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Sophisticated technologies including serology, culture, histolo-
gy, and PCR are available to evaluate laboratory animals for the 
presence of infectious disease.48 These analyses, albeit expensive 
and labor-intensive, are necessary to ensure that laboratory ro-
dents are free from infectious agents that can interfere with re-
search. In both human and veterinary medicine, the quantitation 
of acute phase proteins (APP) has been proposed to have diagnos-
tic and prognostic utility to study disease and infection.2,11,14,21,26,40 
APP are blood proteins primarily synthesized by hepatocytes as 
part of the complex systemic response termed the acute phase 
response. The acute phase response is part of the early defense 
or innate immune system, which is triggered by various stimuli, 
including trauma, infection, stress, neoplasia, and inflammation. 
The acute phase response has been referred to as the ‘molecular 
thermometer,’ whereby quantitation of specific APP might reflect 
the response to the triggering event.10,14,40,44 To this point, several 
studies have been conducted in companion, laboratory, and large 
animals profiling changes in APP after experimental and natural 
infection.17,18,38,40,45,50

Mice have several major APP that may reflect acute and chronic 
inflammatory processes including C-reactive protein (CRP), 

haptoglobin, serum amyloid P (SAP), and serum amyloid A 
(SAA).20,47 ELISA assays for these proteins are commercially avail-
able. A broader view of the sum of APP changes and the over-
all acute phase response is obtained through the use of protein 
electrophoresis.33 This technique uses an agarose gel to separate 
protein fractions into albumin, α1 globulins, α2 globulins, β glob-
ulins, and γ globulins. Protein electrophoresis does not quantitate 
single proteins but rather groups of proteins that are mediators of 
acute inflammatory process. α1 globulins include α1 antitrypsin 
and α1 acid glycoprotein; α2 globulins include α2 macroglobulin 
and haptoglobin; β globulins include transferrin, SAA, and CRP, 
and γ globulins are composed primarily of IgG.33 Many diagnostic 
and prognostic uses of protein electrophoresis in veterinary medi-
cine have been reported.1,4,12,25,33 Although rarely diagnostic of a 
particular disease, protein electrophoresis is helpful for the detec-
tion of acute and chronic inflammatory processes and stimulation 
of humoral immunity.12,15,33

APP have been proposed to be valuable biochemical markers 
of stress, infection, and pain in laboratory animals.14,42 Previ-
ously, we established normal reference ranges for the protein 
fractions of several laboratory strains of mice by using a com-
mercially available agarose system of protein electrophoresis.54 
The primary goal of the current project was to study the po-
tential changes in APP and protein fractions in laboratory mice 
after experimental infection with viral pathogens. These data 
were compared to those generated by using traditional means 
of inducing acute inflammation with the injection of LPS and 
complete Freund adjuvant (CFA). In addition, we addressed the 
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were inoculated orally with 100 ID50 MPV1e (n = 18) or 1000 
ID50 MPV5 (n = 17). MPV1e and MPV5 were isolated from natu-
rally infected mice, represent 2 distinct genotypes of MPV, and 
were kindly provided by Dr Ken Henderson (Charles River 
Laboratories). On day 2, 7, 14, and 28 after inoculation, at least 
3 mice from each group were euthanized by CO2 inhalation as 
described earlier. Blood samples were collected by cardiocente-
sis, and the resulting sera were stored at −80 °C until use. Re-
sults of multiplex fluorescent immunoassay or quantitative PCR 
(or both) were positive for MPV in all inoculated mice whereas 
mock-inoculated mice were uniformly negative for these assays 
(data not shown).

Twenty C57BL/6 mice (age, 8 to 12 wk) were anesthetized 
with 2,2,2-tribromomethanol (200 mg/kg) and infected intra-
nasally with 250 egg ID50 Sendai virus (Enders strain). Five ad-
ditional mice served as uninfected controls. On days 3, 5, 7, and 
14 after inoculation, 5 mice per group were euthanized with 
an overdose of tribromoethanol, and blood was collected by 
cardiocentesis and collected in a vacuum phlebotomy tube with 
serum separator (BD Biosciences, San Jose, CA). Serum was ob-
tained by centrifugation, and samples were stored at −70 °C 
until analysis.

