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Globally, gastric cancer is the second most common cause of 
cancer death (after lung cancer), causing more than 700,000 hu-
man deaths annually.7 Although the incidence of gastric cancer 
shows a male:female ratio of about 2:1, the increased incidence 
in males cannot be attributed entirely to differences between the 
sexes in the prevalence of known risk factors.7 Epidemiologic and 
experimental studies have provided some support in favor of the 
hypothesis that the male predominance in the incidence of gastric 
cancer is due to sex hormones, mainly through a decreased risk in 
women, who are highly exposed to estrogen.25 Moreover, studies 
have demonstrated that treatment with tamoxifen, an antiestro-
gen, might increase the incidence of gastric cancer in women and 
that men who have been treated with estrogen have a decreased 
risk.8,9 However, investigations of potential mediators for this sex-
associated difference have been limited.7,8,25

Estrogen receptor (ER) signaling pathways regulate important 
physiologic processes, such as cell growth and differentiation, 
and at least 2 ER subtypes, ERα and ERβ, mediate the genomic ac-

tions of estrogens.2,11,15,17,21,31,37 Although the stomach has not been 
identified as a direct target organ of sex hormones, ER have been 
reported in the human and rodent gastric mucosa.3,4,6,11 However, 
the biologic significance of the ER in gastric cancer remains incon-
clusive.7,9,29,40,44,45

Administration of N-methyl-N′-nitro-N-nitrosoguanidine 
(MNNG) in the drinking water induces high incidences of gastric 
cancer in rats, hamsters, and dogs.14,28,34 MNNG-induced gastric 
carcinogenesis occurs more frequently in male than female Wistar 
rats.14 Moreover, the incidence of MNNG-induced rat gastric can-
cer is higher in ovariecotomized female rats, and the administra-
tion of female sex hormones to male rats or castrated male rats 
decreases its incidence.4,14,15,41 Proliferating cell nuclear antigen 
(PCNA) has been useful for the identification of cells in the pro-
liferative phase and can be a potential prognostic marker in gas-
tric carcinoma malignancy.33In the present study, we investigated 
protein and mRNA levels of ERα and ERβ and protein levels of 
PCNA in rat MNNG-induced gastric cancers to better understand 
the sex-associated difference in gastric carcinogenesis.

Materials and Methods
Animals, chemicals and treatments. Male (n = 36) and female (n 

= 36) Wistar rats (age, 5 wk; Japan Slc, Hamamatsu, Japan) were 
housed at 3 rats per 20 × 45 × 25-cm clear polypropylene cage 
with wire tops on heat-sterilized hardwood-chip bedding in an 
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Antibodies for ER. To detect ERα, we used primary 6F11 anti-
serum (Novocastra Laboratories, Newcastle, UK), a mouse an-
tiER antibody that has no affinity for ERβ.24 To detect ERβ, we 
used primary PA1-310 antiserum (Affinity BioReagents, Golden, 
CO), a rabbit antiER antibody that was generated against amino  
acids in the C-terminal region of rat ERβ and has only 6% amino 
acid homology with rat ERα, corresponding to amino acids 467 
to 485 of ERβ. These antibodies were affinity-purified by column 
chromatography, and their immunoreactivities were confirmed 
previously.5,6,24,32,42

