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Approximately 20,000 women are diagnosed with ovarian can-
cer annually, of whom 15,000 are anticipated to die of the disease. 
Ovarian cancer ranks fifth in deaths by all cancers and first in 
cancers of the reproductive system.12 The survival rate of ovarian 
cancer patients improves greatly when the disease is detected 
early,2 but fewer than 20% of ovarian cancers are found at an early 
stage due to the lack of reliable screening methods for early detec-
tion. Because approximately two-thirds of ovarian cancer cases 
are diagnosed in women older than 55 y, the incidence of ovarian 
cancer is increased in peri- and postmenopausal women.12 For 
this reason, research using relevant animal models of menopause 
is needed to advance the understanding of the biology of neo-
plasms in the postmenopausal ovary.

Ovarian cancer can be due to transformation of surface epithe-
lial cells, germ cells, or sex cord and stromal cells. Almost 90% 
of all ovarian cancers are thought to be derived from the flat-to-
cuboidal epithelial cells (that is, the ovarian surface epithelium 
[OSE]) that cover the ovary.6,49 Alternatively, fewer than 5% of 
ovarian cancers are classified as sex cord–stromal tumors, which 
include granulosa cell tumors, and Sertoli–Leydig cell tumors.18 
The incidence of sex cord–stromal ovarian cancers is highest in 

women older than 50 y, but has also been diagnosed in premeno-
pausal women.18 The etiology of ovarian cancer is not completely 
understood, but factors associated with development of the dis-
ease include ovulation, altered levels of gonadotropins (lutein-
izing and follicle-stimulating hormones) and steroid hormones 
(estrogens and androgens), germ-cell or follicle depletion, altered 
expression of oncogenes and tumor suppressor genes, altered 
levels of growth factors and cytokines, and exposure to environ-
mental agents.41

Recently, an ovary-intact mouse model of menopause was de-
veloped by using the occupational chemical 4-vinylcyclohexene 
diepoxide (VCD).24,25,27 Repeated daily dosing of mice and rats 
with VCD selectively destroys ovarian primordial and primary 
follicles by accelerating the natural process of follicular atre-
sia.14,15,42,44 Because VCD does not target larger follicles, the ani-
mal continues to ovulate normally until no more follicles can be 
recruited. Thus, ovarian follicular depletion in the VCD-treated 
mouse is gradual. As with women undergoing perimenopause, 
VCD-treated mice show increased levels of follicle-stimulating 
hormone,27 irregular estrous cycles, and declining levels of estro-
gen24 as they become follicle-depleted. In addition, residual ovar-
ian tissue is retained after ovarian failure. Therefore, preservation 
of residual ovarian tissue in the VCD-treated follicle-depleted 
mouse makes this model ideal for studying the physiology of 
the postmenopausal ovary. The VCD-treated mouse model of 
peri- and postmenopause has been used to study several meno-
pause-related disorders including atherosclerotic lesion develop-
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Phoenix, AZ) was applied over the incision to prevent reopening 
of the wound in case the sutures became undone. The left ovary 
was not injected and was used as an untreated contralateral con-
trol.

Tissue collection. Animals were euthanized by CO2 inhalation 
followed by cervical dislocation. Both ovaries were dissected, 
trimmed of fat, and separately fixed in 4% formalin for subse-
quent embedding, sectioning, and staining.

Hematoxylin and eosin staining. Ovaries were trimmed, placed 
in 4% formalin for 4 h, transferred to 70% ethanol, and paraffin-
embedded. Each ovary was sectioned (4 to 5 µm) and mounted, 
and every 10th section was saved and stained with hematoxylin 
and eosin. Additional unstained ovarian sections were used for 
immunohistochemical staining.

