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During the 19th and early 20th centuries, the guinea pig (Cavea 
porcellus) was a popular experimental animal for studying preva-
lent bacterial diseases such as tuberculosis153 and diphtheria,287 
both of which efforts led to Nobel Prizes. Furthermore, had it 
not been for the guinea pig, the famous bacteriologist Dr. Robert 
Koch may not have developed his 5 postulates of infectious dis-
ease etiology, which are essential prerequisites for identifying the 
causative agent of infectious disease. Since then, the guinea pig 
has been invaluable in the study of a range of human bacterial 
diseases (Table 1), including pulmonary, sexually transmitted, 
ocular and aural, gastrointestinal, and other, threatening and of-
ten fatal diseases as well as the discovery of potential treatments 
and prevention opportunities to combat infection. With respect to 
the pathophysiologic and immune response to these diseases, the 
guinea pig, recently designated a nonrodent species,60,108 is often 
more representative of human infection than models such as the 
mouse.38,39,65,113 The guinea pig also shares similarity with the hu-
man with regard to hormonal and immunologic responses (that 
is, thymic and bone marrow physiology, innate immunology, 
and the complement system65,120,121,177,307,328), pulmonary physiol-
ogy,185 corticosteroid response,56 need for an exogenous source of 
vitamin C,97 and demonstration of delayed-type hypersensitivity 
(DTH) reaction after exposure to infection (for example, tubercu-
losis103,177).

Despite its use in a large number of investigations, a compre-
hensive review of the guinea pig as a model for bacteria-causing 
diseases has never been conducted. Therefore, in the present re-
port, a selection of 5 bacterial diseases for which the guinea pig 

has been the animal model of choice will be discussed. This dis-
cussion will be followed by a summary of what is known about 
the genetics, immunology, and immunologic reagents and assays 
relating to the guinea pig. However, use of the guinea pig may 
also be limited by the fact that the guinea pig is more expensive 
than other small animal models (that is, murine), and guinea pig 
immunologic reagents are insufficient (for example, cytokine 
and lymphocyte marker antibodies and antibody assay sys-
tems).177,178,197,210,214 Unlike the mouse, gene deletion technology (for 
example, gene knockout and knock-in, and transgene expression) 
is not available for the guinea pig, and the guinea pig’s genome 
has not been fully elucidated. Both reagents and genetic informa-
tion are vital for the assessment and understanding of particu-
lar phenomena such as pathology of infection, DTH responses, 
macrophage activation, T cell proliferation, cytokine production, 
bacterial virulence, and host resistance. In addition, the develop-
ment and evaluation of treatments, vaccines, and diagnostic tests 
for these bacterial diseases could be developed more rapidly and 
efficiently with the availability of this information.

Pulmonary Diseases
Tuberculosis. Tuberculosis (Mycobacterium tuberculosis) is one of 

the most important bacterial diseases characterized in the guinea 
pig.177,182 The guinea pig model of tuberculosis is created by ex-
posing the animal to a low-dose aerosol of bacilli (10 to 50 CFU), 
mimicking human transmission. Indeed, unlike other animal 
models (for example, mouse), substantial research suggests that 
the guinea pig is a suitable model of primary human tuberculosis 
because of its extreme susceptibility to the infection, similar symp-
toms and pathophysiology, DTH response, excellent response to 
standard oral chemotherapies, and demonstrated protection from 
infection when administered the bacille Calmette–Guérin (BCG) 
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be more rapid if a larger array of monoclonal antibodies and im-
munologic probes were made specifically for the guinea pig, fol-
lowed by the development and validation of biomarkers for drug 
resistance in these animals.

In addition to finding an appropriate vaccine and treatment, 
the greatest challenge has been full elucidation of the immune 
response to infection and the basis for the protective effects of the 
BCG vaccine in the guinea pig. Many researchers have argued 
that the failure to perform adequate immunologic studies on the 
tuberculosis-infected guinea pig is the result of lack of sufficient 
immunologic reagents for this species.177,178,210,214 Therefore, some 
investigators have met this challenge by conducting bioassays,84,321 
developing recombinant forms for various cytokines,52,54,136,160,168 
and producing antibodies160,168,318 and antiserum160 against these 
immune mediators. Others have used molecular techniques such 
as real-time PCR to determine cytokine and chemokine mRNA 
levels,3,144,319 semiquantitative PCR to extract RNA,152,207 and South-
ern65 and Northern blot analyses to study gene expression.137,138 
More recently, an oligonucleotide microarray for splenocytes of 
naïve and BCG-treated guinea pigs has been developed.280 The 
microarray has the advantage of providing information (that is, 
mRNA expression data) for a large number of cytokines and im-
munologically related genes. Findings from these procedures in 
the guinea pig model reveal that both the innate and adaptive 
immune systems, alveolar macrophages,183,329 neutrophils, eo-
sinophils,161 T cells (for example, Tγ, Tµ, CD2+, CD3+, CD4+, and 
CD8+ T-helper cells10-12,61,107,120,138,152,169,180,181,281), and numerous cy-
tokines and chemokines are important regulators of the immune 
response to tuberculosis and granuloma formation in both the 
human and the guinea pig (Figure 1).