Western blot analysis. Rat gastric tissues were homogenized in 
50 mM Tris-HCl, 150 mM KCl (pH 7.4), 1% Triton X100, and 0.25 
mM PMSF and centrifuged at 8000 × g for 30 min at 4 °C. The 
supernatant obtained was centrifuged at 100,000 × g for 90 min at 
4 °C. The pellet was suspended in 50 mM Tris-HCl (pH 7.4), 1% 
Triton X100, and 1 mM PMSF, and protein concentrations were 
determined by using a bicinchonic acid protein assay reagent kit 
(Pierce, Rockford, IL) with bovine serum albumin as a standard. 
Microsomal samples (10 µg each) underwent electrophoresis on 
a 10% SDS–polyacrylamide gel. The proteins were transferred for 
2 h to a nitrocellulose membrane that was blocked by immers-
ing it in 5% nonfat dried milk in PBS with 0.1% (v/v) Tween 20. 
Western blot analysis was performed by using antiERα antibody 
(1:1000; Novocastra Laboratories), antiERβ antibody (1:1000; Af-
finity BioReagents), antiPCNA monoclonal antibody (1:2000; No-
vocastra Laboratories), and antiβ-actin antibody (1:2000; A5441, 
Sigma Aldrich, St Louis, MO, dilution 1:2,000) diluted in PBS with 
0.1% (v/v) Tween 20 and incubated 1 h at room temperature on an 
orbital shaker. After being washed 3 times in PBS with 0.1% (v/v) 
Tween 20, they were incubated with horseradish peroxidase-
conjugated antirabbit antibody (1:2500; Amersham Biosciences, 
Piscataway, NJ) for 1 h on an orbital shaker. After being washed 3 
times in PBS with 0.1% (v/v) Tween 20, signals were detected by 
using chemiluminescence (ECL Plus Western Blotting Detection 
System, Amersham Biosciences). Protein levels were quantified 
by densitometric scanning (Image-Pro Plus, Media Cybernetics, 
San Diego, CA). For better comparison and to compensate for 
possible unequal loading, ER protein levels in each sample were 
normalized to that of the housekeeping protein β-actin.

Real-time quantitative RT-PCR analysis. For each RNA sample, 
100 ng was used as the template for first-strand cDNA synthe-

environment-controlled room on a 12:12-h light:dark cycle at 22 
± 2 °C and 55% ± 5% relative humidity and were fed a conven-
tional diet (MF, Oriental Yeast, Tokyo, Japan). All experimental 
procedures were conducted following approval of the Animal 
Care and Use Committee of the Azabu University School of Vet-
erinary Medicine. Guidelines set by NIH and the Public Health 
Service Policy on the Humane Use and Care of Laboratory Ani-
mals were followed at all times.19 MNNG was obtained from Al-
drich Chemical Industry (Tokyo, Japan). Seven-week-old male 
(n = 24) and female (n = 24) rats were given 100 ppm MNNG 
in their drinking water for 24 wk and then were supplied with 
normal tap water for 30 wk. Seven-week-old male (n = 12) and 
female (n = 12) rats were given normal tap water for 54 wk as a 
vehicle-treated control group. All rats survived to each endpoint 
without any abnormal clinical signs. The dose of MNNG was 
based on those used in previous studies.14,28,42 After drug treat-
ment, rats were anesthetized and euthanized by CO2 overdose, 
the stomach was removed from the rats, opened along the greater 
curvature, and pinned flat on a corkboard. Serial step sections 2 
to 3 mm thick taken from along the lesser curvature were frozen 
without fixation and stored at –80 °C. In addition, corresponding 
serial sections were fixed with 10% neutral formalin, dehydrated, 
embedded in paraffin, and sectioned at 4 μm. The sections were 
stained with hematoxylin and eosin.

Table 1. Gastric tumor variables in male and female rats exposed to 
MNNG

Male Female

No. of rats 24 24
Body weight (g) 379.3 ± 35.3 330.2 ± 25.2
Tumor incidence (%) 18 (75%)a 9 (38%)
No. of tumors per rat 2.35 ± 0.63a 1.75 ± 0.32
Mean tumor size (mm2) 12.34 ± 1.76 10.77 ± 1.88

Data are given as mean ± SEM.
For comparison, vehicle-control male rats (n = 12) weighed 355.5 ± 34.8 
g whereas female rats (n = 12) weighed 328.8 ± 22.1 g.
aSignificantly (P < 0.05 by Student t test) different from value for female 
rats.