Immunohistochemistry. Immunohistochemistry was performed 
by incubating sections in an automatic immunostainer (ES im-
munostainer, Ventana Medical Systems, Tucson, AZ) for 24 min. 
A keratin 7 stain (Dako, Carpenteria, CA) was used to label ovar-
ian surface epithelial cells, and inhibin α (anti-inhibin clone R1, 
Dako) was used to stain steroidogenic sex-cord–stromal cellular 
components within tumors. Antibody application was followed 
by treatment with a biotin-conjugated goat antimouse antibody, 
avidin-D–conjugated horseradish peroxidase, and then 3′,3′-di-
aminobenzidine tetrahydrochloride with copper enhancement as 
color substrate. Hematoxylin was used as the counterstain. After 
clearing in graded alcohols and xylene, slides were coverslipped. 
Dark brown structures indicated positive staining.

Statistical analysis. Data for the incidence of ovarian neoplasms 
were analyzed by using the Fisher exact test (SPSS Statistics v17.0, 
Chicago, IL), with significance set at a P value of less than 0.05.

Results
Incidence of ovarian neoplasms. The effect of direct application 

of vehicle or DMBA under the bursa of the right ovary of VCD-
treated follicle-depleted mice and age-matched cycling controls 
was evaluated histologically at 3 or 5 mo after surgery (Figure 
1). No tumors were identified in any of the cycling control mice 
(VCD–DMBA– and VCD–DMBA+ groups) at either time point. 
At 3 mo after injection, 1 of the 8 (12.5%) follicle-depleted mice 
that received DMBA (VCD+DMBA+ group) showed ovarian neo-
plasms in the injected (right) ovary. This number was increased 
to 4 of the 7 (57.1%) VCD+DMBA+ mice at 5 mo after injection. 
In comparison, 1 of the 7 (14.3%) VCD-treated follicle-depleted 
mice that received vehicle (VCD+DMBA– group) had ovarian 
neoplasia in the right ovary at the 5-mo time point. All ovarian 
tumors at the 5-mo time point occurred in the injected ovary. In 
addition, at 3 mo, there were 2 cases (1 each in the VCD+DMBA– 
and VCD+DMBA+ groups) of spontaneous (nonDMBA-induced) 
ovarian tumors in the contralateral, noninjected (left) ovary. Mice 
with neoplasms in the left ovary did not also have neoplasms in 
the right ovary and therefore were not included in the incidence 
data.

Morphologic features of ovaries. Sections from the ovaries of 
VCD-treated follicle-depleted mice and age-matched cycling 
controls collected at 3 and 5 mo after injection with vehicle or 
DMBA were stained with hematoxylin and eosin (Figures 2 to 
4). At 3 mo, ovaries from VCD–DMBA– mice appeared normal, 
with evidence of ongoing folliculogenesis as demonstrated by the 
presence of preantral and antral follicles as well as corpora lutea 
and rare atretic follicles (Figure 2 A). In contrast, VCD–DMBA+ 

ment,28 diabetic kidney disease,20 osteoporosis,51 and metabolic 
syndrome.39 Because the VCD-treated mouse has been shown 
to be relevant for studies related to both perimenopausal and 
postmenopausal stages,50 it is a useful candidate for studies of 
ovarian cancer.

Even though spontaneous ovarian tumors in rodents have been 
reported,36 the paucity of these cases precludes their use in mod-
eling ovarian cancer. Therefore, much effort has been put into 
developing relevant animal models for ovarian cancers. One such 
model involves the use of the carcinogen 7,12-dimethylbenz[a]
anthracene (DMBA),8,21,23,43 a polycyclic aromatic hydrocarbon 
that induces carcinogenic mutations by forming DNA adducts.9 
Recently, the DMBA model of carcinogenesis has been combined 
with the VCD model of menopause to cause ovarian cancer in 
F344 rats.13,19 However, no studies have characterized the com-
bined use of both chemicals in mice. Developing this combined 
model in mice is important because of the existence of various 
genetically engineered mice that have potential relevance to en-
hancing our understanding of the biology of ovarian cancer.

The present study was designed to determine whether ovarian 
failure affects susceptibility to the development of ovarian neo-
plasms in mice and to model DMBA-induced ovarian neoplasia in 
VCD-treated follicle-depleted mice. VCD-treated follicle-depleted 
mice and cycling controls received ovarian injections with DMBA 
to induce neoplasia. The incidence of neoplasms was determined 
by histologic evaluation, and the lesions were classified through 
immunostaining for keratin 7 and inhibin α.