Legionnaires disease. The study of another pulmonary infection, 
Legionnaires disease, increased in the 1980s after the infamous 
1976 outbreak in Philadelphia, when approximately 220 people 
attending an American Legion convention began exhibiting 
pneumonia-like symptoms, and 34 of these patients died. During 
this period, the organism, Legionella pneumophila Philadelphia 1 
(serogroup 1), was first recognized as the infectious agent in the 
guinea pig.176 Use of the guinea pig as a model to study this dis-
ease gained further recognition because of its intense susceptibil-
ity to the bacterium compared with that of rodent species232,322,327 
and similar pathologic development and resulting symptoms as 
those of infected humans.66,67,112 Before the development of more 
sophisticated techniques, the guinea pig was used to isolate the 
bacterium from collected specimens (that is, water samples).78,192 
Moreover, the guinea pig model was used to verify that Legionella 
bacteria were not transmitted between subjects (that is, person-to-
person) via respiratory droplets.141 Rather, environmental sources, 
such as showerheads and evaporative coolers, are responsible for 
creating an aerosolized form of the bacteria from which a person 
becomes infected.192

To induce Legionnaires infection, guinea pigs can be exposed 
to L. pneumophila by aerosol administration40,68, by direct intratra-
cheal instillation75,315 or intraperitoneal74,232 or intranasal141 inocu-
lation. Approximately 1 wk after inoculation, guinea pigs exhibit 
similar clinical and pathophysiologic symptoms as humans, such 
as fever, weight loss, difficulty breathing, and (in some cases) 
death.141 Furthermore, as in humans, antigen to Legionella can be 
found in guinea pig urine.170,313 Several novel antimicrobial agents 
for human use have been evaluated in the guinea pig model of 
Legionnaires disease.70-74 However, if left untreated, the guinea 

vaccine.177,178,212,268 The infected guinea pig also demonstrates 
lymphadenitis, which is commonly found in children infected 
with the bacterium.13 Moreover, the guinea pig has been used 
to evaluate the effects of malnutrition on tuberculosis, which is 
often considered a risk factor among the human population.49 
However, unlike humans,62 the guinea pig infrequently manifests 
liquefaction and cavitation of pulmonary granulomas within in-
fected lung tissue,177,211 and it does not exhibit a latent form of 
infection.178,213

As a representative model of the disease, the tuberculosis-
infected guinea pig has been considered the ‘gold standard’ in 
preclinical investigation of novel drugs and vaccines, various 
methods of their delivery, and evaluation of their safety. The de-
velopment of improved treatments and preventive vaccines is 
imperative because traditional chemotherapeutic agents result 
in hepatotoxicity and low patient compliance.206 Some investiga-
tors have evaluated an alternative aerosolized administration of 
antituberculosis drugs in the guinea pig, which has been shown 
to reduce tuberculosis infection.98,273,274 In terms of prevention, use 
of the only commercially available vaccine, BCG, remains highly 
controversial in the human population because of its ability to 
protect against infection in some subjects but not others.248 There-
fore, the guinea pig has been used in various aspects of novel 
adjuvant and vaccine testing (for example, BCG, recombinant, 
DNA, subunit, polyproteins, live-attenuated, auxotrophs, and 
gene-disrupted mutants).211,213,265 The guinea pig’s immune re-
sponse to these vaccines is a DTH response, measured by means 
of a skin test of induration after intradermal injection.103,177 In 
addition to DTH, the guinea pig is being used to develop more 
specific diagnostic tests.102,115 Currently, the only method of deter-
mining the success of newly developed vaccines and drugs is to 
challenge guinea pigs with M. tuberculosis and report the number 
of granulomas and bacterial counts in various tissues at necropsy. 
However, this process may take several weeks to months. Alter-
natively, the assessment of chemotherapies and vaccines would 

Table 1. Bacteria studied in the guinea pig

Bacillus anthracis Moraxella catarrhalis

Bacteroides gingivalis Mycobacterium bovis

Bordetella bronchiseptica Mycobacterium leprae

Borrelia burgdorferi Mycobacterium tuberculosis

Brucella abortus Mycobacterium ulcerans

Chlamydia trachomatis Mycoplasma pneumoniae

Chlamydia psittaci Neisseria gonorrhoeae

Corynebacterium diphtheriae Neisseria meningitidis

Coxiella burnetii Porphyromonas gingivalis

Escherichia coli Pseudomonas aeruginosa

Francisella tularensis Pseudomonas keratitis

Helicobacter pylori Rickettsia mooseri

Haemophilus influenzae Rickettsia rickettsii

Histoplasma capsulatum Salmonella typhi

Klebsiella pneumoniae Salmonella typhimurium

Legionella micdadei Shigella dysenteriae

Legionella. pneumophila Staphylococcus aureus

Leptospira interrogans Staphylococcus epidermidis

Listeria monocytogenes Streptococcus pneumoniae

Haemophilus influenza Treponema pallidum
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immune response to L. pneumophila. As observed with tubercu-
losis bacilli, L. pneumophila has the ability to evade destruction 
by inhibiting phagosome–lysosome fusion in macrophages124,125 
and preventing the phagosome’s acidification.125 The rate of rep-
lication within the macrophage is much more rapid in Legionella 
infection than with M. tuberculosis.95 The few immunology studies 
conducted in the guinea pig have revealed that the bacteria may 
be toxic extracellularly,132 but intracellular invasion of macrophag-
es is crucial for infection and pathogenesis in both humans and 
guinea pigs.95,126 Some researchers232 have reported that the guinea 
pig’s high susceptibility to infection may be that its macrophages 
are unable to produce nitrites (that is, reactive nitrogen species), 
a factor typically associated with the macrophage’s ability to de-
stroy intracellular pathogens.