Figure 1. Representative images of fresh rat stomachs opened along the greater curvature without being pinned to a flat board. Gastric carcinoma (ar-
rows) is seen at the pyloric region. Ruler lines indicate 1 mm. F(A), female rat of MNNG-treated group; F(B), female rat of vehicle-treated group; M(A), 
male rat of MNNG-treated group; M(B), male rat of vehicle-treated group.
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sis by using a TaqMan Reverse Transcription kit (PE Applied 
Biosystems, Foster City, CA), according to the manufacturer’s 
2-step protocol. Controls included for each reaction were the RNA 
sample without reverse transcriptase (RNA–RT) and no RNA 
with reverse transcriptase (no RNA+RT). The final reaction mixes 
for reverse transcription included 1 × TaqMan RT buffer; 5.5 mM 
MgCl2; 500 μM each dATP, dGTP, and dCTP; 1 mM dTTP; 0.25 
µM random hexamers; 1.25 U/μL MuLV reverse transcriptase; 
and 0.4 U RNase inhibitor (PE Applied Biosystems). Quantitative 
analyses of target gene (ERα and ERβ) mRNA levels were per-
formed by real-time quantitative PCR (ABI Prism 7700 Sequence 
Detection System, PE Applied Biosystems) with TaqMan chemis-
try and probes. The TaqMan probes and primers for target genes 
were assay-on-demand gene expression products custom synthe-
sized by PE Applied Biosystems and were oligonucleotides with 
fluorescent reporter and quencher dyes attached (ERα, ID no. Rn 
01430445_mL; ERβ, ID no. Rn 00688791_mL).1 Optimal primer, 
probe, and cDNA concentrations were determined in a separate 
set of experiments to ensure that both target gene and GAPDH 
fragments were amplified with equal efficiency. PCR reactions 
were performed with first-strand cDNA (2 μL) from each sample, 
a Universal PCR Master Mix kit (PE Applied Biosystems), 250 
nM TaqMan probe, 0.16 U AmpErase UNG (uracil N-glycosylase), 
and 900 nM forward and reverse primers of the target gene and 
GAPDH. Three measurements per sample were performed in 
each of 2 independent experiments. Results were analyzed with 
the ABI Sequence Detector software version 1.7 (PE Applied Bio-
systems). For relative quantification of target gene expression, 
the standard-curve method was applied. The calibrated standard 
curve of each target gene cDNA and GAPDH amplification plots 
were examined at 5 different dilutions (containing 100, 50, 25, 10, 
and 5 ng) of total RNA samples that were obtained from each PCR 
product by using a TOPO II TA Cloning Kit (Invitrogen, Carls-
bad, CA) according to the manufacturer’s recommendations. The 
target gene’s normalized value was determined by dividing the 
average target gene value by the average GAPDH value. The SD 
of the quotient was calculated from the SD of the target gene and 
GAPDH by using the following formula:

CV = (SD of quotient) / (mean quotient)

CV2 = CV1
2 + CV2

2

CV1 = (SD of target gene value) / (mean target gene value)

CV2 = (SD of GAPDH value) / (mean GAPDH)

The normalized target gene value is a unitless number that can 
be used to compare the relative amount of the target genes in dif-
ferent samples. One way to make this comparison is to designate 
one of the samples as a calibrator. In this study, the gastric tissue 
of the vehicle-treated control group was designated as the calibra-
tor, and the average target gene value was divided by the average 
calibrator value according to the manufacturer’s instructions for 
quantification of relative gene expression.1

Statistical analysis. For each set, the mean, SD, and SEM were 
calculated and compared through Student t, Scheffé F, and χ2 tests 
by using Stat View J 5.0 (Abacus Concepts, Cary, NC). A P value 
of less than 0.05 was regarded as statistically significant.

Figure 2. The top panel shows a representative image of an MNNG-
induced rat gastric tumor, which is histologically a well-differentiated 
adenocarcinoma. Female Wistar rat. Mayer hematoxylin and eosin stain; 
bar, 50 µm. The 4 lower panels show representative results of ERα and 
ERβ immunohistochemical staining in MNNG-induced gastric carcino-
mas. Similar numbers of nuclei positive for ERα were found in both 
sexes (Female ERα, Male ERα), whereas female rats (Female ERβ) had 
more nuclei positive for ERβ than did male rats (Male ERβ). Avidin–
biotin complex staining with Mayer hematoxylin counterstaining; bar, 
50 μm.
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Western blot analysis. In the vehicle-treated group, the relative 
protein level of ERα was lower (P < 0.01) than that of ERβ, with no 
significant difference between sexes (Figure 3). In both sexes, rela-
tive levels of ERα protein were similar in MNNG-treated cancer-
ous and noncancerous tissues and vehicle-treated normal gastric 
tissues (Figure 3). In female rats, the relative level of ERβ protein 
in MNNG-induced cancerous tissues was higher (P < 0.01) than 
that of noncancerous tissues, and both of these were higher (P < 
0.01) than that of vehicle-treated normal gastric tissues (Figure 3). 
In male rats, relative levels of ERβ protein in the MNNG-treated 
group were similar in cancerous and noncancerous tissues but 
lower (P < 0.01) than that of vehicle-treated normal gastric tissues 
(Figure 3). PCNA expression in MNNG-treated cancerous tissues 

