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Klebsiella pneumoniae is a gram-negative member of the Entero-
bacteriaceae family that comprises part of the normal fecal and 
oral flora of many nonhuman primates19 but also has been im-
plicated in cases of peritonitis, septicemia, pneumonia, and men-
ingitis in both Old and New World primates.17,20,37 Over the past 
20 y, strains of invasive K. pneumoniae with a unique hypermu-
coviscosity phenotype (HMV K. pneumoniae) have been reported 
to cause community-acquired primary liver abscesses, meningi-
tis, and endophthalmitis in humans in Taiwan and other Asian 
countries,10, 26-31,33,44,48,51 mostly in people with diabetes mellitus.7,8,44 
In addition, HMV K. pneumoniae has caused clinical disease in 
the United States and other nonAsian countries.18,30,33 The HMV 
phenotype is determined based on a positive string test, which is 
performed by touching a colony with a bacterial loop and gently 
lifting. If a mucoid ‘string’ of at least 5 mm forms, the string test is 
considered positive.3,14,45,51

Capsular serotypes K1 and K2 have been reported as the major 
virulence determinants for human HMV K. pneumoniae liver ab-

scesses.9,15,49,50 The products of the mucoviscosity-associated gene 
(magA), which encodes a structural outer membrane protein of 
the K1 serotype, and the regulator of the mucoid phenotype gene 
(rmpA) have also been proposed as virulence factors.16,34,42,52,53

HMV K. pneumoniae has been reported to cause multisystemic 
abscesses in African green monkeys (Chlorocebus aethiops).45 In 
late 2005 and early 2006, 7 African green monkeys in the research 
colony at our institution, the US Army Medical Research Institute 
for Infectious Diseases, were found to have abscesses in multiple 
locations; all 7 animals either succumbed or were euthanized be-
cause of poor prognosis due to surgically nonresectable abdomi-
nal abscesses.45 The etiology of the final case was determined to 
be HMV K. pneumoniae with the K2 serotype and rmpA, and all 
6 other cases had similar clinical, microbiologic, and pathologic 
characteristics. Prior to the current study, we believe these 7 cases 
were the only documented natural infections attributed specifi-
cally to HMV K. pneumoniae in nonhuman primates.45

As a result of those findings, our institution instituted a policy 
to report K. pneumoniae positive cultures in nonhuman primates 
during quarantine periods and on routine semiannual examina-
tion. Over several months in spring and summer 2008, a group of 
19 macaques tested positive on oropharyngeal or rectal culture 
for HMV K. pneumoniae; 15 of those 19 animals were isolated in 
a single room for 2 to 4 mo to better characterize the infection.3 
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was chlorinated at the municipal level and filtered (Edstrom In-
dustries, Waterford, WI). Environmental enrichment (Challenge 
Ball, Kong, and Hercules Dental Device, Bio-Serv, Frenchtown, 
NJ) was provided, and cages were arranged so that the animals 
were facing each other across the room.

All infected animals were monitored with physical exams, oral 
and rectal cultures, blood chemistry, and CBC were taken ap-
proximately at monthly intervals from first positive culture to the 
start of immunosuppressive treatment. Once the immunosup-
pressive protocol was initiated, physical exam, oral and rectal cul-
ture, blood chemistry, and CBC were performed weekly. Serum 
samples were frozen at –80 °C and saved for proinflammatory 
cytokine profiling.

Immunosuppression. In September 2008, infected macaques 
were divided into 2 groups (immunosuppressed and nonimmu-
nosuppressed) and matched, to the extent possible, by species, 
gender, and genotype of HMV K. pneumoniae infection. Care was 
taken to ensure that the macaques selected for immunosuppres-
sion were currently yielding cultures positive for HMV K. pneu-
moniae, because several animals had repeated negative cultures 
and because we suspected that a few of the macaques had cleared 
the infection.