Nevertheless, as in humans,123 guinea pigs require an effective 
innate (or cell-mediated) immune response for protection from 
infection.94,95,123,216 For example, after sensitization (that is, immu-
nization or subclinical exposure) to the bacterium, guinea pigs 
exhibit a DTH response and an influx in lymphocytes.40,94,151,312 To 
further demonstrate a cell-mediated response, some scientists151 
exposed guinea pigs intraperitoneally to low levels of virulent 
(104 CFU) and high levels of avirulent (108 CFU) L. pneumophi-
la. The guinea pigs receiving the low dose of virulent bacteria 
did not succumb to infection, but they exhibited a DTH reaction 
and splenic lymphocyte production similar to those guinea pigs 
that received the high dose of avirulent organisms. These results 
may provide a potential explanation for the observation that in 
humans, non-immunocompromised persons do not succumb to 
infection when exposed to naturally occurring small amounts of 
Legionella spp.151

Little is known about the humoral immune response in Legion-
naires disease. Guinea pigs, like humans,86,93 produce serum an-
tibodies after infection40,94 and after immunization.26,94,286 In vitro 
studies suggest that a T-cell-mediated response and antibody pro-
duction are important for resolving a sublethal infection in guinea 
pigs,131,204 but the role of antibodies in both species has not been 
resolved. The full cytokine profile has not yet been determined 
for the guinea pig’s immune response to infection, but various 
cytokines such as IL1β, IL4, IL6, IL10, tumor necrosis factor α 
(TNFα), IFNγ, and IL12 (p40 and p70) have been quantified in hu-
man patients.95,201,278 In humans, a Th1 response occurs primarily 
in response to infection,278 but dendritic cells may also play a role 
in controlling infection.200

To date, a vaccine is not available for the prevention of Le-
gionnaires disease, but the guinea pig has been used in the de-
velopment and testing of potential vaccine candidates against 
this intracellular pathogen. For instance, early investigations26,40 
acknowledged that when guinea pigs are exposed to aerosols of 
a very low (that is, sublethal) dose or avirulent strain of the bac-
teria, these animals exhibit a defensive immune response when 
exposed subsequently to a lethal aerosol challenge of wild-type 
L. pneumophila. The guinea pig has also been used to demonstrate 
that the protection provided by vaccination is dependent on the 
route of infection. For example, the guinea pig is protected from 
intraperitoneal injection of Legionella bacteria when vaccinated 
by the same route with heat-killed and acetone-killed bacteria,80 
antigenic extracts of Legionella,22,81 or IgG fraction of Legionella-
immune goat serum.317 In contrast, vaccine regimens consisting of 
heat-killed and acetone-killed bacteria do not protect guinea pigs 
when exposed to the aerosols of the bacterium, despite elevated 

pig demonstrates splenic necrosis and a severe form of pneumo-
nia that is fatal to this species.15,315

This guinea pig model has also been used to determine which 
virulence factors of Legionella induce infection.87,314 For instance, 
attenuation in virulence has been demonstrated in guinea pigs 
after several passages of the bacterium on Mueller–Hinton agar.175 
However, virulence of the bacterium increased when the guin-
ea pigs were exposed to bacteria grown at a lower temperature 
(25 °C) versus a higher temperature (41 °C). Furthermore, when 
guinea pigs were exposed to a protease produced by the bacteria, 
inflammatory pathologic lesions occurred within the lungs of 
guinea pigs after intranasal or intratracheal inoculation. These 
lesions were comparable to those evoked after aerosol exposure 
of L. pneumophila to guinea pigs.14,57 Some investigators29 have 
suggested that this protease may be the major secretory protein 
(produced by the proA gene) of L. pneumophila, but this assign-
ment remains controversial (for differing opinions29,190,191). Other 
factors that may contribute to the bacterium’s virulence, such as 
lipopolysaccharide,166 macrophage infectivity potentiator,288 and 
the genes proA, dot–icm complex,23,76,191 ptsP orthlog,117 and IvgA,77 
have been evaluated in the guinea pig. The guinea pig has also 
been used in the study of virulence conversion in L. pneumophila, 
which may provide some understanding of the complex nature 
and evolution of the bacterium.188

Despite the many studies conducted with this relevant animal 
model, very little information exists regarding the guinea pig’s 

Figure 1. Cascade of immunologic events occurring in the guinea pig 
model of primary tuberculosis. Antigen presentation occurs by means 
of the major histocompatability complex (MHC). Similar to the mecha-
nism in humans, Mycobacterium tuberculosis (Mtb) bacteria are engulfed 
by alveolar macrophages. The bacilli, in turn, inhibit phagolysosomal 
fusion within macrophages. Macrophages produce cytokines (TNFα*, 
IL1*, IL8[CXCL8]*, IL10*, IL12*, TGFβ*, MCP1 [CCL2]*, GM-CSF*, and 
RANTES [CCL5]*). Mtb antigens also are presented to dendritic cells, 
and the antigens are carried from lungs to draining lymph nodes. CD4+ 
and, over time, CD8+ T helper cells become activated in lymph node 
tissues. CD4+ cells produce IL2 to increase the pool of lymphocytes spe-
cific for antigen. The primed T cells migrate back to the site of infection 
within the lungs and cause granuloma formation. *, immune mediator 
examined in the guinea pig model.
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pigs by means of cyclophosphamide treatment resulted in an in-
ability to resolve the infection. This result further suggested that 
antibodies play an important role in resolution of infection.244,246,292 
Moreover, the male guinea pig exhibits a much higher degree 
of immune resistance to repeated chlamydial infections than do 
female guinea pigs,127,219,246 a phenomenon that has also been re-
ported in sexually active humans,253 but the mechanism behind 
this resistance remains to be determined.

Equally important to understanding the transmission and 
pathogenesis of this infection is the development of a preventa-
tive vaccine against Chlamydia. No current vaccine prevents chla-
mydial infection, but several investigators have used the guinea 
pig to search for a vaccine. For example, immunization studies 
have included: prior ocular GPIC infection followed by urethral 
challenge of GPIC in male guinea pigs,127 testing of subcutaneous 
administration of UV-inactivated GPIC in both sexes,219,240 puri-
fied major outer membrane protein17 from GPIC, and intraperito-
neal injection of immunoglobulins (IgG and IgA).238 All of these 
studies have demonstrated that these preventative measures do 
not offer complete inhibition of infection during a chlamydial 
challenge, but the intensity of the infection is reduced7,242 (for a 
complete list234).