Results
Body weight, cancer incidence and morphology. The incidences, 

numbers, and sizes of the gastric cancers in each group are sum-
marized in Table 1. The mean body weight of rats at autopsy did 
not differ between the MNNG- and vehicle-treated groups of ei-
ther sex. The incidence and absolute counts of MNNG-induced 
gastric cancers were significantly (P < 0.05) higher in male than 
female rats. All tumors were found in the lesser curvature of the 
pyloric region (Figure 1). No gastric tumors were found in vehi-
cle-treated rats of either sex. At necropsy, no nodules or tumor 
masses were found in any tissue except stomach. All cancers in 
all rats were histologically diagnosed as well-differentiated ad-
enocarcinoma (Figure 2).

Figure 3. Representative Western blots of ERα and ERβ in cancerous (MNNG-Cancer) and noncancerous (MNNG-Non-Cancer) tissues from rats 
treated with MNNG and normal gastric tissue (Vehicle-Normal) from vehicle-treated rats; results from 2 rats of each group are shown. The protein 
concentration was determined by using a bicinchonic acid protein assay reagent kit (Pierce) with bovine serum albumin as the standard. Microsome 
samples (10 µg) were applied for Western blotting analysis, and immunoreactive proteins were detected by using chemiluminescence. The upper 
panels show representative bands of ERα and ERβ; lower panels show ERα:β-actin and ERβ:β-actin density ratios; results were obtained by screen-
ing samples from 6 rats of each group. Lower panels show that ERα expression is similar in both sexes in MNNG-treated cancerous (MNNG-Cancer) 
and noncancerous (MNNG-Non-Cancer) tissues and normal gastric tissue (Vehicle-Normal). In contrast, ERβ expression in MNNG-treated cancerous 
(MNNG-Cancer) and noncancerous (MNNG-Non-Cancer) tissues was significantly (+, P < 0.01, Scheffé F test) lower in male rats and higher in female 
rats than that in normal gastric tissue (Vehicle-Normal). MNNG-induced cancerous tissue (MNNG-Cancer) from female rats showed the highest ERβ 
expression. Data presented as mean ± 1 SD.
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The present study revealed that the incidence of MNNG-in-
duced gastric cancer with high cellular proliferative activity, as 
revealed by PCNA expression, was significantly higher in male 
than female Wistar rats. However ERβ expression in cancerous 
tissue was higher in female rats and lower in male rats than that 
in normal gastric tissue. Moreover, ERβ also was elevated in the 
noncancerous tissues of MNNG-treated groups. Furthermore, 
MNNG induced different ERβ responses in gastric tissues in the 
2 sexes, and the ERβ induction with lower PCNA expression that 
occurred in female gastric cancer might be involved in preventing 
progression of MNNG-induced rat gastric carcinogenesis.

ERα and ERβ are transcription factors that mediate the estro-
gen-signaling pathway.16 If the ER pathways are relevant to car-
cinogenesis, downstream target genes likely will be affected by 
the different ER. Heterodimerization of ERβ with ERα reportedly 
inhibits ERα-mediated transcription in human breast carcino-
ma,16,39 and an increase in ERβ blocks ERα transcriptional activity 
in lung cancer.20 Moreover, previous studies on colon, prostate, 
lung, and breast cancers indicate that the progression of carcino-
genesis is proportional to the ERα induction,5,9,10,13,23,31,35,36,40 but this 
result was not observed in the present study of MNNG-induced 
gastric carcinogenesis in Wistar rats. The ERα and ERβ signaling 
pathways in gastric cancer and other organ cancers in rats may 
be different or the gastric carcinogenic process might be different 
in animal species.

Evidence is not yet available for a sex-dependent phenotype 
beyond ERα and ERβ in gastric carcinogenesis. Further detailed 
study concerning genomic differences in the sexual dimorphism 
of the expression of ER in gastric cancer is required.
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was higher (P < 0.05) than that in noncancerous tissues and higher 
(P < 0.05) in male than female rats. PCNA expression in vehicle-
treated normal gastric tissue was lower (P < 0.05) in both sexes 
compared with those of the MNNG-treated group (Figure 4).

