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Dietary polyphenolics from certain fruits, vegetables, and teas 
have been associated with beneficial effects on health and the 
prevention of diseases.28,29 Much of the research was focused on 
the antioxidant properties of these compounds,38 but it has be-
come increasingly clear that polyphenolics can affect physiologic 
and pathologic processes independently from antioxidant mecha-
nisms. More recently, particular attention has been given to the 
ability of polyphenolics to modulate immune processes.4,36

Despite ample evidence showing the overall health benefits of 
polyphenols, clinical studies examining the antiinflammatory ef-
fects of polyphenolics are scarce, in part because of the lack of reli-
able biomarkers for accessing inflammation in this context. Most 
in vivo or ex vivo studies of the effects of nutritional factors in the 
context of infections rely on the determination of cytokine levels 
as indicators of ongoing inflammation. Cytokines primarily are 
involved in the initial phase of inflammation, and most of them 
spike within the first few hours after the induction of inflam-
mation and rapidly return to baseline levels thereafter.5,10,11,20,39 
Therefore, determination of cytokine levels alone may not quan-
titatively reflect the extent of inflammatory response, which often  
lasts from days to weeks or even months, in association with  

significant pathologic changes that occur over an extended  
period of time. This pattern suggests that cytokine levels may 
not provide an accurate and consistent reflection of the effects of 
nutritional factors on inflammation. However, cytokines further 
activate various target cells and trigger the synthesis and release  
of a number of acute-phase response proteins including the  
C-reactive protein (CRP) produced by the liver3,31 and secretory 
phospholipase A2 (sPLA2), which is expressed by several types of 
immune cells.44,46 The levels of these proteins increase markedly 
in the circulating blood under conditions of acute inflammation, 
such as those in patients with bacterial infections and trauma.25,33 
Therefore, high serum levels of CRP and sPLA2 have been recog-
nized as important risk markers in infection and cardiovascular 
disease.8,33,48 The purpose of the current study was to investigate 
whether supplementation of polyphenolics-rich grape extract 
(GE) suppressed the endotoxin-induced inflammatory response, 
as determined by measuring sPLA2 activity in serum.

Materials and Methods
Materials. l-α-phosphatidylglycerol and LPS (derived from E. 

coli 055:B5) phenol extract were purchased from Sigma-Aldrich 
Chemical (St Louis, MO). 1,2-bis-(4,4-difluoro-5,7-dimethyl-4-
bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phos-
phocholine was obtained from Molecular Probes (Invitrogen, 
Carlsbad, CA). Powdered grape seed and skin extract (GE; Provex 
CV) was obtained from Melaleuca (Idaho Falls, ID).
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assay buffer. The sPLA2 activity (fluorescence intensity /min/μL 
serum) was determined after Ca2+-independent background was 
subtracted, as previously described.42 Serum CRP levels were de-
termined by using a rat CRP ELISA kit (BD Biosciences, Franklin 
Lakes, NJ) according to the manufacturer’s protocol.

Assessment of health status. The health status of the rats after 
the LPS injection were assessed by a veterinarian or veterinary 
staff who were blinded to the diet and LPS dose that the animals 
received. In addition to a commonly used body condition scor-
ing system,43 the rats were scored on predefined characteristics 
that included the assessment of grooming behavior, porphyrin 
staining around eyes, opening of eyes, posture, respiration, fecal 
output, perianal area, level of activity, and hydration status.

Statistical analysis. A repeated-measures ANOVA model, which 
included factors of time, LPS dose, and diet group, was fit for 
each measured parameter by using the Proc Mixed function of the 
statistical software (SAS Software v8, SAS Institute, Cary, NC). All 
appropriate second- and third-order interactions between these 
factors also were included in the model. The correlations between 
observations taken on the same rat over time were modeled by 
using a compound symmetry correlation structure. For each mea-
sured marker, the model was fit by using the untransformed data, 
and the residuals were evaluated to ensure that standard ANOVA 