Other samples were obtained from routine submissions to our 
diagnostic laboratory. These samples were obtained from sentinel 
mice from 2 conventionally maintained facilities with established 
histories of endemic viral and parasitic infection. From one facil-
ity, samples from 15 sentinels were examined after a 3-mo expo-
sure period. From the other facility, samples from 8 sentinel mice 
were examined after a 6-mo exposure period.

Sample handling. Samples from The University of Arizona and 
the Trudeau Institute were shipped on dry ice to the University 
of Miami for analysis.

Protein electrophoresis. Serum samples were analyzed accord-
ing to the manufacturer’s procedure (Paragon SPEP-II Gel Sys-
tem, Beckman, Fullerton, CA). All reagents are prepackaged for 
use with this system. Briefly, all samples were diluted 1:4 in bar-
bital running buffer, and 10 µL was applied to a preprepared 1% 
thin-layer agarose gel by using the plastic template provided. The 
gel was exposed to 100 V for 37 min. After being washed in wa-
ter, the gel was fixed, dried, and stained in Beckman Blue Stain. 
Bands were quantitated by using a densitometer (Beckman). The 
results presented include the percentages of fractions according 
to the densitometric scan as well as absolute values, which were 
obtained by multiplying percentages by the total protein content 
as determined by the biuret method on an automated analyzer 
(Ortho Vitros 250, Rochester, NY). The albumin:globulin ratio was 
calculated by dividing albumin content by the sum of α, β, and 
γ globulins. Representative electrophoretograms can be found in 
our previous publication.54

ELISA for APP quantitation. Commercial ELISA kits for quanti-
tation of SAA, CRP, and haptoglobin were purchased from Life 
Diagnostics (West Chester, PA). The SAP kit was purchased from 
Kamiya Biomedical Company (Seattle, WA). All species-specific 
assays were conducted according to the manufacturer’s instruc-
tions.

Statistical analysis. Mean and standard error were calculated for 
all tests. ANOVA analysis using the Dunnett multiple comparison 
test was used. A P value of 0.05 or less was considered statistically 
significant. All calculations were obtained by using Graph Pad 
Prism 4 software (La Jolla, CA).

possible application of protein fractionation and quantitation 
of APP by using samples from sentinel mice from colonies with 
endemic infection.

Materials and Methods
Animals and housing. All animals were maintained in accor-

dance with the temperature and humidity recommendations of 
the Guide for the Care and Use of Laboratory Animals at the each of 
the facilities.29 All facilities are AAALAC-accredited, and all ex-
perimental procedures were approved by the various universi-
ties’ animal care and use committees.

For the initial study, sentinel mice maintained on dirty bedding 
were screened quarterly through serologic testing for mouse hep-
atitis virus, Sendai virus, Mycoplasma pulmonis, pneumonia virus 
of mice, minute virus of mice, Thieler murine encephalomyelitis 
virus, mouse parvovirus (MPV), mouse rotavirus, lymphocytic 
choriomeningitis virus, and parasitic infections. Once a year, the 
panel was extended to include murine norovirus, ectromelia vi-
rus, K virus, Encephalitozoon cuniculi, polyoma virus, mouse ad-
enovirus, reovirus, murine cytomegalovirus, hantavirus, mouse 
thymic virus, Clostridium piliforme, and cilia-associated respira-
tory bacillus. Helicobacter testing by PCR was also conducted. All 
results were negative during the course of this study. Mice were 
maintained with autoclaved supplies and microisolation cage 
tops.

For the MPV studies, weaned female BALB/cAnNHsd mice 
(Harlan Laboratories, Indianapolis, IN) were obtained. All mice 
were specified to be free of murine viruses, pathogenic bacteria 
and endo- and ectoparasites by the supplier. Mice were housed in 
static microisolation caging, and all animal manipulations were 
performed in a class IIA biological safety cabinet by using stan-
dard microisolation techniques.

For the Sendai studies, C57BL/6 mice originally purchased 
from Jackson Laboratories (Bar Harbor, ME) were rederived and 
maintained for experiments. Sentinel mice maintained on dirty 
bedding were screened quarterly for mouse hepatitis virus, Sen-
dai virus, Mycoplasma pulmonis, pneumonia virus of mice, minute 
virus of mice, Thieler murine encephalomyelitis virus, mouse 
parvovirus, lymphocytic choriomeningitis virus, mouse norovi-
rus, ectromelia virus, polyoma virus, mouse adenovirus, reovirus, 
and Helicobacter spp. All results were negative during the course 
of this study. Mice were housed in microisolation caging on a 
ventilated rack with autoclaved materials.