The immunosuppressed group consisted of 4 infected rhesus 
and 3 infected cynomolgus macaques, which received dexam-
ethasone subcutaneously (2 mg/kg daily for 3 wk then 1 mg/kg 
daily for 4 wk) for a total of 7 wk. Dexamethasone was selected for 
immunosuppression at a dose similar to one used previously to 
induce clinical signs of Lyme disease in nonhuman primates.2,4,36 
The nonimmunosuppressed group consisted of 5 infected rhe-
sus and 3 infected cynomolgus macaques. All infected macaques 
were monitored weekly with physical exam, oral and rectal cul-
ture, blood chemistry, and CBC. Blood cultures were performed 
at the beginning of the study and then daily over a 3-d period at 
its conclusion 7 wk later.

Proinflammatory cytokine profiling of macaques infected with 
HMV K. pneumoniae. Cytokine testing was performed at 2 time 
points. Before immunosuppression, serum was collected once 
from each of 15 infected and 15 noninfected (control) macaques 
that were matched based on species, sex, and approximate 
weight. After the start of immunosuppression, repeated serum 
samples were collected from uninfected controls (3 cynomolgus 
and 4 rhesus macaques), infected immunosuppressed animals (3 
cynomolgus and 4 rhesus macaques), and infected nonimmuno-
suppressed primates (3 cynomolgus and 5 rhesus macaques).

Serum levels were determined by a sandwich immunoassay 
method using a commercially available electrochemiluminescence 
detection kit (Human Proinflammatory 9-Plex Kit, Meso-Scale 
Discovery, Gaithersburg, MD) according to the manufacturer’s 
specifications. The kit assayed the following cytokines: granulo-
cyte–macrophage colony-stimulating factor, IFNγ, IL10, IL12p70, 
IL1β, IL2, IL6, IL8, and TNFα. The data were log10-transformed 
for analysis. After transformation, variables were better fitted to 
assumptions of normality and homogeneity of variance. There-
fore, all comparative analyses are for geometric means.

Before immunosuppression, log10-transformed cytokine data from 
infected (6 cynomolgus and 9 rhesus macaques) and control (6 cy-
nomolgus and 9 rhesus macaques) animals underwent ANOVA us-
ing SAS Version 9.2 (SAS Institute, Cary, NC). Covariate analysis of 
gender and weight was used to determine whether these variables 
should be included in the model. After initiation of drug-induced 

None of the animals showed clinical signs of disease during the 
isolation period, and abdominal palpation failed to suggest the 
presence of abdominal abscesses like those seen in African green 
monkeys. Testing of isolates suggested that the macaques har-
bored subclinical infections and that multiple genotypes of HMV 
K. pneumoniae were present.3

In July 2008, a cynomolgus macaque from the colony that was 
experimentally challenged with monkeypox virus survived be-
yond the normal time-to-death window (12 to 16 d after infection). 
However, on day 22 after infection (6 to 10 d beyond this window), 
this macaque died unexpectedly. Histopathologic analysis of tis-
sues from this NHP revealed a concurrent gram-negative bacte-
rial infection, based on Gram stains and immunohistochemistry. 
Although cultures were not available, PCR analysis of DNA ex-
tracted from formalin-fixed, paraffin-embedded tissues revealed 
the presence of K. pneumoniae through the amplification of rmpA,39 
which is consistent with the HMV phenotype. This animal was 
considered to have survived infection with monkeypox based on 
time to death after infection. Monkeypox is reported to target the 
mononuclear phagocyte system and associated dendritic cells,54 
and we theorized that the monkeypox infection in this macaque 
led to suppression of the immune system, which then allowed 
development of a fatal HMV K. pneumoniae septicemia.

The present project sought to explore the pathophysiology of 
HMV K. pneumoniae in macaques. We hypothesized that immu-
nosuppression of subclinically infected macaques would produce 
lesions similar to those observed in the coinfected macaque. In 
addition, we hypothesized that subclinically infected macaques 
would have a different immune profile from that of noninfected 
primates. We measured and analyzed cytokine levels as an indi-
cation of altered immune status because such a state potentially 
could confound research into immunologic responses and infec-
tious disease.