Experimental design. The use of rats for this investigation con-
formed to guidelines for the care and use of laboratory animals 
set by the University of Wisconsin Research Animal Resource 
Center and the NIH. The studies were performed by using 2-mo-
old, male, Hsd:Sprague–Dawley outbred rats (Harlan, Madison, 
WI) weighing approximately 250 g. The animals were free of rat 
coronavirus and internal and external parasites at the time of 
study. Rat parvoviruses, rat theiloviruses, Pneumocystis spp., and 
common bacteria were not excluded from the rats in this facility. 
The rats were housed in solid-bottom cages containing corncob 
contact bedding and had ad libitum access to hyperchlorinated 
water (3.0 to 7.0 ppm) supplied via automatic watering manifold 
to each individual cage. The rooms were maintained at 64 to 79 
°F (20.6 to 23.3 °C), at 30% to 70% humidity, and under 12:12-h 
light:dark cycle.

A total of 36 rats were fed a powdered control diet (65 g/d; 
8728C Teklad Certified Rodent Diet, Harlan) for a week prior to 
their use in experiments. After this 1-wk acclimation period, the 
rats were randomly assigned to 3 groups and fed a control diet 
supplemented with 0, 100, or 300 mg GE/kg daily for 3 wk. At 
the end of this period (denoted as day 0), the rats in each group 
were weighed, divided randomly into 2 groups, and injected in-
traperitoneally with either 3 or 15 mg/kg LPS (diluted in 1 mL 
sterile water). Blood samples were collected from the rats on day 
0 (preLPS baseline) and then on days 1 through 5 after LPS injec-
tion; body weights were recorded prior to each blood collection. 
The rats were maintained on their appropriate diets during the 5 
d after LPS injection. The blood samples (0.1 mL) were obtained 
via the saphenous vein from anesthetized (5% isoflurane for in-
duction, 3% isoflurane for maintenance) rats and collected into BD 
Micro-Fine Tubes with clot activator (Fisher Scientific, Pittsburgh, 
PA). The blood was centrifuged at 2000 × g for 10 min to obtain 
serum, which was stored at −70 °C for subsequent analysis. Addi-
tional blood was collected in heparinized microhematocrit tubes 
(Fisher Scientific) for hematocrit analysis.

Determination of serum sPLA2 activity and CRP concentration. 
Serum sPLA2 activity was determined by using a slightly modi-
fied version of a high-throughput microplate fluorescent assay 
that we recently developed.42 Briefly, 1,2-bis-(4,4-difluoro-5,7-
dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glyc-
ero-3-phosphocholine (0.014 mg) and l-α-phosphatidylglycerol 
(2 mg) were mixed together in chloroform. The chloroform was 
evaporated off, and the free phospholipids were dissolved in 1 
mL 100% ethanol to form the stock substrate solution. The stock 
solution was stored at −20 °C, and was found to be stable for at 
least 1 mo. To determine sPLA2 activity in a serum sample, an as-
say reaction mixture was freshly prepared in a glass tube kept on 
ice. The reaction mixture contained 10 µL stock substrate—ethanol 
solution (20 µg phospholipids) and 3.3 µL serum in a final volume 
of 1 mL assay buffer (0.01 M Tris-HCl [pH 7.4] and 10 mM Ca2+). 
The mixture was vortexed, and aliquots (300 µL) were transferred 
promptly in triplicate to a white polystyrene 96-well microplate 
(Porvair PS White, PerkinElmer, Waltham, MA). The microplate 
was immediately placed in a temperature-controlled (30 °C) spec-
trometer (LS50B Luminescence Spectrometer, PerkinElmer) with 
a microplate reader attachment. The fluorescence intensity in each 
well was recorded every 10 s for 60 cycles at 488 nm excitation 
(excitation slit, 2.5 nm) and 530 nm emission (emission slit, 5.0 
nm). Ca2+-independent hydrolysis of substrate was determined 
by performing the assay in the presence of 20 mM EGTA in the 

Figure 1. Changes in serum sPLA2 activity (expressed as a percentage of 
the day 0 activity) after intraperitoneal administration of 3 or 15 mg/kg  
LPS to rats (n = 6 per group) fed a control diet. Significant (*, P ≤ 0.05; 
‡, P ≤ 0.001) difference when compared with value for day 0 within the 
same group; significant (a, P ≤ 0.05) difference between groups at a par-
ticular time point.
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In the rats given 15 mg/kg LPS, both 100 (P < 0.05) and 300 (P < 
0.001) mg/kg GE inhibited the LPS-induced increase in sPLA2 
activity on day 1 (Figure 2 B).