Injection of LPS and CFA. Sixty female BALB/c mice (age, 12 
wk; Charles River Laboratories, Wilmington, MA) were injected 
intraperitoneally with endotoxin-free water (0.1 mL), LPS (50 µg 
E. coli serotype 0111.B4 in 0.1 mL endotoxin-free water), or CFA 
(0.05 mL endotoxin-free water emulsified in 0.05 mL CFA). All 
reagents were purchased from Sigma (St Louis, MO). All animals 
were examined daily to assess their clinical condition. On days 1, 
2, 4, and 8 after injection, 5 mice per group (control, LPS, or CFA) 
were euthanized by CO2 inhalation and terminally bled by car-
diocentesis. Compressed CO2 was administered to a euthanasia 
chamber at a flow sufficient to induce rapid loss of consciousness 
and death, according to the AVMA Guidelines on euthanasia.3 The 
data presented are representative of 2 individual experiments. Se-
rum was obtained by centrifugation, and samples were stored at 
−80 °C until analysis.

Experimental and natural infection. BALB/c mice (age, 4 wk) 
were designated as control mice (mock-inoculated; n = 14) or 
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the albumin:globulin ratio were present in MPV5-infected mice. 
When we analyzed the same samples for changes in CRP, hapto-
globin, SAP, and SAA, no significant differences were found at 
any time point (data not shown).

Changes in protein fractions in colony sentinel mice. BALB/c 
sentinel mice from 2 different mouse colonies were assessed by 
using routine serologic assays for infectious disease. Sentinels 
from one colony tested positive for both mouse hepatitis virus 
and MPV. Samples from these mice demonstrated significantly 
(P < 0.05) higher levels of α2 and γ globulins (Table 2). Mice from 
the other facility tested positive for mouse hepatitis virus, MPV, 
and murine norovirus as well as pinworms. Samples from these 
mice demonstrated significant (P < 0.05) increases in albumin and 
γ globulins. A subset of mice (n = 4) from the same facility were 
assessed several months after successful treatment for pinworms. 
The elevated γ globulin fraction continued to be observed (data 
not shown). In a separate experiment, sentinels were assessed 
for changes after transfer to a facility free from endemic infec-
tion. After being maintained for 3 mo by using a dirty bedding 
transfer system, no significant differences from baseline values 
in γ globulins were observed in samples for sentinel mice (n = 20, 
data not shown). No significant differences were found for any of 
the samples tested for APP, including CRP, haptoglobin, SAP, and 
SAA (data not shown).

Discussion
In the present study we induced acute inflammation with LPS 

and CFA to examine effects on APP values and protein electro-
phoresis fractions and to provide positive controls for a study 
of infectious agents. LPS, the predominant outer cell wall con-
stituent of gram-negative bacteria, and CFA were chosen for 
their potent inflammatory activity and to provide standards with 
which to compare other results from the experimental infection 
studies.5,23,36,37,51 By ELISA analysis at day 1 after LPS injection, in-
creases in CRP, SAA, SAP, and haptoglobin were observed. These 
changes persisted only through day 2 and are consistent with 
findings by others. For example, 2-dimensional gel analysis of 
serum from mice injected with LPS reflected 20-fold or more in-
creases in haptoglobin, SAA, and SAP.16 Five- to 10-fold increases 
in SAP were reported in many strains of mice 24 h after injection 
of LPS.39 Another study demonstrated 10,000-fold increases in 
serum levels of SAA within 24 h of exposure by the intraperi-
toneal route.23 Haptoglobin levels after LPS injection reportedly 
increased 4-fold during the first 48 h and normalized by 96 h.52

Our protein electrophoresis data are consistent with the current 
and previously published ELISA data, with an increase in the β 
globulin fraction, where CRP migrates, observed on days 1 and 
2 in the LPS group (Figure 1).33 Similarly, α2 globulin increases 
were also apparent on days 1 and 2, with a concomitant increase 
in haptoglobin. A marked decrease in haptoglobin was present on 
day 4 as alpha 2 globulins returned to normal levels. A decrease in 
α1 globulins was observed on day 2, perhaps indicating that this 
fraction contains APP that serve as negative acute phase proteins. 
The relative sensitivities of ELISA versus protein electrophoresis 
methods differ, with quantification of proteins at the ng/mL and 
mg/mL levels, respectively. Therefore, a 10,000-fold increase in 
expression of a single APP might alter protein electrophoresis 
results. Importantly, protein electrophoresis and ELISA are 2 in-
dependent methods with different sensitivities in addressing the 
course of the acute phase response, and protein electrophoresis 

