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Cardiovascular disease (CVD) is the primary cause of chim-
panzee morbidity and mortality.50,51,65,75 All African apes seem to 
display a similar CVD pathology,32,64 but CVD presents a some-
what different clinical picture in chimpanzees than in humans.75 
In chimpanzees, the most common pathology associated with 
CVD is similar to the structural remodeling seen in hypertensive 
human hearts. Little is known regarding the etiology of CVD in 
chimpanzees, and our understanding of its clinical manifestations 
and progression over time remain rudimentary. Cardiomyopathy 
(including left ventricular hypertrophy and dilated cardiomy-
opathy), valvular disease, and electrocardiographic abnormalities 
have been observed.15,50 As in other species, the range of CVD that 
affects chimpanzees results in variable clinical signs and disease 
progression, which are dependent on the specific disease diag-
nosed. Moreover, determinants and risk factors for chimpanzee 
CVD remain poorly understood. The common pathologic simi-
larity to human hypertensive disease suggests a potential role of 
blood pressure. Reliable reference values for normotensive and 
hypertensive blood pressure have been defined,19 but the preva-
lence of hypertension and its long-term effects in chimpanzees 
remain unknown. Interestingly, although they have higher cho-
lesterol levels than do humans,18,19 chimpanzees rarely develop 

arteriosclerosis, only minor plaques have been observed, and 
myocardial infarction is rare.49,75 Nevertheless, reliable lipid refer-
ence intervals are needed. Arrhythmias, specifically ventricular 
ectopy, appear to be a common clinical sign in the development of 
cardiomyopathy in chimpanzees.15 In addition, cardiac murmurs 
are present with valvular heart disease.15 Beyond these, there 
seem to be few clinical signs that reliably herald the development 
of cardiomyopathy or precede sudden cardiac death in chimpan-
zees.50,51 Frequently postmortem chimpanzee hearts are character-
ized by varying degrees of myocardial fibrosis.50,51,65,75

Given the burden of disease posed by CVD and the lack of de-
finitive signs preceding sudden cardiac death in chimpanzees, 
a method is needed that can identify subjects at risk of CVD or 
sudden cardiac death and allow focused monitoring and clinical 
intervention prior to the clinical presentation of advanced heart 
disease or death. Previous studies demonstrated that 2 biomark-
ers of fibrosis metabolism (procollagen III N-terminal protein 
and initial carboxyl-terminal telopeptide) in chimpanzee serum 
samples can be used to detect cardiovascular disease.20 The objec-
tive of the present study was to assess the utility of several other 
CVD biomarkers in distinguishing chimpanzees with CVD from 
heart-healthy controls, for application in colony surveillance and 
clinical care.
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hsCRP, CTnI, and complete lipid panel. The design included all 
28 known CVD cases (22 male, 6 female) as well as 57 age-, sex-, 
and infectious-disease–matched controls (n = 85). All controls 
were selected from the group of chimpanzees that lacked any 
clinical signs of CVD and were presumed to be heart-healthy. 
These animals were assessed for 4 biomarkers: hsCRP, CTnI, BNP, 
and complete lipid panel.