Materials and Methods
Animals. Female B6C3F1 mice (age, 21 d) were purchased from 

Jackson Laboratories (Bar Harbor, ME). On arrival, mice were 
housed under SPF conditions in polycarbonate plastic cages at 
a room temperature of 22 ± 2 °C and on 12:12-h light:dark cycles 
and were fed ad libitum. Animals were certified free of Mycoplas-
ma pulmonis, ecto- and endoparasites, and mouse hepatitis virus, 
minute virus of mice, mouse parvovirus, murine norovirus, rota-
virus, Theiler murine encephalomyelitis virus, and Sendai virus. 
All mice were allowed to acclimate to the animal facilities for 1 
wk before the start of the experiment. All experiments and meth-
ods were approved by the University of Arizona Institutional 
Animal Care and Use Committee and conformed to the Guide for 
the Care and Use of Experimental Animals.16

VCD-induced ovarian failure. Mice were allocated randomly 
into treatment groups and received daily intraperitoneal injec-
tions of VCD (in sesame oil; 160 mg/kg; Sigma–Aldrich, St Louis, 
MO) or sesame oil only (2.5 mL/kg; Sigma-Aldrich) for 20 d.

Intrabursal injections. Mice received intraperitoneal ketamine–
xylazine (16 µL/g body weight; Ketaject, Phoenix Pharmaceutical, 
St Joseph, MO, and AnaSed, Lloyd Pharmaceuticals, Shenandoah, 
IA), and anesthesia was defined by cessation of movement, re-
cumbency, and lack of response to aversive stimulation of paw 
and tail. The right flank of each animal was shaved and the skin 
cleaned with povidone iodine and 70% ethanol. An incision was 
made through the skin, fascia, and abdominal wall, and the ovary 
was externalized. DMBA (in sesame oil; 50 μg; Sigma–Aldrich) or 
an equivalent volume of sesame oil only (Sigma-Aldrich) was in-
jected directly under the bursa, the thin membrane that surrounds 
the ovary. The muscle wall was closed by using 6-0 braided silk 
suture, and the skin was closed by using 3-0 braided silk suture. 
Surgical glue (Tissumend II, Veterinary Products Laboratories, 
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of DMBA (or vehicle only as a control), and the incidence of neo-
plasms was determined. In the present study, a single direct ap-
plication of DMBA into the intrabursal space of the right ovary 
of VCD-treated follicle-depleted mice resulted in neoplasms in 
12.5% and 57.1% of the mice at 3 and 5 mo after injection, respec-
tively, whereas no neoplasms were identified in the right ovary of 
either VCD–DMBA+ or VCD–DMBA– cycling controls (at 3 or 5 
mo) or VCD+DMBA– mice (3 mo). In addition, spontaneous tu-
mors were identified in the right ovary only and left ovary only of 
2 individual VCD+DMBA– mice (at 5 mo and 3 mo, respectively) 
and in the left ovary of a VCD+DMBA+ mouse (at 3 mo).

We performed immunohistochemical analysis to assist in clas-
sification of the tumors observed in this study. Keratin 7 was used 
as a marker for the OSE, and inhibin α was used to label sex-cord–
stromal tumors.29 All neoplasms were positive for inhibin α (both 
Sertoli- and Leydig-like components) and negative for keratin 7 
(only present in OSE). Therefore, together with the morphologic 
data obtained from histologic evaluation, immunohistochemistry 
confirmed that the neoplasms in our mice were Sertoli–Leydig-
cell tumors. These tumors are members of the sex-cord–stromal 
tumor family, which represents fewer than 5% of ovarian cancers 
in women.18,22 Sertoli–Leydig-cell tumors have also been identified 
in VCD-treated follicle-depleted F344 rats treated with DMBA13 
and aging follicle-stimulating-hormone receptor knockout mice 
with ovarian failure (FORKO mice).10 However, the present study 
is the first to describe the development of DMBA-induced Sertoli–
Leydig-cell tumors in VCD-treated follicle-depleted wild-type 
mice.