Materials and Methods
Animals. The animals described in this report were maintained 

in an AAALAC-accredited facility. All research was conducted as 
part of a protocol approved by our institutional animal care and 
use committee and adhered to the Guide for the Care and Use of 
Laboratory Animals.23

After yielding cultures positive for HMV K. pneumoniae, 15 ma-
caques (weight, 3.6 to 7.7 kg; 8 female, 7 male; 9 rhesus macaques 
[Macaca mulatta] and 6 cynomolgus macaques [Macaca fascicu-
laris]) were assigned to a single quarantine room in our facility; 
14 of these animals cultured positive for HMV K. pneumoniae at 
least twice, either on oral or rectal samples or both. PCR analysis 
of positive cultures identified rmpA+/magA–, rmpA–/magA+, and 
rmpA–/magA– strains in positive macaques.3 Each animal was 
clinically normal on physical examination and seronegative for 
cercopithecine herpesvirus 1, simian retrovirus type D, SIV, and 
simian T-lymphotropic leukemia virus. No intestinal parasites 
were detected on fecal examination, either by direct smear or 
fecal flotation. All of the animals were housed individually in 
4.5-ft2 or 6.0-ft2 cages with 4 cages per rack (Allentown Caging 
Equipment, Allentown, NJ), and environmental conditions were 
maintained as recommended in the Guide for the Care and Use of 
Laboratory Animals23 (temperature, 16 to 29 °C; humidity, 30% to 
70%; and 12:12-h light:dark cycle). Animals were fed a standard 
primate diet (8714, Harlan Teklad, Madison, WI) supplemented 
with fruit and other food treats. Fresh water, provided ad libitum, 
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Table 1. Results from HMV K. pneumoniae cultures in macaques

Animal
Culture 

 type

Culture results, by date

04/07 04/28 05/09 05/20 05/28 06/17 07/21 08/18 09/02 09/09 09/16 09/23 09/30 10/07 10/21 10/28 11/03

Rh2a Oral + — + — — + — — — — — — — — + —
Rectal — — + + + + — — + + — — — + — +

Rh3b Oral + — — — — — — — — — — — — — — —
Rectal + + + — + + + — — — — — — — — —

Rh4b,c Oral + — — — — — — — — — — — — — — —
Rectal + + + + — + — — — + — — — — — —

Rh5a,c Oral + + + — + + + + — — + — + — —
Rectal + + + + — + + + + + + + + + +

Rh6b Oral — — — — — — — — — — — — — — —
Rectal + — + — — — — — — — — — — + —

Rh7a Oral + + — — — — + + — — — — — —
Rectal + + + + — + + — + — — + + +

Rh8a,b Oral + — — — — — — + — — — — —
Rectal + + + — + — + — + — — —

Rh9b Oral — + — — — — — — — — — — —
Rectal — — — — — — — — — — — — —

Rh10 Oral — + — — — — + — + + — + —
Rectal — — — — — — — — — — — — +

Cy1b Oral — — — — — — — — — — — — — — — —
Rectal + — + — — — — — — — — — — — — —

Cy2a Oral — — — + + + — — + + — + + — + +
Rectal + + + + + + + + — + — + — + + +

Cy3b Oral + + + + + — — — — — — — — — — —
Rectal — + — — — — — — — — — — — — — —

Cy4a Oral — — — — — — — — — — — — — — — —
Rectal + — + — + — + + — — — — + + + +

Cy5b Oral — — + — — + — — — — — — — — — —
Rectal + + + + + — — — — — — — — — — —

Cy6a,b Oral — — — — — — — — — — — — —
Rectal + + + + + + + + + + — — —

Empty cell, culture not performed; –, culture was negative for HMV K. pneumoniae; +, culture was positive for HMV K. pneumoniae.
Immunosuppressive study began on 09/16/08.
aImmunosuppressed
bNo evidence of HMV K. pneumoniae infection at necropsy, as determined by culture and histopathology
cConcurrent Helicobacter infection identified at necropsy
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Figure 1. Cytokine levels (geometric mean; bar, SEM) in macaques 
before immunosuppression. (A) Cynomolgus macaques showed sig-
nificant (*, P ≤ 0.05) differences between groups for granulocyte–mac-
rophage colony-stimulating factor (GM-CSF), IL10, IL6, and IL8. (B) 
Rhesus macaques showed significant (*, P ≤ 0.05) differences between 
groups for IL6 and IL8.