Laboratory methods. Prior to each physical examination, 1 mL 
whole blood was drawn into an EDTA tube, shipped on ice by 
overnight courier to a nearby clinical reference laboratory (Tri-
core, Albuquerque, NM), and assessed for circulating levels of 
the 4 biomarkers using standard assays (CTnI: Immunolite DPC 
2000, Siemens Medical Solutions, Malvern, PA; BNP: Axsym, Ab-
bot Labs, Abbot Park, IL; hsCRP: Immulite 2000, Siemens Medical 
Solutions, Malvern, PA; lipid panel: Vitros CHOL, dHDL, and 
TRIG; Ortho-Clinical Diagnostics, Rochester, NY). LDL-choles-
terol was estimated by the Freidewald equation.26 Specific bio-
markers were selected on the basis of their utility in the diagnosis 
and management of human CVD. Lipids were selected because 
they are classic risk factors for ischemic heart disease, and the 
ratio of total cholesterol to HDL-cholesterol is efficient in predict-
ing heart disease in humans.47 hsCRP was selected because it is 
an inflammatory protein accepted as one of the best biomarkers 
for estimating risk of ischemic heart disease in humans.77 BNP 
was selected because it is released secondary to increased cardiac 
wall stress and frequently is elevated in diseases such as systemic 
hypertension,55 valvular disease, rhythm abnormalities, and pul-
monary hypertension;6 BNP also been used successfully to iden-
tify the presence and severity of mitral valve disease and dilated 
cardiomyopathy in dogs.61 CTnI was selected because it is a bio-
marker of myocardial necrosis and is released in association with 
cardiac arrhythmias in laboratory animals60 and numerous other 
cardiac and extracardiac diseases.2,78 Furthermore, both BNP and 
CTnI have been recommended for the study of the left ventricular 
remodeling stage of acute coronary syndromes associated with 
fibrogenic remodeling in humans.76 CVD conditions expected to 
result in elevated levels of CTnI (cardiomyopathy and valve dis-
ease, but not hypertension or arrhythmias) were based on our car-
diologists’ experience and on epidemiologic associations gleaned 
from the human and veterinary literature.10,30,36,40,54,58,59,69

Statistical methods. All statistical modeling and testing were 
conducted with SYSTAT version 11(SYSTAT Software, Inc., 
Richmond,CA). Statistical significance was set at P < 0.05. Bio-
marker level data were evaluated for fit to normal (Gaussian) 
distribution by using the Shapiro–Wilks goodness-of-fit test (P < 
0.05).13,33,38 Box–Cox power series transformation [x′ = (xλ − 1)/λ] 
was used to normalize the data, as recommended,11,33,38,66 by using 
a maximum-likelihood estimation procedure9,33 on the full case–
control data to estimate λ. Transformation efficiency was verified 
by the Anderson–Darling test and by coefficient-based tests.33,38,52 
Outliers were identified by the interquartile method73 and Stu-
dentized residuals.17 Many CTnI values (53% of the severity 
dataset, 62% of the case–control dataset) were below the assay’s 
analytical threshold of detection (0.20 ng/mL). This situation 
is a special case of missing observations, which are common in 
datasets from a wide variety of disciplines including astronomy,23 
environmental toxicology,53 failure time models,45 hydrology,12 
immunology,74 health care,62 occupational health,24 psychology,31 
public health,46,81 and medical studies.7 Datasets that include miss-
ing observations below a detection limit are called ‘left-censored,’ 

Materials and Methods
Animals. All chimpanzees at the study facility (Alamogordo 

Primate Facility, Holloman Air Force Base, New Mexico) are 
maintained in accordance with the Guide for the Care and Use of 
Animals.41 The facility and its program are fully AAALAC-ac-
credited. At the beginning of the study, the facility housed 229 
chimpanzees. Subspecies affiliations were not entirely known, 
but previously uncharacterized African-born founders were de-
termined to be Pan troglodytes verus, as expected.19 Animals were 
maintained in same-sex group housing to comply with the NIH 
breeding moratorium.42 As many as 6 chimpanzees were kept in 
each indoor den (180 ft2, 9.5 ft high) with radiant heated floor and 
air conditioning, 24-h access to outdoor areas (242 ft2, 12 ft high), 
and access to outdoor play yards (802 ft2). All chimpanzees were 
observed every 2 h by veterinarians or experienced, AALAS-cer-
tified technicians for general health, activity levels, elimination, 
exercise tolerance, and recovery rates. Chimpanzees were fed a 
commercial primate diet (Monkey Diet Jumbo 5LR2, Purina Lab, 
Colombia, MO). The enrichment program involved daily fruits 
and vegetables, foraging opportunities, and provision of novelty 
devices and activities designed to simulate naturalistic conditions 
and promote species-typical behavior.

