal 
needs or desires to extend waking hours and limit sleep time. 
Compounding this problem, more than 80 specific sleep disor-
ders have been identified by the American Academy of Sleep 
Medicine,5 and medically defined sleep disorders are prevalent 
in society. However, for a variety of reasons, many sleep disorders 
go unrecognized, undiagnosed, or untreated (for examples, see 
references 134 and 192). Identifying and managing the adverse 
consequences of sleep loss is further complicated in that person-
al, subjective estimates of sleep amount and quality, the severity 
of sleepiness, and the likelihood of falling asleep often correlate 

poorly with validated objective measures of sleep, sleepiness, 
alertness, and performance (for examples, see references 7, 10, 
146, 213, 214, 223, and 232).

Sleep is a complex physiologic process that is influenced by 
many internal and external factors, such that problems with sleep 
are often related to specific personal circumstances, and com-
plaints about inadequate sleep are rooted (at least to some extent) 
in the subjective assessment of the affected person. These subjec-
tive and circumstantial aspects of sleep complicate the study of 
sleep disorders in any model other than humans. However, ad-
vances in managing the distress and debilitation associated with 
sleep disorders undoubtedly will require the use of animals for 
delineation of the underlying physiology of sleep, identification 
and validation of the causes and mechanisms of sleep disorders, 
and the development and preliminary testing of new therapeutic 
approaches. Exemplifying this relationship, 2 landmark indepen-
dent studies that used either genetically altered mice or dogs with 
spontaneous narcolepsy discovered that disruptions in orexiner-
gic neuronal systems represent a previously unknown underlying 
mechanism for narcolepsy and thereby suggested new therapeu-
tic strategies.32,121 The current overview considers animal models 
that have been used to study 4 of the most common human sleep 
disorders: insomnia, narcolepsy, restless legs syndrome, and sleep 
apnea (Figure 1).

General Considerations in Studying Sleep  
in Animals

In most mammals and birds, waking and various stages of 
sleep can be defined based on electroencephalography (Figure 2; 
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encephalography (or both) in laboratory and field studies.27,231 
However, the daily duration, cyclical organization, diurnal tim-
ing, and other features of sleep vary extensively among animal 
species.2,27,45,231 Indeed, even inbred strains of laboratory mice 
show variation in these properties of sleep.80,211 Furthermore, com-
monly used rodents generally are preponderantly awake dur-
ing the dark phase and asleep during the light phase. Species 
with a higher basal metabolic rate on a body-weight basis ap-
pear to spend a relatively larger total percentage of time in slow-
wave sleep (SWS), suggesting an energy conservation role for 
this sleep state.115,230 In comparison, other species spend relatively 
less time in REMS, suggesting a diminished neurophysiologic 
role for REMS in those animals.231 However, such species-related 
comparative assessments of sleep and its features may generate 
different relationships and conclusions depending on how the 
analysis is conducted and interpreted.117,182,183,197,198 For example, 
when controlled for phylogeny, an assessment based on 4 com-
mon sleep indices (body mass, brain mass, basal metabolic rate, 
and gestation period) and an ecological variable (a measure of 
predation risk based on vulnerability associated with the sleep 
site) found interspecies support for a neurophysiologic role for 
REMS, but no support for an energy conservation function for 
SWS,116,117 in contrast to previous analyses that did not consider 
phylogeny.230,231

Effective use of animals to study normal sleep and sleep 
disorders must consider known similarities and differences 
between human and animal sleep patterns (Figure 3). For ex-
ample, in adult humans and in nonhuman primates, the circa-
dian distribution of sleep tends to be consolidated and normally 
monophasic (perhaps diphasic with consideration of napping 
and segmented sleep), whereas it is polyphasic and relatively 
fragmented in rats, mice, and cats. Therefore, within a night’s  
sleep, humans pass through 4 to 6 cycles of nonrapid eye-mov-
ent sleep (NREMS; often referred to as SWS in animals) and  

reviewed in reference 210). Electroencephalography provides 
an objective and functional marker of sleep, can be measured 
in freely moving or naturally sleeping animals under controlled 
laboratory conditions or in a naturalistic environment, and sup-
ports studies of the pharmacologic and physiologic manipulation 
of sleep.159 Electroencephalography is often used to assess sleep 
in combination with measurement of body and brain tempera-
ture, other physiologic systems (for example, respiration), brain 
and blood chemistry, and brain functioning.48 However, specific 
electroencephalography-based features of sleep vary across spe-
cies; for example, some species show single-hemisphere sleep, 
and some monotremes appear to lack features that characterize 
rapid-eye-movement sleep (REMS) in placental and marsupial 
mammals.2,116,117 In contrast to birds and mammals, reptiles and 
amphibians have higher amplitude cortical activity during wak-
ing states than they do in quiescent states, and they do not ap-
pear to have REMS (reviewed in references 2 and 181). However, 
although electroencephalography-defined sleep architecture can 
vary among species, many features, including key homeostatic, 
circadian, and neurochemical modulations of sleep, are similar 
across species.159,217

In addition to an electroencephalography-based definition, 
sleep can be defined behaviorally as a regulated state of reduced 
movement and sensory responsiveness (that is, behavioral qui-
escence and an elevated arousal threshold that respond to ho-
meostatic regulation).2,231 Behaviorally defined states that appear 
analogous to electroencephalography-defined sleep have been 
identified in both mammalian and nonmammalian organisms, 
the latter including fish, flies, nematodes, and birds.41,196