immunosuppression, ANOVA with stepdown Sidak adjustment for 
multiple comparison was performed using SAS Version 9.2 (SAS 
Institute) on the log10-transformed cytokine data from control (3 cy-
nomolgus and 4 rhesus macaques), infected immunosuppressed (3 
cynomolgus and 4 rhesus macaques), and infected nonimmunosup-
pressed (3 cynomolgus and 5 rhesus macaques) animals.

Pathologic examination. A veterinary pathologist performed 
complete necropsies all 15 culture-positive HMV K. pneumoniae-
infected macaques. Cultures were taken at necropsy from the fol-
lowing sites: tonsil, esophagus, stomach, duodenum, jejunum, 
cecum, ileocecocolic lymph node, and colon. Urine was obtained 
by cystocentesis at necropsy for urinalysis and culture, and heart 
blood was taken for culture. Tissues were preserved in neutral-
buffered 10% formalin, processed conventionally, embedded in 
paraffin, cut into 5-µm sections, and stained with hematoxylin 
and eosin. Special stains, including the standard Lilly Twort stain-
ing method and Warthin–Starry silver stain,11 were used on sam-
ples when indicated. The Lilly Twort staining method consists of 
staining deparaffinized tissue sections in crystal violet for 1 min, 
rinsing, and then staining with Lugol iodine for 1 min. The tissue 
sections were counterstained with neutral red–fast green and cov-
erslipped. The Warthin–Starry silver stain consists of rehydrating 
deparaffinized tissue sections with distilled water and placing 
sections in a 1% silver nitrate solution and heated in a 60 °C wa-
terbath for 30 min. The slides then are flooded with developer 
solution (2% silver nitrate, gelatin, and hydroquinone solution) 
for 15 min. Slides are placed in 56 °C distilled water, dehydrated 
with alcohol and xylenes, and coverslipped.

Results
Animals. According to repeated oropharyngeal or rectal cultures 

(or both) positive for HMV K. pneumoniae, 6 of the 15 macaques 

remained subclinically infected for as long as 7 mo. The remain-
ing 9 macaques, including 2 immunosuppressed animals, ap-
peared to clear the infection by the end of the study (Table 1).
 Physical examinations were unremarkable, with the exception 
of 1 animal that had periodic episodes of diarrhea. The diarrhea 
was self-limiting and lasted for no more than 2 to 3 d at a time. 
In addition, 2 of the immunosuppressed cynomolgus macaques 
began to have some peripheral edema approximately 1 wk before 
euthanasia; one had mild peritesticular edema, and the other had 
moderate peritesticular and mild lower limb edema.

Immunosuppression. Significant (P < 0.05) differences were iden-
tified between infected immunosuppressed and infected nonim-
munosuppressed macaques in several hematology and blood 
chemistry measurements. In the immunosuppressed group, lac-
tate dehydrogenase, potassium, AST, magnesium, and percentage 
neutrophils were increased but total protein, albumin, creatinine, 
percentage eosinophils, percentage basophils, percentage lym-
phocytes, absolute eosinophils, and absolute lymphocytes were 
decreased when compared with the nonimmunosuppressed 
group (data not shown).