Real-time quantitative RT-PCR analysis. Quantitative RT-PCR 
analysis revealed that the mRNA levels of ERα and ERβ (Figure 5)
 were qualitatively consistent with the patterns for ERα and ERβ 
proteins observed by Western blotting analysis.

Discussion
The incidence of MNNG-induced gastric cancer was higher 

in male than female Wistar rats. Although ERα expression was 
similar in MNNG-treated cancerous, noncancerous, and normal 
gastric tissues in both sexes, ERβ expression in MNNG-treated 
cancerous and noncancerous tissues was lower in male rats 
and higher in female rats than that in normal gastric tissue, and 
MNNG-induced cancerous tissue showed the highest ERβ ex-
pression. PCNA expression in MNNG-treated cancerous tissues 
was higher than that in noncancerous tissues and higher in male 
than female rats.

Sex-associated differences in the effects of the 2 types of ER 
have been reported in several cancers. That is, ERα enhances cel-
lular proliferation in carcinogenesis,20,23,26,27,30 but ERβ protects 
against uncontrolled cellular proliferation and malignant trans-
formation.12,13,22,23 In addition, a general conclusion of previous 
studies is that higher ERα concomitant with lower ERβ seems 
to be related to sex-associated differences in cancer risk, such as 
higher incidences of colon cancer5,12,13,22 and prostate cancer30 in 
males and higher incidences of lung cancer10,18,20,23,35,44 and breast 
cancer27,36,38,44 in females. Meanwhile, although a protective effect 
for estrogen against gastric cancer has been proposed, statistical 
associations between the induction of the ER in cancer and clini-
copathologic factors have been inconclusive.7,29,39,43,44,46

Figure 4. The left panels show representative Western blots of PCNA in cancerous (MNNG-Cancer) and noncancerous (MNNG-Non-Cancer) tissues 
from rats treated with MNNG and normal gastric tissue (Vehicle-Normal) from vehicle-treated rats; results from 2 rats of each group are shown. Protein 
concentration was determined by using a bicinchonic acid protein assay reagent kit (Pierce) with bovine serum albumin as the standard. Microsome 
samples (10 µg) were applied for Western blotting analysis, and immunoreactive proteins were detected by using chemiluminescence; results were 
obtained by screening samples from 6 rats of each group. The PCNA levels in MNNG-treated cancerous tissues (MNNG-Cancer) were higher than 
those in noncancerous tissues (MNNG-Non-Cancer) and were higher in male rats (M) than female rats (F). PCNA expression in vehicle-treated normal 
gastric tissue (Vehicle-Normal) in both sexes was lower than those in the MNNG-treated group. The right panels show representative results of PCNA 
immunohistochemical staining in MNNG-induced gastric carcinomas, and male rats (Male PCNA) had more PCNA-positive nuclei than did female 
rats (Female PCNA). Avidin–biotin complex staining with Mayer hematoxylin counterstaining; bar, 50 μm.
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Figure 5. ERα and ERβ mRNA levels in MNNG-induced rat gastric car-
cinogenesis. The indicated mRNA levels were determined by real-time 
quantitative RT-PCR, with analysis by using the standard curve method; 
1-fold of the relative quantity of mRNA of the vehicle-treated normal 
gastric tissues was designated as the calibrator value. Each ER mRNA 
value was normalized to that of the endogenous housekeeping gene 
GAPDH in each tissue. The results were obtained by screening samples 
from 9 rats of each group. ERα mRNA levels in MNNG-treated can-
cerous (Cancer) and noncancerous (Non-Cancer) were similar between 
sexes. The amount of ERβ mRNA in MNNG-treated cancerous tissue 
(Cancer) was significantly (+, P < 0.01, Scheffé F test) greater than that 
of noncancerous (Non-Cancer) tissues; that of female rats was greater 
in MNNG-treated cancerous (Cancer) than noncancerous (Non-Cancer) 
tissues; and that of male rats was similar between MNNG-treated can-
cerous (Cancer) and noncancerous (Non-Cancer) tissues. Data are pre-
sented as mean ± 1 SD.

Japan Grant-in-Aid for Matching Fund Subsidy for Private 
Universities.
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