The daily amount of sleep and its placement within the 24-h 
day are fundamental characteristics of sleep in animals and have 
been evaluated in over 150 animal species, including inverte-
brates, fish, amphibians, reptiles, birds, and 14 orders of mammals 
in over 200 studies using behavioral methodology or electro-

Figure 1. Common sleep disorders.
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(primary or secondary), type (psychophysiologic, paradoxical, 
inadequate sleep hygiene, comorbid, and idiopathic), and tim-
ing during the night (initial or onset, middle, late, or mixed).162 
Several theoretical frameworks have been developed to explain 
the basis for insomnia (reviewed in reference 162), and available 
animals models of insomnia generally derive from the demon-
strated efficacy of known approaches to insomnia management in 
those models.184 The growing body of information on the physiol-
ogy of sleep supports a reasonably circumscribed list of general 
pathophysiologic mechanisms of primary insomnia that encom-
pass 4 broad candidate areas: 1) disruption of sleep homeostatic 
regulation; 2) disruption of the circadian clock; 3) disruption of 
intrinsic systems responsible for the expression of sleep; and 4) 
enhancement of extrinsic systems that can alter normal sleep–
wake regulation.184

A model that incorporates several of these theoretical features 
involves exposure of rats to a stressful environment; this experi-
ence is followed several hours later by sleep disturbances simi-
lar to those of people with stress-induced insomnia (prolonged 
sleep latency, reduced sleep duration, frequent arousals and 
fragmentation of sleep, high-frequency electroencephalographic 
activity during NREMS).28 Careful and detailed examination of 
behavior, immunohistochemistry, and specific brain lesions in-
dicates that rats exposed to this situation develop simultaneous 
activation of arousal and sleep-promoting regions in the brain.28 
In particular, specific limbic regions appear to activate brainstem 
arousal systems and subsequently the cerebral cortex, generating 
high-frequency activity in the electroencephalogram.28 Similarly, 
insomnia in people can occur in association with inappropriate 
arousal from sleep, increases in the high-frequency component 
in the electroencephalogram, abnormal hormone secretion, and 
autonomic and metabolic activation in both brain and the pe-
riphery.19

Rodent genetic models purported to represent insomnia have 
been proposed on the basis of strain-related differences in the 
24-h amount and diurnal distribution of sleep.14,44,80,180 For exam-
ple, as compared with other mouse strains, DBA/2J mice spend 
more time awake during a 24-h period, have relatively low elec-
troencephalographic δ power (theoretically related to low sleep 

REMS (also referred to as paradoxical sleep, due to the associated 
cortical activation), whereas in rats, mice, and cats, NREMS–
REMS cycles are much shorter and occur periodically throughout 
the 24-h day. Furthermore, environmental factors, including tem-
perature and photoperiod, can substantially alter these param-
eters.27 For example, a recent study reported that mice living in a 
natural environment are not explicitly nocturnal, exhibit feeding 
activity that is predominantly and sometimes exclusively diurnal, 
and show a negligible modulatory influence of specific genes on 
activity timing as compared with seasonal influences.43

The restorative properties of sleep depend on its duration, qual-
ity, and continuity. For example, sleep fragmentation, as occurs in 
persons with sleep apnea, disrupts normal sleep architecture, 
reduces the amount of time spent in the deeper stages of sleep, 
and reduces the restorative benefit of sleep. Although patients 
with sleep apnea may not complain of insomnia, the impaired 
continuity of their sleep causes a variety of problems, including 
fatigue and daytime sleepiness. In comparison, sleep in rodents 
is highly fragmented even under normal conditions, with normal 
individual sleep bouts of less than 5 min in mice.

Despite many differences in sleep between animals and hu-
mans, the many commonalties have made animal studies fun-
damental to past and future research on sleep.48,231 Translational 
animal models have supported the investigation of sleep and 
sleep disorders in ways that are not possible in human volun-
teers, thereby expanding our understanding of sleep neurophysi-
ology and regulation and facilitating the development of new 
treatments for sleep disorders.48,159

Insomnia
Insomnia is the most commonly reported sleep-associated 

problem, affecting as much as 50% of the adult population peri-
odically and 10% to 15% chronically.141 Insomnia is characterized 
by complaints that include difficulty in falling asleep, frequent 
awakening from sleep, waking too early and having trouble fall-
ing back to sleep, and nonrestorative sleep. These problems oc-
cur despite adequate opportunity to sleep and result in daytime 
sleepiness or fatigue and performance impairment. Insomnia can 
be characterized in terms of duration (acute or chronic), cause 

Figure 2. Behavioral and electrophysiologic features of vigilance states. PS, paradoxical sleep

Figure 3. General characteristics of normal sleep in humans and 4 commonly used model species.27,51,108,132,212,231
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example, immobilization, an altered environment, social stress, 
fear and fear conditioning, sensory stimulation; reviewed in ref-
erence 180). Finally, consideration of the temporal organization 
of sleep and waking is crucial to developing models for testing 
sleep-promoting drugs. For example, because many commonly 
studied rodent species are relatively active during the dark phase 
and somnolent during the light phase, administration of sleep-
inducing agents during the light phase may mask or minimize 
sleep-inducing properties, whereas administration during the 
dark phase would test a drug’s effects in animals that are active 
and showing little or no sleep pressure.

The question remains of whether currently available models ac-
tually represent insomnia, because one cannot determine whether 
the animals trying unsuccessfully to sleep or simply are not sleep-
ing. Furthermore, people with insomnia often report sleep prob-
lems that are not confirmed on polysomnography, indicating a 
substantial subjective perceptual component in many cases of this 
disorder.90,223,232 Nonetheless, data obtained from model systems 
clearly have extended our understanding of the brain mecha-
nisms that underlie sleep and wakefulness and the processes that 
contribute to the homeostatic and circadian regulation of sleep. 
This knowledge would be unavailable without the careful assess-
ment of sleep in animals.