Body weight. The administration of LPS to the control-fed rats 
resulted in loss of body weight; rats weighed least on day 2 and 
then their weights stabilized between days 3 through 5 (Figure 3).
 The magnitude and rate of decline in body weight was LPS 
dose-dependent. The higher dose of LPS produced 50% greater  
(P < 0.001) loss in body weight than did the lower dose. Supple-
mentation of the control diet with GE did not significantly affect 
the observed changes in body weight induced by LPS (Figure 4 
A and B).

Hematocrit. Hematocrit declined after the administration of 
LPS to the control-fed rats, with the change (approximately 20% 
decline by day 5) becoming statistically significant (P < 0.001) on 
days 3 and 4 (Figures 5 A and B). There was no discernible differ-
ence in the effects produced by the 2 doses of LPS. The supple-
mentation of the control diet with 100 or 300 mg/kg GE daily 
significantly (P < 0.05) attenuated the effect of 3 mg/kg LPS on 
hematocrit (Figure 5 A). However, neither of the supplemented 
diets had any effect on the changes induced by the higher dose 
of LPS (Figure 5 B).

assumptions of constant variance and normality were reasonably 
met. Transformations of the data were performed when required 
to improve adherence to these assumptions. Once a good fit was 
achieved, type III tests were performed to evaluate the signif-
icance of the effects of interest for each measured marker, and 
least-square means were calculated for each factor combination. 
Any least-square means comparisons made subsequent to the 
type III tests were adjusted by using the Tukey–Kramer P-value 
adjustment. The data are reported as least-square mean ± SEM. 
Statistical significance was defined as a P value of less than 0.05.

Results
Serum sPLA2 activity. Administration of LPS induced a marked 

increase (70% to 90% above baseline) in serum sPLA2 activity in 
the control diet-fed rats (Figure 1) on days 1 and 2 after LPS injec-
tion. The effects of the 2 doses of LPS were different on day 1 but 
were nearly identical on days 2 through 5 after LPS injection. On 
day 1, serum sPLA2 activity was approximately 30% greater (P < 
0.05) in rats that received the higher dose.

Supplementation of the diet with 300 mg/kg GE daily inhib-
ited (P < 0.05) the increases in sPLA2 activity induced by 3 mg/kg 
LPS (Figure 2 A). In contrast, 100 mg/kg GE daily had no effect. 

Figure 2. Effect of LPS administration and GE supplementation on serum sPLA2 activity. The figure shows the changes in serum sPLA2 activity follow-
ing intraperitoneal administration of (A) 3 mg/kg LPS and (B) 15 mg/kg LPS to rats (n = 6 per diet) fed a control diet or the control diet supplemented 
with 100 or 300 mg/kg GE daily. Significant (*, P ≤ 0.05; §, P ≤ 0.005; and ‡, P ≤ 0.001) difference when compared with the value for day 0 within the same 
group; significant (a, P ≤ 0.05; b, P ≤ 0.001) difference between values for control group and each GE-supplemented group at a particular time point.
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mediators that have a broad range of physiologic and pathologic 
effects.6 The persistent presence of sPLA2-IIA like that in the sera 
of patients with systemic inflammation1 and bacteremia37 may 
exacerbate and intensify inflammation.

The source of sPLA2-IIA in serum is still unknown. Although 
cells with secretory granules, such as macrophages, platelets, 
neutrophils, and mast cells, have traditionally been implicated 
as contributors,16,17,21,26,27 Paneth cells of the gastrointestinal tract 
produce the greatest amounts of sPLA2-IIA in humans.24 Mouse 
small intestine luminal fluid also contains high quantities of sP-
LA2-IIA.32 Similarly in rats, sPLA2-IIA is synthesized primarily by 
the Paneth cells of the small intestine and the cecum.27 A recent 
study illustrated that intraperitoneal injection of LPS induces a 
flux of sPLA2 into the gastrointestinal lumen within 5 h, result-
ing in the degradation of the phosphatidylcholine-rich protective 
hydrophobic gastrointestinal barrier.50 The degradation of the 
mucosal barrier correlated with an increase in lysophosphatidyl-
choline, an injurious byproduct of phosphatidylcholine hydro-
lysis. Consequently, an increase in gastrointestinal permeability 
was observed50 and well characterized.9 Oral delivery of a sPLA2-
IIA inhibitor attenuated the luminal sPLA2 activity and prevented 
changes in GI permeability.50 Previously, lysophosphatidylcholine 