Results
Changes in clinical condition. Animals were examined for 

changes in clinical condition after injection. Mice injected with 
CFA exhibited no noteworthy changes in coat condition or weight. 
Mice injected with LPS were lethargic and had a moderately ruf-
fled coat on day 1 after injection but were visibly recovered by day 
4 and exhibited a normal appearance by day 8. The mice infected 
with MPV and Sendai virus had no changes in clinical condition 
throughout the study.

Changes in protein fractions after injection of LPS and CFA. Pro-
tein electrophoresis was conducted on all samples at several time 
points. On day 1 after injection, the albumin:globulin ratio was 
significantly (P < 0.05) decreased in both groups compared with 
the control group. Concomitant significant increases were ob-
served in α2 (P < 0.05) and γ globulins (P < 0.05) with a decrease 
in albumin (P < 0.01, Figure 1). These changes, including an in-
crease in β globulins (P < 0.05), were observed on day 2 also. By 
day 4, the albumin:globulin ratio continued to be low (P < 0.05) 
and α2 globulins continued to be significantly (P < 0.05) increased 
in the CFA group only. Decreases (P < 0.05) in α1 globulins were 
observed on day 2 for LPS and CFA (P < 0.05) and day 4 for CFA 
only. The albumin:globulin ratio, albumin, and all globulins nor-
malized for all groups by day 8 after injection, and no significant 
differences were present for experimental mice compared with 
control mice.

We also analyzed samples for SAA, CRP, SAP, and haptoglobin 
by ELISA. By day 1, moderate to marked significant increases 
were present in SAA, SAP, CRP, and haptoglobin (P < 0.01 to P 
< 0.05, Figure 2). This increase continued on day 2 for SAA, SAP, 
and haptoglobin (P < 0.01 to P < 0.05). CRP continued to be in-
creased (P < 0.01) with CFA only. Day 4 SAA levels were higher 
(P < 0.05) in the CFA group (162.4 × 102 ng/mL) compared with 
the control group (0 ng/mL). Similar changes were observed with 
SAP (P < 0.01) and haptoglobin (P < 0.01) levels. Levels of all APP 
decreased and no longer differed from control values by day 8 
after injection.

Changes in protein fractions during Sendai infection. Sendai-
infected mice were bled on days 3, 5, 7, and 14 after inoculation. 
Serum albumin on day 3 was decreased significantly, concomi-
tant with an overall decrease in total protein (P < 0.01, Table 1).
 This difference was reflected by decreases (P < 0.05) in α1 and 
α2 globulins.

A significant (P < 0.05) decrease in the albumin:globulin ra-
tio was present on day 14, concurrent with a more than 2-fold 
increase (P < 0.01) in γ globulins. In addition, the same samples 
were analyzed for changes in CRP, haptoglobin, SAP, and SAA. 
No significant differences in APP were observed in the mice, with 
the exception of a transient mild increase (P < 0.05) in haptoglobin 
on day 5 (52.0 ± 1.5 × 103 ng/mL on day 0 compared with 85.0 ± 
11.2 × 103 ng/mL on day 5).

Changes in protein fractions during MPV infection. Mice were 
infected with either MPV1 or MPV5 and bled at multiple time 
points during infection including days 2, 7, 14, and 28. On day 
7, the albumin fraction in the MPV1-infected group was slightly 
but significantly (P < 0.05) decreased compared with that in the 
control group (Figure 3). On day 14, samples from both infected 
groups exhibited significant increases in γ globulins (MPV1, P < 
0.01; MPV5, P < 0.05); this change was also evident on day 28 (P 
< 0.05). On day 28, mild increases in α1 (P < 0.05), α2 (P < 0.01), 
and β globulins (P < 0.01) and a pronounced decrease (P < 0.01) in 
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After venom injection, increases in CRP were observed, with an 
increase in α globulins; increases in β globulin were observed 
when CRP levels had returned to normal.43 In a rat model using 
CFA injection, CRP and haptoglobin were observed at 36 h, when 
α2 and beta globulins were increased.22