Sleep Apnea
Sleep-disordered breathing refers to intermittent, somewhat cy-

clical reduction or cessation of airflow during sleep. This common 
condition affects at least 18 million Americans.50 In the specific 
disorder known as sleep apnea, airflow stops during sleep. The 
2 forms of sleep apnea are obstructive and central, which respec-
tively occur with or without obstruction of the upper airway; ob-
structive sleep apnea (OSA) is by far the most common type, often 
occurring in association with snoring. In the presence of a collaps-
ible airway, sleep-induced loss of tonic input to the upper airway 
dilator muscle motor neurons allows the pharyngeal airway to 
collapse.50 The sleeping subject generally reacts to this airway ob-
struction by awakening; sleep then resumes, leading to repeated 
cycling of sleep, intermittent hypoxia, and arousal throughout 
the night.50 Numerous comorbid conditions, including diabetes 
and cardiovascular disease, are associated with sleep-disordered 
breathing and OSA. Predisposing factors are obesity, large necks 
in men, menopause in women, and physical abnormality of the 
upper airway. The health consequences of OSA include systemic 
and pulmonary hypertension, stroke, coronary artery disease, 
and cardiac arrhythmias.50 In addition, intermittent hypoxemia 
and sleep disruption can negatively affect insulin sensitivity and 
glucose regulation and may contribute to the development of 
metabolic syndrome independent of obesity.216 Neurocognitive 
effects of OSA include daytime sleepiness and impaired memory 
and concentration; persistent (perhaps permanent) cognitive im-
pairment and neural injury may develop in association with sleep 
apnea despite long-term therapy, particularly when sleep apnea 
develops in association with or as a consequence of concurrent 
comorbid conditions.50,120,216

Sleep-disordered breathing and OSA are not reported fre-
quently in animals but do appear spontaneously in some species 
and strains. A natural animal model of OSA is English bulldogs, 
which have been used to study upper airway anatomy and physi-
ology and the pharmacologic treatment of OSA. English bull-
dogs have an enlarged soft palate and narrow oropharynx and 

drive) both over the 24-h day and during the light (rest) phase, 
and show a relatively high number of brief awakenings and SWS 
episodes.63,80 These characteristics (a low amount of sleep that is 
shallow and fragmented) resemble those of some patients with 
insomnia,80 suggesting the possibility that DBA/2J mice may be a 
useful model of insomnia.

Various strains of Drosophila created by laboratory selection also 
vary in the amount, pattern or proportion of time spent in a be-
havioral state that appears analogous to electroencephalography-
defined sleep in mammals.195 So-called insomnia-like (ins-l) flies 
sleep less than do normal flies, appear to have difficulty initiating 
and maintaining sleep, and show evidence of daytime cognitive 
impairment.194 These flies also are hyperactive, are hyperrespon-
sive to environmental perturbations, and show other features 
that may be related to their sleep phenotype.194 Whole-genome 
profiling of ins-l flies has identified differential expression of at 
least 2 genes that are upregulated in human subjects after acute 
sleep deprivation.194 Ins-l flies may be useful for the identification 
of genes and molecules that contribute to sleep regulation, geneti-
cally driven sleep need, and insomnia.194

Administration of caffeine has been proposed as a simple and 
effective model of sleep-onset insomnia. The effects of caffeine 
on sleep in humans and animals include increased arousal, pro-
longed latency to sleep onset, reduced total sleep time and effi-
ciency, and reduced build-up of sleep pressure during waking.18,96,

109,160,169,184,227 Furthermore, sleep-promoting agents attenuate or re-
verse caffeine-induced sleep disruptions in rats and people.151,160

Some circadian clock genes influence sleep (reviewed in refer-
ence 86). For example, a point mutation in the human clock gene 
Per2 produces the rare advanced sleep-phase syndrome, whereas 
a functional polymorphism in Per3 is associated with the more 
frequent delayed sleep-phase syndrome.86 Furthermore, an asso-
ciation study revealed a higher recurrence of insomnia in patients 
homozygous for Clock polymorphisms.86,193 Selective breeding of 
mice was used to create an early-running (indicative of spontane-
ous early awakening) genetic variant.225 In these variant mice, the 
onset of the daily wheel-running bout precedes dark onset by sev-
eral hours, and pharmacologic treatment at appropriate circadian 
times normalizes diurnal patterns of running.225

Finally, some models using brain lesions also result in at least 
temporary reductions in sleep that may mimic some features of 
insomnia. For example, lesions of the ventrolateral preoptic nu-
cleus, which contains neurons that are active during sleep, cause 
significant reductions in both the amount and depth of NREMS; 
these effects persist for at least 3 wk after the lesion.125