Syphilis. Studies of the guinea pig syphilitic model can be found 
as early as 1910,300 but this model did not receive recognition un-
til the early 1980s and late 1990s. Research using this model has 
tapered off since. Nonetheless, the guinea pig is well-suited for in-
vestigations of syphilis, which is caused by the bacterium Trepone-
ma pallidum ssp. pallidum, because of this model’s similarity with 
humans in terms of the humoral response to infection and histo-
pathologic events.227,300,311 Although the rabbit model may be more 
susceptible to infection, the guinea pig has proven useful because 
it is less expensive and inbred strains are available, making the 
guinea pig a favorable model for studies of adoptive transfer, 
immunology, and genetic variations in susceptibility.224,225,300,309 In 
addition, guinea pigs are more vulnerable to infection than are 
rodents such as mice, rats, and hamsters.300

To create the guinea pig syphilitic model, the infection is per-
formed by intradermal injections of the Nichols strain of bac-
teria (ID50, 102–105 organisms) in a depilated pubic region or 
hindleg.302,307 Much like in humans,156,205 indurated papular lesions 
(approximately 4 to 5 mm in diameter) form after 4 to 7 d of infec-
tion and then progress to more severe ulcerative lesions (that is, 
chancre at 10 to 14 d) from which the organism disseminates. The 
chancre lesion may be present for 30 to 60 d, depending on the 
guinea pig strain.308 This progression results in complete healing 
of the lesion after this period, however the bacteria remain alive 
but in a latent form in the body. Except for the development of the 
lesion, the guinea pig is asymptomatic, similar to many humans 
infected with the bacteria.205 Also as in humans, the spirochete 
bacteria and treponemal antibodies are found primarily in the 
inguinal lymph nodes, heart, and brain of the guinea pig.227,293 
Both species produce natural antitreponemal antibodies (that is, 
IgG and IgM), and in response to infection, they generate specific 
and nonspecific antibodies and circulating immune complexes.6,

20,135,227,296,302,305,311 Furthermore, subsequent exposure to T. pallidum 
(after approximately 3 mo) will not result in development of ad-
ditional chancre lesions in either the human and guinea pig, most 
likely because of functioning humoral immune responses (that is, 
antibody production222) and autoantibodies such as rheumatoid 
factor.21 Contrary to the disease in humans, syphilis in the guinea 

levels of serum antibody.80 This lack of protection conferred by 
aerosol may be due to failure to induce a cell-mediated immune 
response when guinea pigs are exposed to bacteria through this 
particular route.80 Lastly, some researchers have been also been 
interested in exploiting the potential virulence determinants as 
components of vaccines to induce an immune response in guinea 
pigs, but none have been successful.26-28,40,81,291

Sexually Transmitted Diseases Chlamydia. Whereas sexually 
transmitted diseases are often difficult to study in humans,236 
chlamydial infection has been studied in a variety of animal 
models.106,219 Of these models, the infection with the chlamydial 
agent of guinea pig inclusion conjunctivitis (GPIC) most closely 
resembles the sexual transmission and infection in humans with 
Chlamydia trachomatis.9,159,194,219,246,292 In the GPIC model, male guin-
ea pigs are infected intraurethrally with GPIC and then housed 
with female guinea pigs to sexually transmit the disease. The dose 
of bacteria necessary to promote human infection has not been 
determined, but in guinea pigs, the dose of bacteria passed from 
a male to female guinea pig during sexual intercourse is approxi-
mately 102 inclusion forming units.242 The infection in male127,159,219 
and female244,270 guinea pigs is much shorter in duration than in 
humans (approximately 20 d in guinea pigs versus approximately 
150 d in humans), and symptoms of infection may include an 
acute inflammatory response.246 There is no occurrence of heavy 
discharge from the urethra in male guinea pigs,106,219,246 but this 
symptom parallels humans, who are often asymptomatic with no 
apparent exudate.247 Furthermore, the guinea pig’s reproductive 
physiology and estrous cycle (15 to 17 d) are similar to that of hu-
mans and, analogous to human infection and transmission, preg-
nant female guinea pigs can pass this disease to their offspring 
during parturition, resulting in congenital conjunctivitis.193 As in 
humans, repeated infection in the guinea pig results in a chronic 
inflammatory response and oviduct damage.243

The guinea pig has been used to understand the course of the 
chlamydial infection, its transmission, and immune response, 
but again, as with the previously described diseases, well-de-
fined immunologic reagents for researchers using this model are 
scarce.234,289 In this species, as in humans, both cell-mediated and 
humoral immunity are important defenses against chlamydial 
infection235,236,241,244,246 as well as reinfection.133 The importance of 
T cells was demonstrated when antithymocyte serum was ad-
ministered to guinea pigs and infection did not resolve.235 Fur-
thermore, a T helper 1-like immune response has been suggested 
for the guinea pig with regards to chlamydial infection.289 In the 
infected female, studies involving quantification of T cells in the 
GPIC model have demonstrated a high degree of immunity to 
early reinfection,239 but as in humans,253 this immunity is short-
lived. Furthermore, certain outer-membrane proteins of the GPIC 
agent may be responsible for antibody production (that is, se-
rum IgG and IgA) in female guinea pigs.16,239 To date, the only 
cytokine evaluated in this model has been tumor necrosis factor 
α (TNFα).63,64 These studies report that TNFα levels in genital tract 
secretions are significantly elevated after 3 d of infection in female 
guinea pigs,64 but the purpose of this cytokine remains unclear.63 
Also as in humans,290 estrogen supplementation218,237,245 and oral 
contraceptives8 administered to female guinea pigs exacerbate 
infection, but this effect does not occur with progesterone treat-
ment.217

A few studies have been conducted with male guinea pigs, but 
suppression of the humoral immune response in male guinea 
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levels of IL2, IL12, and IFNγ), but data also suggest that a T helper 
2 response is important for resolution of infection.283