Clinical and cardiac assessment. All chimpanzees were sedated 
(2.5 mg/kg; Telazol, Wyeth, Ft Dodge, IA) and annually received a 
complete physical examination, including CBC and serum chem-
istry (Vetscan, Abaxis, Union City, CA), body weight, abdominal 
ultrasonography (Prosound 5000, Aloka, Tokyo, Japan), tuber-
culosis testing, and dental prophylaxis. Core body temperature, 
heart rate, oxygen saturation, blood pressure assessment, and 
electrocardiography were assessed by using a handheld data ac-
quisition device (Datascope Passport 2, Soma Technology, Bloom-
field, CT). Animals previously identified with structural cardiac 
abnormalities or suspected by our clinical veterinarians of devel-
oping CVD received cardiac examinations by a board-certified 
veterinary cardiologist. The cardiac exam included echocardiog-
raphy (Prosound 5000, Aloka) using a 2.5-mHz sector transducer. 
Complete (including Doppler) serial echocardiography included 
assessment of diastolic left-ventricular wall thickness, diastolic 
and systolic left-ventricular internal diameters, aortic and left 
atrial diameters, and Doppler interrogation (color and spectral) of 
all valves. At the time of the study, 28 (12.2%) of all chimpanzees 
at the facility had clinically been identified as having structural 
cardiac abnormalities, including various forms of cardiomyopa-
thy (n = 8), cardiac arrhythmias (n = 10), systemic hypertension 
(n = 9), and valvular heart disease (n = 1).

Experimental design. The current study had 2 components, the 
first of which was a clinically based analysis of severity of cardio-
vascular conditions. The clinical severity study involved assess-
ment of 17 chimpanzees suspected by our clinical veterinarians 
as having CVD and scheduled for cardiac examination during a 
single 2-d visit by our consulting board-certified veterinary cardi-
ologist (MMS). After evaluation, the cardiologist ordered animals 
by severity, as having normal cardiac structure, mild cardiac re-
modeling, or moderately severe cardiac remodeling. All animals 
were assayed for 2 biomarkers: high-specificity C-reactive protein 
(hsCRP) and cardiac troponin I (CTnI).

The second component was a case–control study, which was 
designed as a follow-up to the clinical severity study and expand-
ed to include both a larger sample size and an expanded panel 
of biomarkers including brain-type natriuretic protein (BNP), 
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the threshold of detection, compared with mild cases or healthy 
animals.

Case–control study. Given the promising results of the clinical 
severity study, all 28 chimpanzees with known cardiovascular 
conditions and 57 control animals were evaluated for all 4 bio-
markers (lipid panel, BNP, hsCRP, and CTnI). Results varied by 
biomarker, with some biomarkers showing a significant differ-
ence between cases and controls, others clearly not, and some 
intermediate (Table 1).

hsCRP showed no differences by sex (F1,79 = 0.271, P = 0.604) or 
decade of life (F1,79 = 0.527, P = 0.592). Case–control status verged 
on statistical significance (F1,79 = 3.656, P = 0.059) but was opposite 
to the expected direction, with CVD cases having lower hsCRP 
levels (0.6 mg/dL) than did heart-healthy controls (1.0 mg/dL).

Cases and controls showed no differences for any component 
of lipid panel. For total cholesterol, there was no effect of sex (F1,81 = 
1.806, P = 0.183) or case–control status (F1,80 = 0.057, P = 0.812). 
Total cholesterol showed a highly significant effect of age (F2,80 = 
5.105, P = 0.008), increasing linearly by decade of life, from the 
teens (192 mg/dL), to the 20s (207 mg/dL), to animals 30 or more 
years of age (229 gm/dL). For HDL cholesterol, there was no ef-
fect of age (F2,80 = 0.133, P = 0.876), sex (F1,80 = 0.623, P = 0.432), or 
case–control status (F1,80 = 0.006, P = 0.941). For LDL cholesterol, 
there was no effect of sex (F1,80 = 0.594, P = 0.443) or case–control 
status (F1,80 = 0.098, P = 0.755), but age was significant (F2,80 = 4.063, 
P = 0.021). As with total cholesterol, mean LDL cholesterol in-
creased linearly by decade, from the teens (106 mg/dL), to the 
20s (118 mg/dL), to animals 30 or more years of age (131 gm/
dL). For triglycerides, there was no effect of case–control status 
(F1,80 = 0.020, P = 0.889), but both age (F2,80 = 9.940, P < 0.000) and 
sex (F1,80 = 4.909, P = 0.030) were significant. Female chimpanzees 
had significantly higher levels of triglycerides (103 mg/dL) than 
did male (82 mg/dL). As with total and LDL-cholesterol, there 
was a significant trend for mean triglycerides to increase linearly 
by decade, from the teens (70 mg/dL), to the 20s (80 mg/dL), to 
animals 30 or more years of age (101 gm/dL). For analysis of the 
ratio of total: HDL cholesterol, we deleted a single outlier (z = 
3.680, P = 0.00042), due to the well-known relationship between 
chronic hepatitis infection and reduced levels of total and HDL 
cholesterol.57,70 Subsequently, neither sex (F1,79 = 0.094, P = 0.760) 
nor case–control status (F1,79 = 0.012, P = 0.914) were significant. 
However, age was significant (F1,79 = 3.422, P = 0.034), and the 
ratio showed the same trend to increase across decade, from the 
teens (2.71), to the 20s (2.87), to animals 30 or more years of age 
(3.12).