An ideal animal model of insomnia would mimic the main 
characteristics of human insomnia: the animal would display re-
ductions in the amount or quality of sleep at times when sleep 
would normally be expected and would accrue sleep debt or 
display sleepiness or tiredness during the normal active phase. 
Therefore, modeling insomnia in animals requires the creation 
of a situation in which the subject does not initiate sleep at the 
appropriate circadian phase, despite being given sufficient op-
portunity to sleep, and subsequently develops a sleep debt, or 
a need for recuperative sleep. Few (if any) models convincingly 
achieve these conditions. For example, in typical experimental 
sleep deprivation, animals are actively prevented from engaging 
in sleep despite having the desire and ability to sleep. Rodent 
models of disrupted sleep generally involve perturbation of the 
animal or its situation, commonly via imposition of a stressor (for 
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pharyngeal mechanical and neuromuscular control.167 C57BL/6J 
mice can also be used to develop pharmacologic and genetic ap-
proaches to improving irregular breathing and apnea.226 New 
Zealand obese and New Zealand white mice and respiratory-
gated MRI of the pharynx have been used to determine the ef-
fect of obesity on pharyngeal airway size during inspiration and 
expiration.21,22 As compared with lean New Zealand white mice, 
New Zealand obese mice have a significantly smaller airway, 
greater parapharyngeal fat pad volumes, and a greater volume 
of other upper-airway soft tissue structures.22 Pharyngeal airway 
cross-sectional area is greater during inspiration than expiration 
in New Zealand obese mice, whereas the reverse occurs in New 
Zealand white mice, supporting the idea that pharyngeal airway 
patency in obese subjects depends on airway dilation during in-
spiration and may be vulnerable to sleep-associated loss of neu-
romuscular pharyngeal activation.21,22

Animals have been used to study the neurochemical regula-
tion of pharyngeal motor neuron activity and airway patency 
and, because oxyhemoglobin saturation patterns correlate with 
neural injury, have facilitated investigation of how OSA can 
cause neurobehavioral and cognitive impairment independent 
of comorbidities.50,120,216 Neurons and neuronal groups that are 
more metabolically active are typically the most vulnerable to 
hypoxic injury.120 Long-term exposure of adult mice to cycles of 
hypoxia and reoxygenation results in irreversible impairments 
that develop in association with vacuolization in the perikarya 
and dendrites and markedly impaired c-fos activation in both 
noradrenergic locus coeruleus and dopaminergic ventral periaq-
ueductal gray wake neurons, with a 40% loss of catecholaminer-
gic wake-related neurons after 6 mo of exposure.235 In contrast, 
cholinergic, histaminergic, orexinergic, and serotonergic wake-re-
lated neurons seem unperturbed.235 The use of animals to identify 
molecular pathways for oxidative, inflammatory, and organelle 
injury related to neural dysfunction provides an avenue for the 
development of interventions that may prevent or even reverse 
neural injury from sleep apnea.120,216

Current animal models of intermittent hypoxemia have sev-
eral drawbacks. In many cases, the models mimic severe hu-
man OSA and may be less applicable to most clinical OSA.49 In 
addition, animals exposed to intermittent hypoxemia develop 
hypocapnia, whereas human OSA is characterized by hypercap-
nia.49,103 Although CO2 supplementation in rats does not modify 
hypertensive effects of intermittent hypoxemia,78 CO2 levels 
may influence other effects of intermittent hypoxemia and OSA. 
Furthermore, human OSA typically is associated with obesity, 
which is not always considered in animal studies. In addition, 
OSA causes sleep fragmentation, which may have independent 
effects on metabolism. Models for studying OSA-associated 
sleep fragmentation have been developed in animals.13,25,88,165,218 
However, these models may not achieve reliable or reproducible 
arousals during the course of chronic exposure; for example, 
sleep changes induced by long-term exposure to intermittent 
hypoxemia in animals may be less durable than are effects on 
blood pressure.76,77,88,95,105,147,168,219 Thus, exposure of animals to 
intermittent hypoxemia produces repeated arousals and chang-
es in sleep architecture that are comparable to those in clinical 
OSA, yet the effects may not be persistent, limiting their use for 
studying long-term metabolic consequences of OSA.

display many of the clinical features of OSA, including snoring, 
sleep-disordered breathing, oxyhemoglobin desaturation during 
sleep, frequent arousal from sleep, and hypersomnolence with 
shortened sleep latencies.91,92 However, OSA in English bulldogs 
is not related to obesity, as it often is in humans. Obese Yucatan 
minipigs have been proposed as a model of obesity-related sleep 
apnea; obese pigs exhibit considerably more apnea and oxyhemo-
globin desaturation than do their lean counterparts.123 Although 
the upper airways of nonhuman primates have structural and 
functional similarities to those of humans, spontaneous OSA has 
not been reported in any nonhuman primate species to date to 
our knowledge. However, cynomolgus macaques that received 
intradermal liquid collagen injections in the uvula, tongue, and 
lateral pharyngeal walls developed hypopnea and reduced 
REMS.163 Sprague–Dawley and spontaneously hypertensive rats 
exhibit sleep-related central apnea that has been exploited experi-
mentally.29,30

Noninvasive models of intermittent hypoxemia expose ani-
mals to repetitive hypoxia and oxygenation, which occur in both 
obstructive and central apnea (reviewed in reference 49). Depend-
ing on the species, animals are either ventilated with a mask or 
placed in a ventilated cage or chamber; in either case, they breathe 
nitrogen-enriched air (to create hypoxia) alternating with oxygen 
or normal air.49 By creating intermittent hypoxemia, these models 
allow evaluation of oxygen desaturation, hypercapnia, sustained 
hypoxia, and sleep fragmentation.77,168,186 The models typically 
apply the stimulus of intermittent hypoxemia during the sleep-
dominant phase of the diurnal cycle and create moderate to se-
vere oxygen desaturation, thereby mimicking severe forms of 
human sleep apnea (reviewed in reference 49). In human patients, 
the severity of sleep apnea is assessed based on both desaturation 
of arterial oxygen and the frequency of respiratory events (apnea 
or hypopnea).4,49 Therefore, modeling different severities of sleep 
apnea requires reproduction of both the appropriate frequency 
of intermittent hypoxemia cycles and sufficient oxygen desatura-
tion to be comparable to those in human patients. An advantage 
of intermittent hypoxemia models is that they permit exposures 
that can be extended over months, allowing the investigation of 
chronic consequences that might occur in humans.187,188,235