Studies evaluating the DMBA model of ovarian carcinogenesis 
traditionally have focused on using rats rather than mice.8,13,19,43 
However, the few reports available on overall DMBA-induced 
carcinogenesis in mice have shown reproducible ovarian neo-
plasms despite differences in methods of delivery (gavage versus 
coated suture), dosage, length of exposure, and length of time 
before collection of tissues. In one study, C57BL6/129Sv mice 
received daily doses of DMBA by gavage for 3 wk; 71% of ani-
mals developed granulosa cell tumors after 1 y.5 In another study, 
mice of a C57BL6/NCr;Sv129;FVB/NCr background received a 
weekly dose of DMBA by gavage for 6 wk; 6 mo after treatment, 
27.3% (12 of 44) of mice developed ovarian neoplasms, of which 
58% were granulosa cell tumors.35 Recently, a study assessing 
the incidence of cancers in mice with a germline p53 mutation 
found that 80% of wild-type (AJ background) mice that received 
implants of DMBA-coated suture into their ovaries developed 
ovarian tumors, of which 50% were adenocarcinomas (malig-
nant, epithelial-derived) when evaluated 3 mo after application 
of implants.48

In the present study, none of the cycling animals exposed to 
DMBA developed ovarian neoplasms but rather experienced fol-
licle loss. DMBA targets ovarian follicles of all types and causes 
premature ovarian failure.26 Therefore, decreased folliculogen-
esis in VCD–DMBA+ mice in the current study is likely the re-
sult of ovotoxicity from the single intrabursal injection of DMBA 
that they received. In contrast, other studies have documented 
the presence of DMBA-induced tumors in ovaries of cycling 
mice.5,35,48 The reason for the lack of ovarian neoplasms in VCD–
DMBA+ mice in the present study is not understood but may 
reflect the limited exposure to DMBA as compared with that of 
other studies. Perhaps neoplasms were more frequent in VCD+ 
mice because of the increased levels of luteinizing hormone (po-

ovaries showed markedly less folliculogenesis as evidenced by 
fewer follicles of all sizes, fewer corpora lutea, and more atret-
ic follicles at both time points (Figure 2 B). At 5 mo after injec-
tion, VCD–DMBA+ ovaries showed no evidence of ovulation 
(no corpora lutea) and few follicles (Figure 2 C). As expected for 
follicle-depleted mice, VCD+DMBA– and VCD+DMBA+ ova-
ries showed no folliculogenesis and numerous luteinized stro-
mal cells (Figure 2 D and E). Ovaries from VCD+DMBA+ mice in 
which neoplasms were identified showed predominant clusters 
of Sertoli-like and Leydig-like cells, aggregates of larger lutein-
ized cells forming sex cord tumors of intermediate differentiation 
which, in some cases, replaced normal ovarian tissue (Figure 3 A 
through E). In addition, both ovaries of all VCD-treated mice had 
numerous invaginations of the OSE and outer cortex of the ovary 
(also known as ovarian epithelial hyperplasia and benign tubular 
adenomas;1 Figure 4 A through C).

Immunohistochemical staining. Whereas OSE-derived cancers 
stain positive for the intermediate filament protein keratin 7, sex-
cord–stromal tumors stain positive for inhibin α.29 To facilitate 
classification of tumor origin, immunohistochemistry for inhibin 
α (Figure 5 A) and keratin 7 (Figure 5 B) was performed. Positive 
staining for inhibin α was particularly strong in Sertoli-like cells 
and weak or absent in Leydig-like cells, thus confirming classifi-
cation of tumors as Sertoli–Leydig cell tumors (Figure 5 A). Fur-
ther, all neoplasms were negative for keratin 7 (data not shown). 
OSE and tubular adenomas were positive for keratin 7 (Figure 5 
B) and negative for inhibin α (data not shown).