BNP showed no significant differences by decade of life (F1,80 = 
0.671, P = 0.514) or sex (F1,80 = 0.107, P = 0.745). In contrast, the 
case–control difference was highly significant (F1,83 = 14.028, P < 
0.000) and explained 14.5% of the variance in serum BNP levels. 
Cases had an expected average of 100 pg/mL BNP (95% confi-
dence interval, 87 to 114 pg/mL), or nearly twice the expected 
average of 55 pg/mL (95% confidence interval, 51 to 60 pg/mL) 
among controls (Figure 1).

Results were mixed for CTnI. ANOVA using the case-deletion 
method showed that neither age (F1,29 = 0.196, P = 0.662) nor case–
control status (F1,29 = 2.250, P = 0.144) was significant. Analysis 
of the simulant datasets indicated that age was not significant 
(F1,81 = 1.382, P = 0.243). Case–control status approached but did 
not achieve significance (F1,81 = 2.954, P = 0.090), with CVD cases 
having slightly higher mean CTnI levels (0.15 ng/mL) than did 

whereas the missing values are referred to as ‘nondetects.’34 Ana-
lytical methods for handling left-censored data include the case 
deletion method, substitution methods, and data imputation.66 
The case deletion method simply excludes nondetects by restrict-
ing analysis to complete cases but is inefficient, results in biased 
parameter estimates, and has reduced power.16,39,80 Substitution 
methods replace all nondetects with a fabricated constant (for ex-
ample, 0, the mean, the detection limit, or half the detection limit) 
but introduce large amounts of bias into the resulting parameter 
estimates.29,35,37 Data imputation is a Monte Carlo technique that 
uses characteristics of the observed data to generate plausible 
simulated values for missing data,16,63 which are simply treated 
as random variability.14,39,63,80 Data imputation methods are highly 
reliable, even with moderate amounts (50% to 60%) of missing 
data and violations of normality.14,46,66,80 Censored data methods 
are reliable for as few as 10 to 20 observations and as much as 
70% to 80% of nondetects.3,29,44 An maximum-likelihood estima-
tion procedure was used to produce robust unbiased estimates of 
the mean and standard deviation of the left-censored CTnI popu-
lation distribution,25 as recommended.28,29,37,44,46,66 Imputed data 
generated from a log-normal distribution67 having the estimated 
maximum-likelihood parameters were substituted randomly for 
all nondetects.67 The number of imputed datasets, m, needed to 
yield an expected bias less than 5% was estimated as m = 6 by 
using the Schafer63 formula for relative efficiency. Imputed data-
sets were evaluated for statistical significance by averaging.21,44,63 
Statistical analyses included ANOVA with the omnibus F-test, the 
nonparametric Kolmogorov–Smirnov 2-way test and Kruskal–
Wallis one-way test, logistic regression for continuous data, and 
contingency table methods for categorical data (above or below 
the detection limit).1,13,34,68 Statistical modeling included age and 
sex as covariates, because they are important determinants of the 
distribution of human and chimpanzee health and disease.20,27 
Biomarker sensitivity and specificity were estimated by using 
standard methods.71