In combination with cytokine production, the lesions in the 
guinea pig demonstrated an influx of mononuclear cells such as 
CD4+ T cells and B cells, and to a lesser extent, macrophages and 
CD8+ T cells at 3 to 11 d after the onset of infection.300,308 At 7 to 
30 d, substantial eosinophils are present within the lesion.300,308 
Indirect evidence of eosinophilic activation in infected humans 
(for example, elevated serum IgE concentrations) has also been 
reported.36,111 Within a few weeks after infection, the guinea pig 
develops a local and systemic immune response along with el-
evated serum IgG concentrations. Unlike humans, the guinea pig 
does not appear to produce cardiolipin (Wasserman) antibodies, 
an indicator of tissue damage224,227 (for an alternate view295). Other 
immune mediators, such as treponemal immobilizing antibod-
ies, appear 3 mo postinfection in strains 2, 3, and C4D guinea 
pigs.297 Other factors such as circulating immune complexes and 
antibodies to fibronectin and creatine kinase are elevated in the 
syphilic guinea pig, and continue to increase after reinoculation.20 
These autoantibodies may play a role in T-cell regulation18,19 and 
prevention of bacterial adherence to cells,88 respectively, but their 
function in the guinea pig remains to be elucidated.

The extent to which T cells play a role in the guinea pig has yet 
to be established. For example, attempts to evoke immunosup-
pression in Hartley guinea pigs by cortisone administration failed 
to result in a more severe form of infection.295 In another study,303 
complement (that is, C3) and T-cell depletion in infection-resistant 
Albany guinea pigs resulted in a significant increased in suscepti-
bility, but humoral responses (that is, antibodies) were the same as 
untreated control animals. In a later study,220 mature T cells were 
depleted in Strain 2 guinea pigs by thymectomy and irradiation, 
which significantly decreased the number of lesions compared 
with those in control animals when both groups were infected 
with T. palladium. This unusual finding was explained by the pos-
sibility of a residual T-cell population, incomplete elimination of 
peripheral T cells, or the production of a more active antibody 
response in the thymectomized and irradiated animals.220 None-
theless, an intact immune system and functioning T cells are vital 
for both protection and passive transfer against syphilis in the 
guinea pig model.224,225,296

The use of antibiotics such as penicillin has been invaluable to 
decreasing the number of venereal syphilis cases in the United 
States, but this disease is still a global health issue.215 This notion 
has led to a small number of investigations using the guinea pig 
model to find a preventative vaccine. Early investigations dem-
onstrated that moderate protection occurred when naïve guin-
ea pigs were inoculated intramuscularly309 or intraveneously223 
with immune serum or intravenously with immune spleen or 
lymph node cells223,309 or IgG fraction225,306 from infected guinea 
pigs. This protective response is most likely not due to T. pallidum-
immobilizing antibodies but may be elicited by an increase in 
circulating rheumatoid factor, an immune mediator known to 
augment binding of an antibody to antigen.21 Moreover, with the 
notion that T. pallidum infection results in antibody and cellular 
responses against the bacterium’s protein components, there has 
been a focus on using these membrane proteins to induce pro-
tective immunity. One laboratory298,299 has evaluated immunity-
inducing substances such as membrane proteins (for example 
TmpA, TmpB, and TmpC) within the various guinea pigs strains. 
Of these, only the TmpB showed promising results of smaller le-

pig does not develop into secondary (affecting skin and internal 
organs) and tertiary (that is, neural and cardiovascular patholo-
gies) forms of the disease. Rather, the guinea pig’s immune sys-
tem is capable of localizing the bacteria, and therefore, the guinea 
pig is suitable as a model of primary infection.304

Susceptibility of guinea pigs to infection is age-, strain-, and 
gender-dependent.135,302,304,308 However, the causes of variation in 
susceptibility among guinea pigs (and humans) are currently un-
known and cannot be explained completely by the relative natu-
ral antitreponemal antibody titers in sera.135 For example, male 
guinea pigs have a greater incidence of lesions than do female 
guinea pigs.300 Young adult guinea pigs (3 to 6 mo) are most sus-
ceptible to infection, but very young animals (1 to 7 d) and older 
animals (12 to 30 mo) demonstrate higher natural antibody titers 
than do animals of intermediate age (1 or 3 to 6 mo).135,304 Young 
animals demonstrate ulcerative chancre-like lesions, whereas old-
er animals exhibit nonprogressive papular lesions.310 Further, a 
delay in antibody response occurs after infection in older animals 
compared with young animals.310

In terms of guinea pig strains, those deficient in the fourth 
component of complement (C4D) are most susceptible to infec-
tion. The C4D strain was developed because of a spontaneous 
mutation (a naturally occurring knockout) that occurred within 
a multipurpose strain housed at the National Institutes of Health 
in 1970.82 These guinea pigs are immunologically competent and 
have a similar lifespan as the original complement-containing 
strain.300,302,330 Propensity to infection is next highest in the inbred 
strains 2 and 13 and Hartley B, and the least susceptible is the 
Hartley A (Albany) strain.300,302 The C4D guinea pig also dem-
onstrates the largest chancre-like lesions (8 to 20 mm versus 6 to 
10 mm) which last longer (>60 d versus 30 d) than those of other 
guinea pig strains. In addition, C4D animals produce the highest 
natural antibody titers, which have been confirmed to be IgG1 
and IgG2, but not IgM, in subtype.135,227,302,305 Some researchers300 
have proposed that the very high antibody titers reported in the 
susceptible C4D strain are indicative of other factors (for example, 
genetics) that play a role in antigen recognition. Recently, the C4D 
strain has also been recognized as a potential model for the non-
venereal version of this disease, yaws, caused by the subspecies 
Treponema pallidum ssp. pertenue,301 as well as a model of congeni-
tal and neonatal syphilis.221,294