Serum CRP level. Administration of LPS produced significantly 
(P < 0.001) increased serum CRP levels in the control diet-fed rats 
on day 2 (Figure 6 A and B). There was no significant difference 
between the effects of the 2 LPS doses on CRP concentrations 
in serum. Changes in CRP levels were more variable than were 
changes in sPLA2 activity, thus reducing the statistical power to 
detect an effect of GE supplementation.

Assessment of health status. The injection of LPS caused de-
terioration in the health status of the rats on either the control 
or GE-supplemented diet. These effects of LPS were noticeable 
within a few hours after administration, and the greatest dete-
rioration was present at 24 to 48 h after injection. The magnitude 
of effect was greater in rats that received the higher dose of LPS. 
In general, these rats showed reduced grooming behavior, par-
tial squinting of eyes, slightly hunched posture, fecal staining or 
soft feces around the perianal area, and reduced activity (that is, 
rats moved only when prompted). Rats on the GE-supplemented  
diets appeared to be less affected, but this characteristic could not 
be quantitated sufficiently. Regardless of diet, all rats returned to 
normal body movement by 3 to 4 d after LPS injection.

Discussion
The administration of LPS, an endotoxin derived from bacterial 

membranes, to animals is widely used to study the pathophysi-
ologic consequences of endotoxemia and sepsis. Although sPLA2 
plays a central role in the systemic immune response45,46 and al-
though its level increases in sera of volunteer subjects after re-
ceiving an intravenous infusion of LPS34 and in rabbits after LPS 
injection,44 the time-course of changes in serum sPLA2 activity 
after LPS administration has not been studied thoroughly. The 
highly sensitive high-throughput fluorometric assay that we pre-
viously developed42 allows us to efficiently study the time-course 
of sPLA2 activity changes and the effects of therapeutic strategies. 
Furthermore, in the current study, modifications to the previously 
described assay substrate preparation42 have resulted in a 50% 
increase in the sensitivity of the assay (data not shown). In the 
current study, intraperitoneal injection of LPS induced a highly 
reproducible profile of serum sPLA2 activity, characterized by a 
rapid increase with an LPS dose-dependent peak 1 to 2 d after 
injection, followed by a resolution to near-baseline values over a 
5-d period (Figure 1). The sPLA2 assay showed clear differences in 
serum sPLA2 activities of the rats injected with 3 compared with 
15 mg/kg LPS on day 1, the day on which the rats showed the 
greatest deterioration. The sPLA2 assay also clearly demonstrated 
the rise and fall of serum sPLA2 activity in accordance with the 
onset and recovery of LPS-induced illness during the 5-d period. 
These observations are consistent with a study of intravenous in-
fusion of endotoxin in volunteer subjects that reported a maximal 
increase in sPLA2 activity occurred 24 h after infusion34 and are 
similar to the pattern of serum sPLA2 levels in a patient during 
treatment for sepsis.19

Production of sPLA2 can be stimulated by TNF alone or in 
concert with other cytokines such as interleukin-1.45,46 TNF levels 
decline within 2 to 4 h after LPS administration.10,20,34 However, 
sPLA2 and the pathways that sPLA2 triggers drive the pathophys-
iologic process forward. Of the many isoforms of PLA2s,7 only 
a few are found circulating in serum. Of these, sPLA2-IIA (14 
kDa) is the predominant form involved in inflammatory immune 
responses;13,22,45 this isoform also may play a key role in antimi-
crobial defense23 and regulate the synthesis of bioactive lipid 

Figure 3. Effect of LPS administration on body weight. The figure shows 
the changes in body weight after intraperitoneal administration of 3 or 
15 mg/kg LPS to rats (n = 6 per dose) fed a control diet. Significant (‡, P ≤ 
0.001) difference when compared with the value for day 0 within the 
same group; significant (a, P ≤ 0.05; b, P ≤ 0.005; c, P ≤ 0.001) difference 
between groups at a particular time point.
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from additional sources of sPLA2 or to a secondary mechanism of 
induction, either of which may have been susceptible to inhibi-
tion by a lower dose of GE.