Cytokine analysis. The results of the cytokine analysis prior to 
immunosuppression are provided in Figure 1. The animals in 
these experiments were selected because of naturally occurring 
infection; therefore, no randomization based on weight or gender 
could be made before sample collection for cytokine analysis. 
Every effort was made to match weight and sex in the uninfected 
control animals. Statistical analysis was conducted to include the 
variables of weight and gender, which could not have been ac-
counted for in the study design. Cynomolgus macaques showed 
significant (P < 0.05) interactions between group and gender or 
weight for several of the cytokine factors (granulocyte–macro-
phage colony-stimulating factor, IL10, and IL2), and these vari-
ables were included in the comparative group analysis for these 
cytokine factors. Statistically significant (P < 0.05) differences be-
tween groups were detected for granulocyte–macrophage colo-
ny-stimulating factor, IL10, IL6, and IL8. Differences in all other 
cytokine factors were statistically insignificant. Rhesus macaques 
showed no significant interactions between group and gender or 
weight for any of the cytokine factors, therefore these variables 
were excluded from the comparative group analysis. However, 
rhesus macaques did display statistically significant (P < 0.05) 
differences between groups for IL6 and IL8 (Figure 1). No other 
significant differences in cytokine factors were noted.

After immunosuppression, we examined the sera from the un-
infected, infected, and infected–immunosuppressed animals for 
alterations in cytokine secretion. Repeated-measures ANOVA of 
cytokine measurements between treatment groups for each mon-
key species were calculated over time, with stepdown Sidak ad-
justment for multiple comparisons. All cytokine values were log10 
transformed for analysis. After transformation, variables were bet-
ter fitted to assumptions of normality and homogeneity of variance 
required for parametric analysis. Pairwise comparisons were made 
for geometric means of cytokine factors over time for the following 
cynomolgus macaque groups: uninfected controls (n = 3), infected 
animals (n = 3), and infected–immunosuppressed animals (n = 3). 
The pairwise comparison for geometric means of cytokine factors 
over time for rhesus macaque groups included uninfected controls 
(n = 4), infected animals (n = 5), and infected–immunosuppressed 
animals (n = 4). Table 2  provides the results of this analysis, giving 
the P values for the group effect over time, for each pairwise com-
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fasciculata of the adrenal cortex (5 animals; Figure 5). Other 
histologic changes included mediastinal and mesenteric fat ne-
crosis (3 animals), epicardial and subcutaneous fat necrosis (1 
animal), mild interstitial nephritis (1 animal), glycogen-type vac-
uolar change in liver (1 animal), and typhlocolitis with myriad 
gram-negative bacilli and H. pylori gastritis (1 animal; Figure 6).
Findings from microscopic analysis of tissues from the 7 nonim-
munosuppressed macaques included mild to moderate lymphoid 
hyperplasia of multiple lymph nodes, spleen, and gut-associated 
lymphoid tissue (6 animals) and lymphoplasmacytic gastroen-
teritis (1 animal).

Helicobacter was detected in the gastrointestinal tract of 2 infect-
ed macaques (one immunosuppressed and one nonimmunosup-
pressed). Both animals had large numbers of organisms evident 
during histopathologic analysis of silver-stained slides. Diarrhea 
was noted transiently in the immunosuppressed Helicobacter-
infected macaque, and histology revealed lymphoplasmacytic 
gastroenteritis in the nonimmunosuppressed macaque.

Discussion
In light of invasive disease in colony African green monkeys 

that was attributed to infection with HMV K. pneumoniae, the 

parison of the specified cytokines. Cynomolgus macaques showed 
statistically significant (P < 0.05) differences between groups over 
time for IL10 (data not shown) and IL8 (Figure 2). Rhesus ma-
caques demonstrated statistically significant (P < 0.05) differences 
between groups over time for IL8 (Figure 3).

Pathologic analysis. In the 7 immunosuppressed macaques, the 
primary gross pathologic change was the presence of multifocal 
white to chalky areas in abdominal fat (3 of 7 animals) and perit-
esticular edema (2 of 7). Variably present gross changes included 
splenic size reduction, increased abdominal and pericardial fat, 
and decreased lymph node size. Among the 7 nonimmunosup-
pressed macaques, one animal had mild axillary and inguinal 
lymph node enlargement, and another had a small area of hem-
orrhage on the caudal rectum at the level of the uterus. No other 
gross pathologic lesions were noted in any of the nonimmuno-
suppressed macaques. For all infected macaques, no abnormal 
findings were detected on urinalysis of urine obtained by cysto-
centesis at necropsy, and cultures of urine and heart blood were 
negative.