OSA has been modeled in a variety of species by using surgical 
tracheostomy and subsequent intermittent occlusion of the endo-
tracheal tube.25,71,73,105,110,166,190,221 These models produce predictable, 
reliable, and modifiable obstructive apneas that are compatible 
with concurrent neural manipulation and hemodynamic mea-
surements. Rodents are often exposed to hypoxia for a fixed pe-
riod of time during the light (somnolent) phase, with normoxia 
during the dark (active) phase. Although many studies do not 
link exposure to intermittent hypoxemia with sleep or sleep on-
set, some studies monitor the animal’s sleep–wake state and gen-
erate airway obstruction in association with sleep and release this 
constraint during arousal.24,87,101 For example, one study produced 
obstructive apnea in conscious rats by using an inflatable balloon 
implanted in the trachea.191 When deflated, the tracheal implant 
did not notably impair normal breathing, yet apneic episodes of 
as long as 16 s in duration could be created during sleep.191

Mice have increasingly been used to study interactions be-
tween sleep and respiration. C57BL/6J mice show spontaneous 
apnea, postsigh apnea, and irregular breathing with apnea during 
reoxygenation after acute hypoxia.226 These mice have been used, 
for example, to assess the relationships among obesity, age, and 
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stage is characterized by REMS with hippocampal theta activity; 
and the third stage shows mixed-frequency and -amplitude elec-
troencephalographic activity prior to a transition to wakefulness 
or sleep. Sleep recordings have revealed similar total sleep time in 
normal and narcoleptic dogs.102 However, narcoleptic dogs spend 
more time in a drowsy state and, during the canine MSLT, have 
a shorter sleep latency and higher frequency of SOREMP than 
do normal dogs.149 Human narcoleptic patients develop altered 
ultradian rhythms of sleep, whereas dogs do not.26,149

The search for a culprit gene for canine narcolepsy ultimately 
identified the type II orexin receptor gene (OxR2); different muta-
tions of OxR2 were identified in familial canine narcolepsy in Do-
berman pinschers, Labrador retrievers and a dachshund family, 
all of which led to a nonfunctional receptor.121 Sporadic cases of 
canine narcolepsy did not have a similar mutation, but did have 
low levels of orexin in the CSF.97 In addition to the genetic muta-
tion, other factors may play a role in producing canine narcolepsy. 
For example, Doberman pinschers with the OxR2 mutation show 
evidence of increased microglial expression of MHC II at about 1 
mo of age, coinciding with neuronal degeneration in the amyg-
dala and basal forebrain.203 Treating these narcoleptic dogs with 
antiinflammatory and immune-suppressive agents beginning 
before 3 wk of age doubled the time to disease onset and reduced 
time spent in cataplexy by 90%.17

Mouse models. Mice that were genetically engineered to lack 
orexin were observed to have abrupt transient episodes of be-
havioral arrest during the dark (active) phase.32 During these 
episodes, mice developed electroencephalographic and electro-
myographic patterns similar to those present during REMS or 
NREMS with sleep spindles.32 These mice also had fragmented 
NREMS, greater amounts of REMS during the dark phase, de-
creased REMS latency, and multiple SOREMSP.32 Therefore, the 
mice show many similarities to human and canine narcolepsy. 
A consensus report has defined murine cataplexy as an abrupt 
episode of nuchal atonia lasting at least 10 s, with θ activity domi-
nating the electroencephalogram during the episode, and video 
recordings documenting immobility; at least 40 s of wakefulness 
must precede the episode.189 Mouse cataplexy can be triggered 
by social interaction, locomotor activity, anticipation of food, ul-
trasonic vocalizations, wheel running, and group housing.36,65,158

Like narcoleptic Dobermans, OxR2 knockout mice are only 
mildly symptomatic; their patterns of sleep and behavior cor-
respond to the excessive daytime sleepiness and cataplexy of 
human narcolepsy.224 OxR1 knockout mice have moderate sleep 
fragmentation without cataplexy, whereas mice that lack both 
OxR1 and OxR2 have a phenotype similar to that of orexin null 
mice.137,224 A caveat of studies using mice with constitutive gene 
deletions is that phenotypes may be confounded by develop-
mental compensation, and therefore administration of inhibitors 
of OxR has been used to model narcolepsy; however, neither an 
OxR1 selective nor a dual OxR antagonist produced cataplexy in 
rodents, although they did increase REMS.23 In addition to frag-
mentation of sleep and waking, mice with ablation of orexiner-
gic neurons or OxR develop reductions in locomotion, feeding, 
drinking, and energy expenditure.234

In human narcolepsy, the loss of dynorphin and NARP signal-
ing from orexin neurons likely contributes to the production of 
the disease.42 Therefore, the most accurate model may require 
loss of orexin neurons rather than loss of only the orexin gene. A 
cytotoxic transgene, the N-terminal truncated cDNA for human 

Narcolepsy
Narcolepsy is characterized by 4 cardinal symptoms: excessive 

daytime sleepiness, cataplexy, sleep paralysis, and hypnagogic 
hallucinations (reviewed in reference 1). Cataplexy is the most 
characteristic feature of narcolepsy and consists of sudden muscle 
atonia during wakefulness. Cataplexy is triggered by emotions 
and varies in presentation, ranging from complete postural col-
lapse to attacks that affect only facial muscles, neck, arms or legs. 
Episodes of cataplexy last from a few seconds to 10 min and are 
associated with a waking or a REMS-like electroencephalogram. 
Most narcoleptic patients also have disturbed sleep, including 
sleep fragmentation, prolonged NREMS–REMS cycles, periodic 
limb movements during sleep, and comorbidities such as OSA. 
The excessive daytime sleepiness of narcolepsy is associated with 
episodes of an irresistible urge to sleep (sleep attacks).