The polyphenolics in GE are largely composed of polymeric 
polygalloyl polyflavan-3-ols41 that are poorly bioavailable when 
consumed orally.18,35,49 Regardless, the current and other14,15 stud-
ies have shown an influence of GE polyphenolics on modulators 
of inflammation. This finding raises the question whether the 
observed effects of GE were at least in part due to the indirect 
modulation of serum sPLA2 activity at the gastrointestinal level. 
Perhaps this mechanism also explains why we did not see an ef-
fect of GE supplementation on the LPS-induced changes in CRP, 
which were similar30 to those reported by others. Further studies 
are required to explore the source and mechanism of induction 
of sPLA2 after LPS challenge and how these factors may be influ-
enced by polyphenolics that are largely unabsorbed.

In addition to the health status changes, the changes in serum 
sPLA2 activity and the increased serum CRP levels, LPS adminis-
tration also resulted in the loss of body weight and decreased he-
matocrit. The rats did not fully recover their body weight even 5 
d later, although their mobility and food intake appeared normal 
on day 5. The lack of recovery of body weight and packed blood 
cell volume changes indicate that a longer time period is needed 
for full recovery.

The current study has several limitations. First, we did not mea-
sure additional markers of pathophysiologic status or perform 

was shown to increase the translocation of luminal bacteria,40 sug-
gesting that a spike in lysophosphatidylcholine during sepsis 
may drive an influx of immunogenic material into the body. In 
addition, the increased permeability may allow for the entry of 
luminal sPLA2-IIA into circulation, accounting for the delayed 
spike in serum sPLA2-IIA that occurs 24 h after LPS injection. 
Furthermore, in a recent study, we presented evidence that the gas-
trointestinal tissue or vasculature may be an important source of 
serum sPLA2 and that this source may be regulated independently 
from luminal sources of sPLA2, such as Paneth cells.32 It is unknown 
whether dose and time after induction influence the contributions 
of various sources of sPLA2 to its systemic activity during LPS chal-
lenge. This lack of knowledge presents a challenge in interpreting 
various aspects of the effects of GE on serum sPLA2 activity.

In the current study, the higher dose of GE supplementation 
significantly inhibited the changes in serum sPLA2 activity in-
duced by the lower dose of LPS. However, under the higher dose 
of LPS, the higher dose of GE inhibited serum sPLA2 activity only 
on day 1 after induction. Surprisingly, the lower dose of GE sup-
plementation also inhibited serum sPLA2 activity at the same time 
point, whereas it had no effect on sPLA2 activity changes induced 
by the lower dose of LPS at any time point. When we compare 
the serum sPLA2 activity profile under the 2 doses of LPS, the 
day 1 time point was the only point at which the profile differed 
and was proportionate to the LPS dose. We speculate that the dif-
ference in sPLA2 at this time point might be due to contributions 

Figure 4. Effect of LPS administration and GE supplementation on body weight. The figure shows the changes in body weight after intraperitoneal 
administration of (A) 3 mg/kg LPS and (B) 15 mg/kg LPS to rats (n = 6 per diet) fed a control diet or the control diet supplemented with 100 or 300 
mg/kg GE daily. Significant (‡, P ≤ 0.001) difference when compared with the value for day 0 within the same group.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



Vol 62, No 4
Comparative Medicine
August 2012

276276

polyphenolics-rich GE may suppress endotoxin-induced sPLA2 
activity and that such an effect can be determined by using our 
serum sPLA2 activity assay. The determination of sPLA2 activity 
may be a useful tool for examining the effects of polyphenolic-
rich supplements in clinical studies.
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