Like the other intracellular pathogens previously described, T. 
pallidum has the ability to evade the host’s immune system,156,205 
but the exact mechanism by which this evasion occurs is un-
known. In humans and guinea pigs, these protective events may 
be the result of an effective cell-mediated or humoral immune 
response.205,296,305 Semiquantitative PCR was used to investigate 
various cytokines including IL1α, IL2, IL10, IL12p40, TNFα, and 
transforming growth factor β (TGFβ) in hindleg skin specimens of 
C4D guinea pigs at various time points after infection.307 Among 
these cytokines, only IL10 expression was significantly higher 
from 3 d through 30 d when compared with that of noninfected 
controls, indicating that a T helper 2 response is predominate. 
This response may be ineffective in the guinea pig because of the 
long period of resolution to infection in C4D animals,308 the rapid 
but ineffective antibody response to infection,311 the delayed re-
sistance to infection,296 and the lack of complete elimination of the 
pathogen from distant organs.251,293 In humans, there appears to be 
a predominant T helper 1 response to infection (that is, elevated 
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the guinea pig for their ability to reduce bacterial counts: scrub-
bing and irrigation,129,130,228 locally administered anesthetics (for 
example, lidocaine272), tissue adhesives,128,231 suture material,79,187,271 
delivery of delayed-release antibiotic,96 wound dressings,145,173 and 
topical antimicrobials.35 Others have used the guinea pig to deter-
mine that pulsatile lavage of surgical wounds,263 and anesthesia-
induced hypothermia heighten the potential for infection.257 The 
only known study of immune function in the guinea pig wound 
model173 suggested that natural killer cell and neutrophil activity 
is upregulated when the wound dressing Acticoat is placed on 
the wound, while limiting the deleterious effects of inflammation. 
The guinea pig has also been used as a crush or bite wound mod-
el, in which paravertebral incisions are clamped with hemostats 
for 5 s and then infected with bacteria.158 This type of model has 
been used to evaluate various antibiotic irrigation solutions.158

Two other wound models include the elegantly designed 
small-inoculum prophylaxis model140,147,148 and the ‘tissue-cage’ 
guinea pig wound infection model (also called the ‘device-re-
lated model’). To create the small-inoculum prophylaxis model, 
a grid of 12 sites is drawn onto the dorsal region of the guinea 
pig, and each of these sites is inoculated intramuscularly with 
a bacterial suspension.140,184 This model has been used to evalu-
ate antibiotics147-149 as well as immune-stimulating compounds 
as alternatives to antibiotics.139,146 The latter model is created by 
inserting Teflon tubes (perforated with 130 regularly spaced holes 
each 1 mm in diameter) subcutaneously into the guinea pig by 
using aseptic techniques.104,255,331 After complete healing (2 wk), 
the interstitial exudate is checked for sterility and the tissue cages 
are then inoculated with bacteria (105 to 3 × 105 CFU). Subsequent 
removal of the infected exudates occurs at various time points 
and is examined. This model has several advantages: (1) it is rep-
resentative of human subcutaneous foreign body abscesses; (2) 
the infection within the model remains localized and does not 
spread systemically;333,334 and (3) measurements of antibiotic con-
centrations can be made directly at the tissue level.284 Although 
studies of the immune response to device-infection are limited 
in this model, polymorphonuclear leukocyte activity (that is, low 
amounts of granular enzymes and respiratory burst attenuation) 
and opsonization of the bacteria are reduced in the guinea pig 
after tissue cage inoculation which may explain the difficulty in 
preventing prosthetic-related infections.332,333 With this model, 
other researchers have examined the bacteria’s contributors to the 
bacteria’s virulence,104,255 bacterial capsular polysaccharides, and a 
large number of antibiotics.37,46,55,252,284

In addition to those of burns and wounds, S. aureus is also a 
primary source of prosthesis-related infections. According to elec-
tron micrographs, staphylococcal device contamination appears 
similar in both humans and guinea pigs.69,89 S. aureus adheres to 
the device creating a biofilm by way of cell wall adhesins that 
recognize host proteins (for example, fibrinogen and fibrin), sur-
rounding the biomaterial shortly after implantation.90,285 These 
biofilms are of concern because they do not respond well to an-
timicrobial therapy, and often the device has to be removed.58 To 
study these adherence factors, the small-inoculum prophylaxis 
guinea pig model has been used.140,184 This model has demon-
strated that recombinant forms of fibronectin-binding protein, 
when inoculated simultaneously with the bacteria, prevented 
staphylococcal infection and abscess formation, suggesting that 
these proteins may serve as a potential prophylactic treatment.184 
Other investigators studying these biofilm adherence factors (and 

sions with shorter durations, significantly lower bacterial counts, 
and delayed-type hypersensitivity reaction in the highly suscep-
tible C4D guinea pig.298 A vaccine for the prevention of syphilis 
has yet to be developed.

Staphylococcus aureus Infections Staphylococcus aureus, the 
most common source of nosocomial infections, often results in 
severe complications such as sepsis, endotoxemia, and possibly 
death in patients with contaminated surgical or accident or bite 
wounds, severe burns, and medical devices.165 Furthermore, the 
development of methicillin-resistant strains results in higher in-
fection rates and increased difficulty in finding effective treat-
ments.105 The S. aureus-infection albino and hairless guinea pig 
models have been established to potentially elicit this bacterium’s 
ability to invade the body, the cascade of events following infec-
tion, and ultimately attain successful treatments to stop infection. 
As in man, the guinea pig is highly susceptible to staphylococcal 
infection,79,140 and it has been used in studies ranging from: evalu-
ation of methicillin-resistant S. aureus,59,189 staphylococcal der-
monecrotic reactions,186 disseminated intravascular coagulation,150 
infective endocarditis,172 effects of nutrition on infection,202,226 
determination of bacterial factors such as staphopains (that is, 
cysteine proteases) that lead to septic shock,134 burn/surgical 
wounds, and infection due to device-implantation. The burn/
surgical wound, and device implantation models have been 
used more extensively in studies relative to the other models. 
Therefore, only these 3 examples will be discussed in the present 
review. Regardless of which application, the creation of this infec-
tion model permits assessment of different scenarios of contami-
nation that are highly reproducible and representative of various 
clinical situations. Moreover, the guinea pig should be considered 
invaluable to the investigation the immune response to S. aureus, 
but unfortunately, researchers have not exploited the guinea pig 
in the study of immune function related to this disease.