Narcolepsy is clinically categorized as occurring with cataplexy, 
without cataplexy, or secondary to another medical disorder. The 
diagnosis usually requires patient assessment with polysom-
nography both at night and during a multiple sleep latency test 
(MSLT).5 The MSLT involves 5 nap opportunities scheduled 2 h 
apart during the day time, beginning 1.5 to 3 h after awakening. 
Key diagnostic features of the MSLT are the latencies of sleep on-
set and REMS. If REMS occurs in less than 15 min, then the epoch 
is defined as a sleep-onset REMS period (SOREMSP). A MSLT 
consistent with narcolepsy reveals a mean sleep latency of less 
than 8 min and 2 or more SOREMSP after minimally sufficient 
sleep on the previous night.

The most likely cause for narcolepsy has been identified as the 
degeneration of hypothalamic neurons that contain the peptide 
orexin, which is also called hypocretin. The landmark discov-
ery of the role of orexin in narcolepsy was based on the study of 
narcoleptic dogs and observations of orexin-deficient mice.32,121 
Narcoleptic patients have low levels of orexin A in their CSF.20 
Two other peptides (dynorphin and neuronal-activity–related 
pentraxin [NARP]) colocalize with orexin in neurons and may 
contribute to narcolepsy.42 In addition, most narcoleptic patients 
with cataplexy are positive for a specific MHC class II allele, 
HLA-DQB1*0602.122

Canine models. In addition to humans, spontaneous narcolepsy 
has been described in dogs, cats, and horses.57,106,127,138,202 Affected 
dogs show attacks of cataplexy that may be partial or involve full 
collapse; electroencephalographic recordings show normal elec-
trical activity and sleep stages but also document SOREMSP.138 
Canine narcolepsy with cataplexy has now been identified in sev-
eral breeds, with Doberman pinschers and Labrador retrievers 
showing familial forms (autosomal recessive) and other breeds 
showing sporadic narcolepsy.31,70,79 Familial cases generally have 
early onset with mild symptoms, whereas sporadic cases have 
varied onset and more severe symptoms.33 Cataplexy in dogs is 
evaluated with a highly standardized food-elicited cataplexy test 
in which 12 pieces of canned dog food are placed on the ground 
in a semicircular pattern at 30-cm distances.179 A normal dog eats 
all of the food in approximately 10 s, whereas a narcoleptic dog 
exhibits episodes of partial or complete cataplexy before eating all 
the food. Another test involves play-elicited cataplexy, in which 2 
dogs are brought into a room and allowed to freely interact with 
each other and with toys.17

Three stages of cataplexy have been described in narcoleptic 
dogs.107 The first stage consists of muscle atonia, a waking-like 
electroencephalogram, and retained visual tracking; the second 
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system.228 Second, the severity of RLS symptoms is inversely 
correlated with iron levels in serum and CSF.139 CSF ferritin is 
decreased in patients with RLS, and imaging studies indicate re-
duced iron content in the striatum and red nucleus.139 In addition, 
autopsies of brains of humans with RLS have shown reduced 
ferritin and iron staining and increased transferrin staining but 
decreased numbers of transferrin receptors.38 Furthermore, serum 
ferritin levels correlate strongly and inversely with RLS symptom 
severity,59 although because not everyone with iron deficiency 
develops RLS, other factors must also be important. The site of 
pathology in RLS within the nervous system remains elusive; 
however the preponderance of lower extremity involvement and 
development of RLS after spinal cord injury suggests involvement 
of the spinal cord, the circadian pattern of variation of symptoms 
suggests an associated dysfunction in circadian control areas, and 
the unpleasant sensory component suggests malfunction of anti-
nociceptive mechanisms.9,207

Based on these features, several types of animal models have 
been evaluated with regard to RLS. One category involves animals 
with dopamine-related deficits in brain function. For example, the 
hypothesis that the diencephalic spinal tract (A11 dopamine cell 
cluster) is involved in the pathogenesis of RLS37,154,171 has been 
tested by using the neurotoxin 6-hydroxydopamine to induce 
bilateral depletion of diencephalic A11 dopaminergic nuclei in 
rats.154,155 Although some of the physical signs and response to 
treatment in rats were consistent with clinical RLS in humans,154,155 
the subjective aspects (for example, ‘unpleasant sensations’ or ‘an 
urge to move’) cannot be convincingly assessed in rats, and there-
fore the lesion may only partially mimic the clinical features of 
RLS. Dopamine systems may also be relevant to the circadian ac-
tivity abnormalities of RLS because the suprachiasmatic nucleus 
of the hypothalamus projects to the A11 dopaminergic nucleus.