The most significant histologic changes in the 7 immunosup-
pressed macaques were lymphoid atrophy in multiple lymph 
nodes and spleen (5 animals; Figure 4) and atrophy of the zona 

Table 2. P values of pairwise comparison of cytokine factors in macaque sera samples after immunosuppression

Cytokine

Cynomolgus macaques: 
uninfected controls 

compared with

Rhesus macaques: 
uninfected controls 

compared with

All infected  
macaques

Immunosuppressed infected  
macaques

All infected  
macaques

Immunosuppressed infected  
macaques

GM-CSF 0.8765 0.8765 0.9203 0.9389

IFNγ 0.8014 0.9168 0.3368 0.259

IL10 0.0012 0.0429 0.4836 0.4836
IL12p70 0.7403 0.5837 0.9964 0.9964

IL1β 0.999 0.999 0.6248 0.6239

IL2 0.7441 0.7441 0.4396 0.4396
IL6 0.4989 0.7858 0.2674 0.3052
IL8 0.4728 0.0001 0.0001 0.0002

TNFα 0.3312 0.3312 0.9984 0.9984

GM-CSF, granulocyte–macrophage colony-stimulating factor
Bold face indicates significant (P ≤ 0.05) differences between groups.

Figure 3. IL8 levels (geometric mean; bar, SEM) in rhesus macaques af-
ter immunosuppression. Levels differed significantly (P < 0.05) between 
groups.

Figure 2. IL8 levels (geometric mean; bar, SEM) in cynomolgus 
macaques after immunosuppression. Levels differed significantly (P < 
0.05) between groups.
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plays a pivotal role in immunoregulation during viral, bacterial, 
fungal, protozoal, and parasitic infections by tempering Th1 and 
CD8+ T cell responses and preventing the overproduction of IFNγ 
and TNFα that frequently results in severe complications from 
these conditions.12 In some cases, dysregulation of IL10 can result 
in pathogens escaping immunologic control and causing severe 
disease.12

IL6 was originally considered to be a B-cell differentiation fac-
tor. Today, however, it is known to regulate many functions in 
immune response, hematopoiesis, acute phase response, and in-
flammation.24 IL6 can act in either an inflammatory or an antiin-
flammatory capacity, depending on its physiologic environment. 
This cytokine is secreted by macrophages during acute inflam-
mation and by T cells during chronic inflammation; under stress 
conditions, blood serum levels of IL6 can rapidly rise.35 Toll-like 
receptors are important sensor units of the innate immune system 
that can recognize specific antigen patterns of broad classes of 
microbes, and the activation of these receptors induces an intra-
cellular signaling cascade that leads to increased production of 
IL6.35 This process can, in turn, induce the production of other 
inflammatory cytokines, such as IL8. Interestingly, a study in mice 
found that mast-cell–derived IL6 has a protective role against K. 
pneumoniae infection and sepsis and improves intracellular neu-
trophil killing of K. pneumoniae.43

Despite its proinflammatory properties, IL6 probably takes on 
a larger role as an antiinflammatory cytokine, given its ability to 
induce hepatic production of acute-phase proteins. These pro-
teins have a protective effect by limiting inflammation through 
antiprotease and scavenger activities.6 In addition, IL6 helps to 
orchestrate the transition from innate to acquired immune re-
sponses, and it is involved in the cascade that determines whether 
T cells become suppressors or activators of the adaptive immune 
system.25,35 In recent years, dysregulation of IL6 has been reported 
to be an important factor in diseases of chronic inflammation, 
such as obesity and insulin resistance, autoimmune diseases such 
as inflammatory bowel disease and rheumatoid arthritis, and 
inflammation-associated cancers.35