The first of these examples, the infected burn wound model, is 
created by depilating the dorsal region of the anesthetized animal 
and then immersing the area repeatedly in hot water (99 °C25,116) 
or subjecting it to a heated copper plate (150 °C) or cylindrical 
aluminum templates (75 °C) for several seconds.142,209 After the 
burn injury takes place, the wound is infected by either injecting 
the bacteria subcutaneously (5 × 105 CFU) or by spreading the 
bacteria (108 CFU) onto the affected area.25,209 As a result of infec-
tion, the subcutaneous tissue becomes malodorous and contains 
a purulent exudate along with necrosis.25 Some investigators116 
have reported that the metabolic response to severe burn injury 
in guinea pigs is highly similar to that of the human postburn 
metabolic response. Furthermore, development of bacterial colo-
nization and changes within the complement component of the 
immune system in human burn victims is analogous to guinea 
pigs affected by severe burns.25 Some researchers have advocated 
that the guinea pig should be used for studies of immunologic 
abnormalities related to burn injury.25 Other investigations using 
this burn model have examined phenomena such as the wound 
healing process142 and novel antimicrobials.209

Several techniques have been used to develop the guinea pig 
bacteria-contaminated surgical wound model, some of which 
may be considered sophisticated, whereas others offer a more 
simplistic approach. Nonetheless, all are highly informative in the 
investigation of S. aureus. For example, surgical wounds can be 
created by making a basic skin incision in the animal and contam-
inating the area with bacteria.272 The following have been tested in 
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nucleotide and amino acid levels.47 As mentioned previously, the 
need for completion of sequencing of the guinea pig genome is 
necessary for scientists interested in target regions of the genome 
as well as the genetic commonalities (and differences) between 
guinea pigs and humans.

Immunologic assays and reagents. Guinea pig immunology was 
a topic of interest for researchers during the 1970s, 80s, and 
90s, but overall attention declined in later years, perhaps due 
to increasing popularity of mouse models. The details of all the 
studies pertaining to the guinea pig immune system and the re-
lationship between these investigations are beyond the scope of 
this review. However, early examples of these studies include 
interest in the Fc γ receptors found on macrophages,198,199,249,250 
various macrophage and lymphocyte types and function in a 
number of tissues,5,154,155,171 lymphokines (that is, cytokines and 
chemokines),164,208,282 neutrophils,320,324-326 complement,24,82 T cells,41-

45,254 and B cells.276,277 DTH reactions and their mechanisms were 
also of interest in the guinea pig model.103,118,119,258-261

Several researchers have suggested that to make this species 
highly successful as a research model, more immunologic re-
agents need to be produced for full appreciation of the guinea 
pig’s immune response to infection.122,177,178,197,210,214 Various inves-
tigators have recognized this need, and they have been working 
specifically toward the goal of developing and acquiring novel 
reagents for the guinea pig. An extensive list of those recent stud-
ies involving the design of immunologic reagents and assays ex-
clusively for the guinea pig is given in Table 2. In addition, when 
searching for these immunologic reagents and assays, one should 
not discount the numerous studies pertaining to particular dis-
eases which have developed and used these products during the 
course of these investigations.

More recently, in the fall of 2006, a workshop was organized 
by the Division of Allergy, Immunology, and Transplantation of 
the National Institute of Allergy and Infectious Diseases.179 The 
purpose of the workshop, which was attended by several investi-
gators who use guinea pigs in their research, was to highlight the 
biologic relevance and unique contributions of guinea pig models 
of several important human diseases, both infectious and nonin-
fectious. The consensus resulting from that workshop was that 
a concerted effort to develop new immunologic reagents for the 
guinea pig would greatly benefit biomedical research in several 
disease areas. The workshop and discussions that followed sug-
gested the development of a contract mechanism by which the 
National Institutes of Health could support a ‘pipeline’ of guinea 
pig reagent development. The pipeline would consist of the cre-
ation of tissue-specific guinea pig cDNA libraries from which spe-
cific new genes could be isolated, a mechanism by which those 
genes could be subcloned into prokaryotic or eukaryotic expres-
sion vectors for the production and purification of recombinant 
guinea pig proteins, and the immunization of mice to generate 
hybridomas producing monoclonal antibodies to those recom-
binant guinea pig proteins. A consensus priority list of genes to 
be cloned and expressed is being developed by the guinea pig 
research community, and the reagents will be made available 
ultimately to the entire research community through one of the 
contracting institutions. This activity will be assisted greatly by 
efforts at the Broad Institute of Harvard–MIT, which is in the 
process of carrying out coverage of the guinea pig genome. At 
a meeting in Boston in December 2006, guinea pig scientists and 
Broad Institute staff developed a strategy for moving ahead with 

the genes that produce them) have relied on the guinea pig ‘de-
vice-related’ implant model described earlier.85,89,91,316 This model 
demonstrated that fibronectin plays a role in bacterial adherence, 
but exopolymers do not.285 Furthermore, this in vivo model cor-
related well with the in vitro model of device-related infection 
when various antimicrobials were compared.30 Others have pro-
moted the use of the guinea pig in testing biomaterials that do not 
harbor infection, such as Gore-Tex.269