Mice with iron deficiency show marked increases in wake time 
in the 4-h period prior to light onset, yet their sleep and wake time 
is normal during the 12-h light period.47 The period of increased 
wakefulness corresponds to the diurnal time point at which RLS 
symptoms maximally disrupt sleep onset and progression in hu-
mans, suggesting that iron-deficient mice may provide a poten-
tially useful animal model for RLS.47

Finally, models of dopamine deficiency and iron deficiency 
have been combined. For example, among mice maintained on 
iron-deficient diets prior to the induction of bilateral lesions of 
the A11 nucleus by using 6-hydroxydopamine, locomotor activity 
was greatest in the group with both iron deprivation and lesions, 
and this hyperactivity was ameliorated by appropriate pharma-
cologic treatment.128,170 In a genetic model, D3 receptor knockout 
mice display a phenotype consistent with the symptoms of RLS, 
iron-deficient D3 receptor knockout mice show greater acute 
and persistent pain responses than those in control mice, and re-
sponses are greater in mice with both deficiencies.55 Furthermore, 
iron-deficient mice show a period of increased locomotor activity 
before the light (rest) phase; this timing resembles the increased 
restlessness of RLS patients prior to sleep.55 Iron-deficient D3 re-
ceptor knockout mice develop this increased activity 3 to 4 h ear-
lier than do mice with only iron deficiency.55

In summary, several animal models of RLS have been proposed. 
The key features include iron deficiency and dopaminergic deficit 
either due to genetic or pharmacologic manipulation. The changes 
in locomotor activity, circadian rhythm, and sensory responses in 
these models seem to mimic some of the clinical features of RLS. 

ataxin 3, can be used to ablate orexin neurons.89 Mice with abla-
tion of orexin neurons exhibit behavioral arrest, sleep fragmenta-
tion, and SOREMSP, as well as obesity beginning at 12 to 15 wk 
of age.89 Genetic background, diet, and sex all appear to influence 
the phenotype of narcoleptic mice.81

Rat models. Injection of orexin B conjugated to the ribosomal 
toxin saponin into the rat hypothalamus leads to loss of over 90% 
of orexinergic neurons, with concurrent loss of other substances 
such as melanocyte concentrating hormone.82 Rats treated in this 
manner spend more time in NREMS and REMS during the dark 
phase but spend less time in REMS during the light phase, with 
multiple SOREMSP.82

Transgenic rats that express a human ataxin-3 fragment under 
control of the human prepro-orexin promoter (orexin–ataxin 3 
rats) develop almost complete loss of orexin neurons by 17 wk 
of age in association with sleep fragmentation, less wakefulness 
during dark phase, changes in REMS duration during both light 
and dark phases, a shortened REMS latency, multiple SOREMSP, 
and brief periods of atonia and postural collapse in association 
with electroencephalographic characteristics of wakefulness, re-
sembling cataplexy.16 Orexin levels in the CSF fall dramatically 
by 2 to 4 wk, with levels in regions of the cortex of less than 1% 
of levels in control rats.233 The orexin–ataxin 3 rats retain some 
orexin neurons in the lateral hypothalamus and can double their 
CSF orexin levels in response to sleep deprivation, but even these 
elevated levels are still much lower than are basal levels in control 
rats.16

Another method of reducing levels of orexin or orexin recep-
tors is through use of antisense RNA or RNA interference tech-
nology. In contrast to chemical destruction or gene deletion, the 
effects of interfering RNA are selective and reversible and have 
a fast onset. A study using microdialysis perfusion of oxR2 an-
tisense RNA into the pontine reticular formation of rats for 3 d 
produced more time in REMS and more episodes of cataplexy.208 
Targeting of prepro-orexin mRNA by injecting short interfering 
RNA into the perifonicial hypothalamus of rats resulted in sup-
pressed expression of preproorexin, increased REMS during the 
active phase and cataplexy-like behavior, with no effect on NREM 
sleep.35 Microinjection of small interfering RNA targeting the 
orexin type 1 receptor into the locus coeruleus of rats increased 
REMS during the dark phase.34

Restless Legs Syndrome
Restless legs syndrome (RLS) is a common disorder, with a re-

ported prevalence of 5% to 15% in the general population.228 RLS 
is more common in women than in men, and although it may 
develop at any age, it is more common in older adults.150 RLS ap-
pears to have a familial predisposition.62 The essential criteria for 
the diagnosis of RLS are 1) an urge to move the legs, accompanied 
or caused by unpleasant sensations in the legs; 2) onset or wors-
ening of the urge during rest or inactivity; 3) partial or total relief 
by movement; and 4) worsening of symptoms during the evening 
or night as compared with the day.3

The underlying pathophysiology of RLS has not yet been eluci-
dated completely. However, human studies have revealed 2 major 
impairments. First, functional brain imaging and autopsy studies 
have revealed abnormalities of the dopaminergic system.39,60 In 
addition, dramatic improvement occurs after administration of 
dopaminergic agonists and symptoms are worsened by dopamin-
ergic antagonists, supporting involvement of the dopaminergic 
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animals, disruption of the olfactory environment in the cage is 
likely to constitute a significant environmental perturbation that 
can disrupt stable patterns of activity and behavior.175 The social 
environment can affect sleep also, as illustrated in a recent study 
showing that pair-housed and individually housed mice show 
differences in their recuperative response to sleep deprivation.104 
Finally, the regulation of ambient light exposure is crucial, as dra-
matically illustrated in a recent report in which the inadvertent 
exposure of finches to an abnormal light cycle was associated 
with the development of clinical illness that resolved when the 
lighting was corrected.200 Therefore, environmental stability must 
be controlled carefully by both the husbandry and research staffs 
to ensure the collection of valid results with minimal numbers of 
animals. These issues apply to all research that uses animals but 
are particularly crucial for studies of sleep.