Results
Clinical severity study. We investigated the association between 

2 biomarkers, hsCRP and CTnI, and the severity of cardiovascular 
disease (normal, mild, moderate) in 17 chimpanzees clinically as-
sessed for CVD abnormalities. ANOVA to test for differences in 
biomarker levels between severity groups indicated that hsCRP 
was not associated with disease severity (F2,8 = 1.402, P = 0.301). 
Furthermore, group means were inconsistent with the expected 
trend for hsCRP to increase with disease severity. Specifically, 
mild cases had relatively high median levels of hsCRP (1.1 mg/
dL), whereas moderate cases (0.3 mg/dL) and healthy individu-
als (0.4 mg/dL) had lower (and nearly equal) levels of hsCRP.

For CTnI, analysis of imputed data showed no effect of either 
age (F1,11 = 0.325, P = 0.580) or severity (F2,11 = 1.917, P = 0.223). 
However there was a nonsignificant tendency (0.05 < P < 0.10) 
for median CTnI levels to be about equal between normal (0.12 
mg/dL) and mild severity (0.13 mg/dL), and for both to be less 
that moderate severity (0.26 mg/dL). We cross-classified the CTnI 
data according to whether CTnI levels were below or above the 
threshold of detection, by using a disease severity dichotomy 
(normal or mild severity compared with moderate severity). Re-
sults indicated the presence of a significant association (G2

1 = 4.43, 
P = 0.035) between disease severity and CTnI detection. Moderate 
CVD cases were 4 times more likely to have CTnI values above 
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healthy control) by using the 3 most promising markers (BNP, 
CTnI, hsCRP). Neither CTnI (t = –0.734, P = 0.463) nor hsCRP 
(t = 1.095, P = 0.274) were significant predictors of CVD status, 
but BNP was (t = –2.11, P = 0.034). This result corroborated the 
earlier ANOVA finding of elevated levels of BNP in CVD cases 
compared with controls.

Discussion
Despite chimpanzees’ close phylogenetic and physiologic simi-

larities to humans, cardiomyopathy presents clinically as a dif-
ferent type of disease in chimpanzees and may have different 
underlying disease etiology. Such clinical differences, as well as 
genetic variation between species, can make the search for infor-
mative CVD biomarkers in chimpanzee medicine unpredictable 
purely on the basis of overall phylogenetic similarity to humans.4 
Clinically, human heart disease is predominantly ischemic. In 
chimpanzees, CVD most commonly manifests as sudden cardiac 
death, with postmortem cardiac histopathology characterized by 
variable amounts of interstitial myocardial fibrosis.50,51,65,75 Some 
of the chimpanzees in our CVD group were diagnosed with this 
form of CVD; other forms of heart disease were also represented. 
Neither CRP nor lipid panel significantly predicted the various 
forms of CVD. Results for CTnI were equivocal. Neither the clini-
cal severity study nor the case–control study showed a signifi-
cant quantitative effect, yet both showed a very strong categorical 
effect. BNP was unequivocally significant. This result was not 
surprising, given that circulating BNP levels increase secondary 
to increased cardiac wall tension and heart enlargement, and in-
dividual cases of heart disease with heart enlargement typically 
are defined as more severe than are cases without heart enlarge-
ment. Moreover, BNP is an antifibrotic peptide that, through its 
interaction with connective tissue growth factor, is related to both 
myocardial fibrosis and hypertension.8,48 The missing link in the 
etiology of chimpanzee CVD may well be the lack of reliable ref-
erence values for defining hypertension.19

Methodologically, identification of informative CVD biomark-
ers in the case–control study benefited from a relatively large sam-
ple size. The ANOVA approach to between-group comparison 
allowed identification of BNP’s usefulness in discriminating CVD 
cases from heart-healthy controls. The ANOVA results for BNP 
were confirmed by logistic regression modeling to predict case–
control status. Contingency table modeling demonstrated that 
CTnI significantly distinguished CVD cases from heart-healthy 
controls. In-depth analysis revealed that specific forms of heart 
disease (cardiomyopathy and valve disease, but not hyperten-
sion) were associated with elevated levels of CTnI, as expected. 
Furthermore, ANOVA using multiple imputation methods to cor-
rect for missing CTnI data was marginally significant.