Discussion
This study was designed to determine whether ovarian failure 

affects susceptibility to development of ovarian neoplasms in 
mice and to further characterize DMBA-induced ovarian neo-
plasia in the VCD-treated follicle-depleted mouse. To accomplish 
this goal, VCD-treated follicle-depleted mice and age-matched 
cycling controls received single unilateral intrabursal injections 

Figure 1. Incidence of ovarian neoplasms in VCD-treated follicle-deplet-
ed mice compared with age-matched cycling controls. Ovaries were re-
moved 3 or 5 mo after injection and processed for histologic evaluation. 
Data are presented as percentage (%) of animals with neoplasms relative 
to the total number evaluated. The numbers over each bar represent the 
actual number of animals with neoplasms / actual total animals in the 
treatment group. Different letters indicate significant (P < 0.05; n = 7 to 8 
per group) difference in incidence between groups.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



Sertoli–Leydig cell tumors in VCD-treated follicle-depleted mice

13

Figure 2. Ovaries collected at 3 and 5 mo after intrabursal injection with DMBA. Ovaries were removed 3 or 5 mo postinjection and processed for his-
tological evaluation as described in Materials and Methods. (A) VCD–DMBA– ovary at 3 mo shows evidence of folliculogenesis (arrows, follicles) and 
ovulations (CL, corpus luteum). (B) VCD–DMBA+ ovary at 3 mo shows decreased number of follicles (arrows) and corpora lutea. (C) VCD–DMBA+ at 
5 mo showing lack of follicles and corpora lutea. (D and E) VCD+DMBA– ovaries showing examples of tubular adenoma (black arrows) and luteinized 
stromal cells. (F) VCD+DMBA+ ovary showing a tumor that has replaced normal ovarian tissue. Hematoxylin and eosin stain; magnification, ×4 (bar, 
500 µm). Panels A and F were constructed by combining overlapping images.
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Figure 3. Sections from tumor-containing ovaries at 5 mo after injection. (A) VCD+DMBA+ ovary shows a large Sertoli–Leydig-cell tumor (black 
square; magnification, ×4). (B and C) Higher-magnification images (B, magnification: ×10; C, magnification, ×20) showing the Sertoli- (white arrows) 
and Leydig cell-like (black arrows) components of the tumor shown in panel A. (D) VCD+DMBA+ ovary with Sertoli–Leydig-cell tumor where Sertoli-
like cells have invaded the entire ovary (same as shown in Figure 2 F). Magnification, ×10. (E) Higher-magnification image (×20) of ovary in panel D 
showing the Sertoli- (white arrows) and Leydig- (black arrows) like components. Hematoxylin and eosin stain. Scale bars: A, 500 µm; B and D, 200 µm; 
and C and E, 100 µm.
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tential stimulation to the ovarian stroma) that accompany ovar-
ian failure. Depletion of ovarian follicles and oocytes has been 
hypothesized to cause ovarian tumors in animal models of pre-
mature ovarian failure.46 Therefore, because the current study 
represents the first time that DMBA-induced ovarian neoplasms 
have been induced in follicle-depleted mice, the number of tumor 
cases among VCD+DMBA– mice may represent a baseline inci-
dence for ovarian neoplasms in mice with ovarian failure rather 
than as a direct effect of previous VCD exposure.

Alternatively, increased expression of microsomal epoxide hy-
drolase mRNA (Ephx1 or mEH) is highly enriched in the residual 
ovarian tissue of VCD-treated follicle-depleted mice when com-
pared with age-matched cycling controls.38 The epoxide hydro-
lase 1 enzyme, together with CYP1A1 and CYP1B1, is involved in 
the bioactivation pathway of DMBA to its final ovotoxic 3,4-diol-

Figure 4. Sections from ovaries containing tubular adenomas at 3 mo 
after injection. (A) Ovary containing a tubular adenoma (magnification, 
×10; bar, 200 µm). (B) Same tumor as in panel A (magnification, ×20; bar, 
100 µm). (C) Tubular adenoma with inclusion cysts (magnification, ×40; 
bar, 100 µm). White arrowhead shows the presence of inclusions. The 
larger pink cells are background luteinized stromal cells. Hematoxylin 
and eosin stain.