Both protein fraction and APP changes have been used to 
characterize experimental models of infection. Previously, mice 
infected with Staphylococcus aureus were found to have a de-
creased albumin:globulin ratio according to protein electropho-
resis techniques from 2 to 3 wk after inoculation.35 In models 
of experimental infection by Trypanosoma spp. which result in 
significant changes in clinical condition, marked increases in 
SAP and haptoglobin were observed.18,41 Increases in α and β 

does not reflect changes of individual APP. Interestingly, similar 
to the ELISA data, protein electrophoresis revealed a significant 
change in the acute phase response as indicated by the decrease in 
the albumin:globulin ratio found as early as day 1. This decrease 
resulted from a decrease in albumin, a negative APP, and increas-
es in α2 globulins.33 Notably, the time frame of these changes par-
alleled the ELISA data as well as the clinical appearance of the 
LPS-injected mice. Similar changes were observed in both the 
APP and protein electrophoresis results of CFA-injected mice.

In contrast to ELISA, which is specific for a single APP, data 
gained from protein electrophoresis provide a view of the overall 
acute phase response. Others have made similar comparisons of 
protein electrophoresis and specific APP quantitation previously. 

Figure 1. Comparison of fraction concentrations and the albumin:globulin ratio in the experimental groups (water, lipopolysaccharide [LPS], CFA) over 
days 1, 2, 4, and 8 after injection. Mean and standard error are shown. *, Value significantly (P ≤ 0.05) decreased from control; #, value significantly (P ≤ 
0.05) increased from control. (A) Albumin. (B) α1 Globulins. (C) α2 Globulins. (D) β Globulins. (E) γ Globulins. (F) Albumin:globulin ratio.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



Changes in serum proteins during infection

267

by day 14, as previously reported.46 In contrast to Sendai virus, 
rodent parvoviruses, especially MPV, are common contaminants 
of rodent colonies.7,9,30 Several studies have suggested that MPV 
may interact with the immune system and result in dysfunc-
tion.30,31 Infection occurs in the intestine, and viral replication 
appears to be decreased with seroconversion, although it may 
persist in lymphoid tissues.6,30,31 Interestingly, we observed in-
creased α and β globulin fractions at day 28 after inoculation. 
The correlation of these changes with viral persistence remains 
to be determined.

In the current study, the animals seroconverted by day  
14 after inoculation. Therefore, in both experimental models 

globulins were observed by paper electrophoresis of serum from 
mice terminally infected with Toxoplasma gondii.45 In the current 
study, we used experimental models of Sendai and MPV infec-
tion. Sendai virus, a type I parainfluenza virus, causes infection 
in the respiratory epithelium and appears to be closely related 
to human parainfluenza virus, which can cause severe respi-
ratory tract infection in children.8,19,24 Infections in laboratory 
animal colonies are usually highly contagious but, according 
to recent reports,8,9,19 are no longer found frequently in rodent 
colonies. In the current model, viral titers peak by day 4 to 6 
and are cleared by day 10.28 Seroconversion of the IgG isotype, 
assessed by routine commercially available ELISA, was found 

Figure 2. Comparison of (A) SAA, (B) CRP, (C) SAP, and (D) haptoglobin (HP) levels as determined by ELISA in the experimental groups (water, LPS, 
CFA) over days 1, 2, 4, and 8 after injection. Mean and standard error are shown. #, Value significantly (P ≤ 0.05) increased from control.

Table 1. Protein electrophoresis fractions (g/dL; mean ± SE) and albumin:globulin (A/G) ratio from control mice and those infected with Sendai 
virus

Sendai-infected mice: day after inoculation

Control Mice Day 3 Day 5 Day 7 Day 14

Albumin 2.82 ± 0.48 1.09 ± 0.35a 2.05 ± 0.11 2.10 ± 0.17 2.37 ± 0.07

α1 Globulin 0.57 ± 0.15 0.21 ± 0.19a 0.33 ± 0.02 0.43 ± 0.04 0.61 ± 0.04

α2 Globulin 0.88 ± 0.20 0.36 ± 0.14a 0.75 ± 0.05 0.79 ± 0.10 0.97 ± 0.03

β Globulin 0.93 ± 0.16 0.51 ± 0.23 0.74 ± 0.04 1.16 ± 0.20 1.04 ± 0.05

γ Globulin 0.12 ± 0.02 0.07 ± 0.03 0.18 ± 0.01 0.17 ± 0.03 0.38 ± 0.03b

Albumin:globulin ratio 1.17 ± 0.06 1.20 ± 0.17 1.03 ± 0.03 0.86 ± 0.08 0.80 ± 0.05a