IL8 is a powerful cytokine that is primarily responsible for ac-
tivating neutrophils upon exposure to inflammatory stimuli. It 
is produced by macrophages and many other cell types, includ-
ing epithelial cells, endothelial cells, fibroblasts, keratinocytes, 
synovial cells, chondrocytes, hepatocytes, gastric cancer cells, 
and even neutrophils.1,21,22 As a product of many cell types, IL8 
can arise in any tissue when levels of other inducing cytokines 
are increased; in addition, it is resistant to inactivation and has a 
slow clearance.1 Some of these inducing cytokines are stimulated 
by activation of pattern recognition receptors on the cell surface, 
mainly Toll-like receptors.35 These receptors recognize pathogen-
associated molecular patterns, such as LPS in gram-negative bac-
teria, and induce an intracellular signaling cascade that leads to 
increased production of cytokines, including IL8.35 IL8 has a num-
ber of effects on neutrophils, upregulating responses required for 
migration and phagocytosis. It induces shape change, releases 
lysosomal enzymes, induces respiratory burst, improves adhe-
sion to endothelial cells, and generates hydrogen peroxide and 
superoxide.22 Although the primary function of IL8 is to recruit 
neutrophils to phagocytose antigens, it also induces chemotaxis 
in other cells, including T cells and basophils.22

Although the cytokine alterations in macaques infected with 
HMV K. pneumoniae seem intriguing, assigning clinical signifi-

finding of infected macaques raised concerns about the effect on 
research and possibility of clinical manifestation of disease. In our 
study, a total of 15 macaques were found to be infected with HMV 
K. pneumoniae, and they were isolated and clinically monitored for 
as long as 7 mo.

In an effort to determine some of the potential effects of this 
subclinical infection on infectious disease research, we performed 
assays to determine whether cytokines varied between subclini-
cally infected macaques and uninfected controls. Levels of gran-
ulocyte–macrophage colony-stimulating factor, IL10, IL6, and IL8 
were increased (P < 0.05) in infected cynomolgus macaques, and 
IL6 and IL8 concentrations were increased (P < 0.05) in infected 
rhesus macaques. In addition, IL10 and IL8 levels were increased 
(P < 0.05) in both immunosuppressed and nonimmusuppressed 
cynomolgus macaques, and IL8 was higher (P < 0.05) in immuno-
suppressed and nonimmunosuppressed rhesus macaques com-
pared with uninfected species-matched macaques over time.

The cytokine granulocyte–macrophage colony-stimulating fac-
tor is secreted by activated T cells, mast cells, endothelial cells, 
basophils, and macrophages. It stimulates the growth of he-
matopoietic progenitors, stimulates the phagocytic and intracel-
lular killing mechanisms of neutrophils, increases the phagocytic 
capacity of monocytes and macrophages,13 inhibits differentiation 
of CD34+ progenitor cells into type 2 dendritic cells, and inhibits 
terminal differentiation of mast cells.32 Granulocyte–macrophage 
colony-stimulating factor has a physiologic role in allergic inflam-
mation, helps to modulate pulmonary alveolar macrophage activ-
ity, and has been implicated in transduction of signals promoting 
survival and proliferation of transformed neoplastic cells.32

IL10 is an antiinflammatory interleukin that can downregu-
late cellular immunity by suppressing the production of various 
proinflammatory mediators.46 It is produced primarily by mac-
rophages and to a lesser extent by T cells, monocytes, dendritic 
cells, B cells, eosinophils, mast cells, and keratinocytes.46 IL10 

Figure 4. Mesenteric lymph node from a glucocorticoid -treated 
macaque. Note the diffuse paucity of lymphoid tissue (lymphoid atro-
phy). Hematoxylin and eosin stain; magnification, ×4.
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caques. It was previously determined that multiple genotypes 
of HMV K. pneumoniae were responsible for the subclinical in-
fections in infected nonhuman primates.3 With the exception of 
mild, transient diarrhea that lasted for no more than 2 to 3 d at a 
time and that likely was due to concurrent Helicobacter infection 
in 1 rhesus macaque, no clinical signs of disease were apparent 
in any of the macaques determined to be infected with HMV K. 
pneumoniae.