There is a pressing need to develop reliable reference intervals 
for BNP for clinical decision-making. The Harrell–Davis boot-
strap method79 gave a preliminary 90% reference interval for BNP 

healthy controls (0.11 ng/mL). Sex was highly significant (F1,81 = 
5.115, P = 0.026), with male chimpanzees having higher CTnI lev-
els (0.17 ng/mL) than did female (0.10 ng/mL). Nonparametric  
analysis gave similarly nonsignificant results for case–control 
status (Kolmogorov–Smirnov T = 0.274, P = 0.109; Mann–Whitney 
U = 942.5, P = 0.177), although the trend was in the expected di-
rection, with levels in CVD cases (0.20 ng/mL) higher than those 
in heart-healthy controls (0.14 ng/mL). Cross-classification of the 
CTnI data as above or below detection threshold revealed a high-
ly significant association with case–control status (G2

1 = 4.45, P = 
0.035). Chimpanzees with detectable CTnI levels were 2.7 times 
more likely to be CVD cases rather than healthy controls, close-
ly replicating results of the severity study. Furthermore, cross- 
classification of CTnI results by the CVD trichotomy defined by 
the expected effect in raising CTnI levels (healthy controls, ar-
rhythmias or hypertension, cardiomyopathy or valvular disease) 
was even more highly significant (G2

2 = 7.72, P = 0.021). Specifi-
cally, CVD cases with cardiomyopathy or valve disease were 4.8 
times more likely to be above the threshold of detection for CTnI 
compared with CVD cases of hypertension and arrhythmias and 
8.2 times more likely to exceed the threshold of detection than 
were healthy controls. But the equivalent ANOVA model on im-
puted data showed that the CTnI trichotomy was not significant 
(F2,81 = 1.471, P = 0.284). The relatively small differences among 
group means (healthy, 0.11 ng/mL; hypertension and arrhyth-
mias, 0.15 ng/mL; cardiomyopathy and valvular disease, 0.15 
ng/mL) indicated a small effect size. These mixed results sug-
gested that a real effect involving CTnI may have been obscured 
by unquantified subthreshold variation.

ANOVA was useful for detecting between-group differences 
but it effectively conceptualizes causation in reverse, because 
group membership (CVD cases, heart-healthy controls) was al-
ready known, whereas the goal was to identify biomarkers able to 
identify CVD status before it presents clinically. Therefore, logistic 
regression was used to predict disease status (CVD case, heart-

Table 1. Descriptive statistics (mean [95% confidence interval]) for CVD-related biomarkers by case–control status

C-reactive 
protein

Brain natriuretic 
protein

Total choles-
terol Triglyceride

HDL choles-
terol

LDL choles-
terol

Total:HDL choles-
terol

Cardiac 
troponin I

Cases 0.63 
(0.42, 0.97)

100 
(75, 134)

218 
(200, 236)

90 
(79, 104)

73 
(67, 79)

122 
(111, 135)

3.0 
(2.8, 3.2)

0.18 
(0.14, 0.23)

Controls 1.04 
(0.70, 1.53)

61 
(49, 77)

213 
(197, 229)

91 
(80, 107)

71 
(62, 79)

119 
(108, 132)

3.0 
(2.7, 3.4)

0.14 
(0.12, 0.17)

Figure 1. Estimated level (mean, 95% confidence interval) of brain natri-
uretic protein by case–control status.
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tions at low levels of circulating CTnI.56 Moreover, development 
of accurate reference intervals for healthy chimpanzees by using 
a current-generation, more sensitive CTnI assay is needed.72 An 
ongoing prospective cohort study using a larger sample and addi-
tional biomarkers likely will yield more precise recommendations 
for the noninvasive diagnosis and prognosis of CVD in chimpan-
zees. Our long-term goal is to follow the natural course of the 
various heart diseases naturally occurring in chimpanzees and, 
by including postmortem analyses, ultimately obtain the most 
useful and accurate data to predict cardiovascular morbidity.
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