Immunology of the Guinea Pig Genetics. Few studies have been 
conducted on guinea pig genetics as they relate to immune func-
tion. The first study of a gene associated with an immune response 
in the guinea pig was reported in 1963.162,163 This gene became ac-
tivated in response to poly-L-lysine (PLL), poly-L-arginine, copo-
lymer of L-glutamic acid and L-lysine, and hapten conjugates of 
these polypeptides. Therefore, the gene was given the name PLL 
and was determined to be autosomal dominant and breed-specif-
ic (found in 100% of Strain 2, absent in Strain 13, and variable in 
Hartley). Furthermore, immunogenicity to PLL could be passed 
on to offspring.110,162,163 A number of studies regarding the PLL gene 
occurred during the 1960s and 70s,31-34,83,109,157 but more important-
ly, these investigations led to the discovery of the related major 
histocompatibility complex (MHC) genes, which consequently 
were studied for approximately 2 decades in the guinea pig.4,31,83,99-

101 Other studies relating to the genetics of the guinea pig include 
the use of the inbred guinea pig strains JY 1, JY 2, JY 9, and JY 10 to 
investigate the various functions of major histocompatability.50,51 
Soon thereafter the natural knockout complement-deficient (C2, 
C3, and C4D) guinea pigs were discovered.24,82,92,264 Genes for the 
neutrophilic antimicrobial cationic peptides (GNCP1 and GNCP2) 
have also been characterized.195,196 Investigators have examined 
the genes for the Fc receptor279 and protein products related to the 
DTH reaction207,323 and bacterial infections such as tuberculosis in 
the guinea pig.2,3,168,267,280

The few studies involving genetics of the guinea pig have re-
vealed striking immunologic similarities between guinea pigs 
and humans. The following are comparisons that can be made be-
tween the 2 species. (1) Guinea pig leukocyte antigen (that is, the 
MHC in guinea pig) is homologous to the human leukocyte anti-
gen complex. (2) The guinea pig’s complement system more close-
ly resembles that of humans than that of the mouse.38,39,113,203,256 (3) 
Unlike the mouse or rat, the guinea pig has several homologues 
of the human group 1 CD1 proteins (that is, CD1b, CD1c, and 
CD1e) expressed in lymphoid and nonlymphoid tissues.65,120,121 
Similar but genetically distinct from MHC, these proteins serve as 
antigen presenting molecules for nonpeptide antigens to T-cells 
during infections such as tuberculosis, which makes the guinea 
pig essential in the study of this and other related diseases.120,121,229 
(4) Human and guinea pigs appear to have similar patterns of 
genetic expression of IFNγ and inducible nitric oxide synthase 
during infection.233,319 (5) The guinea pig is an excellent choice 
for the study of the cytokine IL8 because neither the gene for IL8 
nor its receptor, CXCR1, exists in the mouse or rat, but they are 
present in the guinea pig.275,328 (6) Another cytokine, IL12, and 
both of its molecular components, p35 and p40, are remarkably 
similar between humans and guinea pigs but differ from those 
in the murine model.262 (7) The coreceptor, CD8, found in cyto-
toxic T lymphocytes also demonstrates greater amino acid se-
quence similarity between humans and the guinea pig than the 
rat or mouse.197 (8) The guinea pig and human forms of the pro-
tein RANTES are highly homologous to one another at both the 
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Summary and Conclusion
This overview has provided several examples of use of the 

guinea pig for studying cellular and molecular mechanisms of 
immunology and infectious diseases. This literature review also 
documents that the guinea pig is more physiologically and im-
munologically similar to humans than other small animal models. 
There is a substantial need to fully characterize the guinea pig to 

deep coverage of the genome. The results of the newest assembly 
of the guinea pig genome, CavPor3.0, has been completed and is 
available at the Broad Institute website.114 Furthermore, prelimi-
nary annotation of the guinea pig genome based on homology 
to human and mouse genes, and previously existing guinea pig 
expressed sequence tags (ESTs) can be found at the Pre-Ensembl 
website.230

Table 2. Examples of immunologic reagents and assays specifically designed for the guinea pig model

Immune mediator Reagent or assay Reference

B cells Flow cytometry 276
Basophils Flow cytometry 277
CCL5 (RANTES) Recombinant form 266

Recombinant form 47
CD4+ T cells Flow cytometry 276
CD8+ T-cells Flow cytometry 276
CD4–CD8– T cells Flow cytometry 276
Eosinophils Flow cytometry 277
GM-CSF Reverse Transcription-PCR 319
Granulocytes Flow cytometry 276

IFNγ Recombinant form 136

Reverse Transcription-PCR 319
Real Time-PCR 53
Bioassay 321

IgG ELISA 143
Monoclonal antibody 174

Inducible nitric oxide synthase Reverse Transcription-PCR 319

IL1β Reverse Transcription-PCR 319

IL2 ELISA 1
Cloned and sequenced 251
Reverse Transcription-PCR 319
Northern Blot Analysis 137

IL8 Real Time-PCR 167
Recombinant form 168
Cloned 48

IL10 Cloned and sequenced 251
Reverse Transcription-PCR 319

IL12 Cloned and characterized 262
IL12p40 Cloned and sequenced 251

Reverse Transcription-PCR 319
Real Time-PCR 53

Kurloff cells Flow cytometry 276
Macrophages Antibody PM1K 122

Antibody MR1 154
Monoclonal antibodies 342, 322, and 249 171

MHC class II+ activated T cells Flow cytometry 276
Monocytes Flow cytometry 276
Neutrophils Flow cytometry 277
T cells Flow cytometry 276

TGFβ Cloned and sequenced 251

Reverse Transcription-PCR 319

TNFα Recombinant form, antibody 54

Recombinant form 160
Reverse Transcription-PCR 319
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