General animal health is important to studies of sleep. Infection, 
pain and stress, even when subclinical, can alter normal patterns 
or parameters of sleep and activity in animals and people.54,99,215 
Because unintended health problems can alter sleep and con-
found data interpretation, sleep researchers are generally alert for 
the development of unanticipated changes in the health of their 
animals and are motivated to correct such problems. Animals that 
are being used to study sleep and associated behaviors are gener-
ally carefully, and often remotely and continuously, monitored for 
many behavioral and physiologic parameters that reflect overall 
health. These markers of health and illness can include patterns 
of sleep, locomotor activity, temperature, and food intake. Indeed, 
behavioral changes such as reduced activity or food intake are 
perhaps the most common initial signs of health impairment in 
clinical veterinary medicine. Because objective measurement of 
these parameters often occurs continuously in animals on sleep 
studies, many studies of sleep require surgical implantation of 
electroencephalographic, electromyographic, and other recording 
electrodes, which are then monitored by using either tethering 
or telemetry (for examples, see references 12, 11, 15, 67, 98, 142, 
152, 153, 176, 204, and 205). Although appropriate attention to 
postsurgical care is important to obtaining valid data, many anal-
gesic and antiinflammatory drugs have well documented effects 
on sleep,52,126,157,220 and their use may confound the interpretation 
of data for some studies. Therefore, studies that require surgery 
must be designed to ensure that ample time is provided so that 
the effects of drugs used in association with surgery have dissi-
pated before data collection begins.

Some approaches to monitoring sleep rely on assessment of 
movement or posture (for examples, see references 53, 74, 133, 
156, and 201). Although these methods allow high-throughput 
processing of mice (for example, for drug evaluation or screen-
ing of mutant mice) and do not require surgery, they require 
validation prior to use in animals that may have inherent or treat-
ment-induced alterations in activity, posture, size, and anatomic 
characteristics. In addition, behavioral assessment does not pro-
vide information on alterations in the electroencephalogram and 
electromyogram that are crucial to the assessment of genetic and 
pathologic perturbations of sleep. Therefore, some methods of 
assessing sleep may not be suitable for particular research ques-
tions.

Many studies of sleep and sleep disorders use a period of ex-
perimental sleep deprivation as a test situation. In general, both 
people and animals engage in a period of excess sleep, known as a 
sleep rebound or recuperative sleep, after an enforced delay in the 

However, RLS is a subjective clinical diagnosis based on symp-
toms reported by patients. The urge to move, unpleasant sensa-
tions, and amelioration of these perceptions by movement are key 
features that pose a major challenge for additional investigation 
of this condition in animal models.

Other Animal Models for the Study of Sleep 
Physiology and Sleep Disorders

Increasing awareness of the importance of sleep to normal 
health and functioning, together with growing numbers of new 
research tools and genetically altered animals, has led to the iden-
tification of animals with sleep abnormalities that have not yet 
been linked to specific sleep disorders. However, such models 
may nonetheless be valuable in contributing to improved un-
derstanding of sleep physiology and pathophysiology and may 
eventually become associated with specific sleep disorders. For 
example, the study of ‘hippocampal ripples’ in rodents could lead 
to improved understanding of the mechanisms that link sleep 
to learning and memory.64,83,209,222 Numerous other models offer 
similar possibilities, including, for example, mice that show al-
terations in normal sleep, behavioral features such as anxiety, and 
various gene deletions or insertions.8,58,75,100,143 Other approaches 
can also be used to model human sleep disorders. For example, 
rats with spinal cord injury show leg movements during sleep 
and may be a model for the study of periodic leg movement dur-
ing sleep in paraplegic patients.66 Male and female rodents can 
be evaluated to determine sex-associated effects in sleep process-
es and sleep disorders (for examples, see references 6, 140, and 
161), as some sleep disorders show a significant sex-associated 
bias.61,164,172

Management of Animals Used to Study  
Sleep Disorders

Many external and internal factors can influence sleep in 
animals and people. Environmental cues and stimuli that are 
relevant to the use of animals for the study of sleep and sleep 
disorders include light exposure and photoperiod (for example, 
variation in light intensity or in the duration of the light and 
dark phases within each 24-h cycle, the use of light:dark cycle 
lengths that exceed or are less than 24 h, exposure to constant 
dim light or darkness, exposure to light during the dark phase, 
on–off ramping of lighting to mimic dawn–dusk), ambient tem-
perature (including influences of cage mates and bedding), noise, 
vibration, and disruptions in the home environment (for example, 
changing or moving the cage). For example, in a recent study, 3 
different methods of transferring mice to another cage (forceps 
transfer, gentle transfer with gloved hands, and a passive transfer 
technique that did not involve active handling) had transient ef-
fects on serum corticosterone concentrations and were associated 
with altered open-field behaviors when mice were tested later on 
the same day; these findings indicate that the occurrence of cage 
change can influence both physiology and patterns of activity.175 
In addition, the frequency at which cages are changed, the type of 
bedding, and even the color of the caging used can influence the 
animals and the data collected, including their circadian rhythms 
and the amount of sleep they engage in.46,118,185 With adequate 
ventilation and bedding, even cages that appear dirty to observ-
ers may not have significant or even measurable adverse effects 
on mice.185 Furthermore, because rodents are olfactory-oriented 
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its disorders. Although subjective aspects of sleep complicate the 
use of animals for the study of some types of disorders, animals 
undoubtedly will remain crucial for discovering and validating 
sleep mechanisms and testing interventions for sleep disorders. 
Indeed, additional species are now being evaluated with regard 
to improving the alignment of human and animal sleep charac-
teristics and thereby creating more valid models (for examples, 
see references 40 and 93). However, the use of any of these model 
systems requires careful control of nonspecific aspects of the envi-
ronment to ensure the collection of valid, interpretable data.
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