aSignificantly (P ≤ 0.05) decreased from control (day 0) value
bSignificantly (P ≤ 0.05) increased from control (day 0) value
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In the current study, changes in major acute phase proteins 
were mild, when present. This finding was unexpected given the 
numerous publications in the veterinary literature indicating the 
sensitivity of these assays in the detection of inflammation and 
infection.17,18,20,26,32,38,40,41,45,47 We therefore had hypothesized that 
the induction of an experimental infection would be adequate 
to result in significant increases in major APP, especially during 
the acute stage of infection. However, many of the other studies 
documented changes in the acute phase response or APP of mice 
with acute infection that was often fatal or with infectious agents 
that were highly pathogenic.18,35,41,45 These types of experimen-
tal conditions were not reproduced in the current study. To this 
point, MPV-and Sendai-infected animals were in good clinical 
condition throughout all time points, and no mortality occurred. 
As with the control agents of CFA and LPS used in the current 
study, many studies of rodent APP have been limited to the use of 
acute self-limiting inflammatory agents. CRP, SAA, and SAP are 
markers of acute inflammation which often decrease rapidly (24 
to 72 h) in the absence of continued stimulation, whereas hapto-
globin and other markers have been proposed to be more sensi-
tive of possible chronic changes in some species.17,18,20,26,32,38,40,41,45,47 

(Sendai and MPV), seroconversion occurred with the observed 
increase in γ globulins. Both conventional rodent colonies that 
were assessed have had long-term (more than 5 y) endemic 
infection with numerous agents. Sentinels were assessed 1 to 2 
times annually by routine health screening techniques includ-
ing serology by ELISA and standard parasitology exams. It is 
likely the positive antibody status for some, if not all, the agents 
represented exposure and clearance of the agents, although the 
possibility of persistent infection was not assessed. Notably, 
samples from these sentinels exhibited increased levels of γ 
globulins. Importantly, sentinels maintained with the same 
husbandry protocols but in a facility free of endemic infection 
exhibited no changes in gamma globulins. Given that all the 
specimens examined in the current study also had seroconver-
sion to all the infectious agents, gauging whether the change in 
γ globulins was due to one of the agents (that is, mouse hepa-
titis virus) rather than the group of agents is difficult. Pursu-
ing the use of protein electrophoresis as an adjunct tool would 
require gauging the relative sensitivity and specificity by using 
specimens from colonies with individual or unique groupings 
of infectious agents.

Figure 3. Comparison of fraction concentrations and the albumin:globulin of the mice infected with MPV1 or MPV5 over days 2, 7, 14, and 28 after 
injection. Mean and standard error are shown. *, Value significantly (P ≤ 0.05) decreased from control; #, value significantly (P ≤ 0.05) increased from 
control. (A) Albumin. (B) α1 Globulins. (C) α2 Globulins. (D) β Globulins. (E) γ Globulins. (F) Albumin:globulin ratio.
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be particularly deleterious. Additional studies are required to as-
sess the utility of these approaches. Sentinel strain differences and 
the type of sentinel program including the minimal and maximal 
periods for optimal sentinel housing prior to testing should be ad-
dressed. Successful implementation of this new procedure would 
be dependent on the presence of a sustained increase in γ globu-
lins even with clearance of infection.

Because increases in γ  globulin and changes in the 
albumin:globulin ratio may occur with infection, neoplasia, 
and stress, protein electrophoresis cannot be proposed as a 
replacement for standard diagnostic procedures such as PCR 
and ELISA. Furthermore, the diagnostic application of APP 
in rodents for health screening appears limited in the current 
study. Perhaps γ globulins, acute phase proteins, and other bio-
markers may provide additional information on the status of 
rodent colonies. APP have been proposed as indicators of ‘herd 
health’ in large animals and are described as excellent markers 
of acute and chronic inflammation and stress.14,40,44 Further stud-
ies should address other possible biomarkers as well as extend 
the APP and protein electrophoresis studies in a wider screening 
of other rodent colonies and infectious agents. In addition, these 
diagnostic procedures may have value in the assessment and 
characterization of animal models of disease, stress, and drug 
safety testing.
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