Figure 5. Immunohistochemical staining of ovarian neoplasms present 
in VCD-treated follicle-depleted ovaries 5 mo after intrabursal injection 
with DMBA. All ovaries are from VCD+DMBA+ mice with Sertoli–Ley-
dig-cell tumors. (A) Tumor with strong dark-brown staining for inhibin 
α in Sertoli-like cells (black arrowheads) and weak or absent staining 
in Leydig-like cells (black thin arrows). (B) Tubular adenoma showing 
dark-brown positive staining for keratin 7 (black thin arrows) and back-
ground luteinized stromal cells lacking staining but with inclusions (ar-
rowheads). Magnification, ×10; bar, 200 µm.
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1,2-epoxide metabolite.11,31 Although epoxide hydrolase 1 is not 
the rate-limiting enzyme in this pathway, its increased levels in 
VCD-treated follicle-depleted ovaries may impart increased sus-
ceptibility to toxicity by DMBA. Furthermore, the possibility that 
VCD acts as an initiating agent that makes ovarian tissue more 
susceptible to developing neoplasms must also be considered.

Ovarian cancer has been termed a disease of the postmeno-
pausal stage22 because the incidence increases with age and peaks 
during the postmenopausal years.12 Among the risk factors for 
ovarian cancer are germ cell depletion, increased levels of gonad-
otropins, and altered levels of estrogens and androgens.41 These 
risk factors develop or undergo marked changes during and after 
the menopausal transition3,4,41 and occur in VCD-treated mice as 
they undergo ovarian failure.24,25,27 One interesting finding from 
the current study is the presence of invaginations of the ovarian 
surface epithelium in both ovaries of all VCD-treated follicle-de-
pleted animals (benign tubular adenomas). This phenomenon has 
been described previously in both humans40 and animal models 
with premature ovarian failure.17,32,34,47 Studies in Wx/Wv (which 
have altered Kit genes30,37) and Sl/Slt and Sl/Sld mice (which have 
mutant Kitl genes7,17) show that these mice undergo premature 
ovarian failure accompanied by changes in OSE morphology and 
increased stromal invagination17,32,47 leading to tubular adenomas. 
In those animals, lack of follicles leads to decreased levels of estro-
gen and progesterone, resulting in decreased negative feedback 
on the secretion of luteinizing and follicle-stimulating hormones 
and causing their levels to rise.33 High levels of luteinizing hor-
mone can lead to increased stimulation of the stromal compart-
ment, stromal cell hypertrophy, and luteinization. Furthermore, 
advanced ovarian failure in mice leads to migration of OSE cells 
into the ovarian stroma and altered epithelial–stromal cell inter-
actions. These changes are thought to result in increased suscep-
tibility to malignant transformation46 by stimulation of OSE cells 
by androgens produced from tubular adenomas.45 Moreover, an 
increased incidence of OSE pseudostratification, papillomato-
sis, deep cortical invaginations, epithelial inclusion cysts, and 
increased stromal activity has been noted in women with a family 
history of ovarian cancer when compared with women with no 
history of the disease.40 Therefore, the observation of benign tu-
bular adenomas in both ovaries of VCD-treated follicle-depleted 
mice (with or without DMBA treatment) supports the idea that 
this phenomenon is associated with ovarian failure and that these 
changes may precede ovarian neoplasia in these mice.

In summary, results of this study support previous reports 
predicting an increased risk for the development of ovarian neo-
plasms after ovarian failure. Compared with that in cycling ani-
mals, follicle depletion and the resulting altered hormonal milieu 
may predispose mice to the development of ovarian neoplasms. 
Although our mice did not develop neoplasms of epithelial ori-
gin (the most common ovarian tumors in humans), the marked 
stratification of OSE cells and invaginations of OSE cells into the 
stromal compartment (tubular adenomas) present in VCD-treated 
follicle-depleted mice indicate potential early changes leading to 
future neoplasms. All tumors observed in this study were Serto-
li–Leydig-cell tumors, thus providing a mouse model for post-
menopausal sex-cord–stromal tumors of the Sertoli–Leydig type. 
Therefore, the present study supports a relevant contribution of 
the VCD-treated mouse model to the study of ovarian cancer as a 
menopause-related pathology.
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