The immunosuppressive effects of the exogenous glucocorti-
coid (dexamethasone) therapy used in this study have long been 
recognized; however, the mechanism of action of glucocorticoids 
is complex and incompletely characterized. This class of drugs di-
rectly or indirectly regulates the expression of many genes, and its 
inhibition of cytokine production is generally accepted as one of 
the most important factors contributing to glucocorticoid-induced 
immunosuppression.38 Glucocorticoids are reported to inhibit 
the gene transcription of several cytokines, including IL8, by re-
pressing the activity of an essential transcription factor, NFκB.22,47 
Furthermore, despite a dose of dexamethasone higher than one 
reported previously to immunosuppress macaques,36 all immuno-
suppressed macaques in our study still showed higher IL8 levels 
than those of uninfected controls. This finding may help to ex-
plain our inability to elicit clinical signs of disease associated with 
HMV K. pneumoniae with our immunosuppressive protocol, or it 
may point to some poorly characterized mechanism of action of 
glucocorticoids in which IL8 is induced via an indirect pathway 
which is outside the influence of glucocorticoids. It is noteworthy 
that 2 macaques (Rh8 and Cy6 in Table 1) actually cleared the in-
fection while under the effects of immunosuppressive therapy.

In future studies, it would be advantageous to incorporate flu-
orescence-activated cell sorting in an effort to determine which 
populations of cells were altered during dexamethasone admin-
istration. We attribute blood chemistry, hematology, and gross 
and histologic changes directly to the immunosuppressive effects 
of glucocorticoids, including lymphoid atrophy (Figure 1) and 
marked atrophy of the zona fascicularis in the adrenal glands 
(Figure 2). In addition, immunosuppressed macaques showed 
glucocorticoid (or ‘stress’) leukograms.

cance to these effects is difficult due to the extremely complex in-
terrelationships between cytokine production and immunologic 
function. However, many infectious disease studies that focus 
on specific immunologic markers and cytokine influences can be 
disrupted by subclinical infections with organisms such as HMV 
K. pneumoniae, even if the infection does not cause clinical signs of 
disease. Examples of other potentially confounding infections in 
macaques include simian parvoviruses, the polyomavirus simian 
virus 40, and simian lymphocryptoviruses. These viruses cause 
only mild or inapparent clinical disease in immunocompetent 
animals but may result in immunologic dysfunction that compli-
cates many types of immunologic research.5,40,41

The unexpected finding of a macaque that succumbed to a K. 
pneumoniae septicemia after surviving an experimentally induced 
monkeypox infection underscored the need to further character-
ize the disease-causing potential of HMV K. pneumoniae in ma-

Figure 5. Adrenal gland from a glucocorticoid-treated macaque (left) shows diffuse atrophy of zona fascicularis, with only a small portion (boxed area) 
remaining. Adrenal gland from a nonimmunosuppressed macaque (right). F, zona fascicularis; G, zona glomerulosa; R, zona reticularis. Hematoxylin 
and eosin stain; magnification, ×20.

Figure 6. Stomach from a nonimmunosuppressed macaque. Note the 
helical agyrophilic bacteria (arrows) lining the gastric epithelium. 
Warthin–Starry silver stain; magnification, ×40.
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This study is the first to examine the implications of subclinical 
infection with HMV K. pneumoniae in macaques. The subclinical 
infection appeared to have minimal clinical significance in ma-
caques. Despite some suggestion of clinical disease in a macaque 
that was coinfected with monkeypox, we found no evidence of 
clinical disease in infected, glucocorticoid-immunosuppressed 
macaques. However, infected macaques showed significant al-
terations in cytokines as compared with uninfected macaques, 
suggesting poor suitability of animals infected with HMV K. 
pneumoniae for use in immunologic or infectious disease research. 
Further research efforts should focus on characterization of this 
infection in African green monkeys, which are particularly sus-
ceptible.
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