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Overview

An Introduction to Metabolomics and its Potential 
Application in Veterinary Science

Oliver AH Jones1,* and Victoria L Cheung2

Metabolomics has been found to be applicable to a wide range of fi elds, including the study of gene function, toxicology, plant 
sciences, environmental analysis, clinical diagnostics, nutrition, and the discrimination of organism genotypes. This approach 
combines high-throughput sample analysis with computer-assisted multivariate pattern-recognition techniques. It is increasingly 
being deployed in toxico- and pharmacokinetic studies in the pharmaceutical industry, especially during the safety assessment 
of candidate drugs in human medicine. However, despite the potential of this technique to reduce both costs and the numbers of 
animals used for research, examples of the application of metabolomics in veterinary research are, thus far, rare. Here we give an 
introduction to metabolomics and discuss its potential in the fi eld of veterinary science.

Abbreviations: GC-MS, gas chromatography–mass spectrometry; LC-MS, liquid chromatography–mass spectrometry; NMR, nuclear mag-
netic resonance; PC, principal component; PCA, principal component analysis; PLS-DA, partial least squares discriminant analysis 

Metabolomics can be defi ned as the analysis of thousands of 
the small molecules (metabolites)—such as sugars, organic acids, 
amino acids, and nucleotides—that are the products of cellular 
metabolism. The full metabolite complement (metabolome) of a 
cell, tissue, or organism can be used to get an idea of the under-
lying biochemistry. As in related techniques, such as genomics 
and proteomics, the metabolome is context-dependent and will 
change in response to external factors, such as disease or expo-
sure to a toxin. The advantages of studying metabolites include 
cost-effectiveness and rapid measurements. These features enable 
large numbers of samples to be processed quickly, thereby provid-
ing a high-throughput analytical tool. In addition, unlike many 
genes and proteins, metabolites are conserved across species, and 
so the detection methods and equipment used in one organism 
can easily be applied to another without the need for recalibration. 
This versatility means that metabolomics-based approaches can 
be applied to studies in a wide variety of disciplines, including 
(but not limited to) drug toxicity and gene function,38 nutrition,61 
microbiology,6 cancer research,11 pharmacology,37 plant sciences,49 
and environmental studies.59 A summary of the workflow for 
standard metabolomics based studies is shown in Figure 1.

The concept of metabolic analysis is not new, but metabolo-
mics as a distinct fi eld dates from around the mid-1990s.47 One 
aspect of the technique which distinguishes it from previous met-
abolically based studies is the attempt to measure all metabolites 
simultaneously, often termed the ‘global approach.’ When cou-
pled with pattern recognition techniques, metabolomics makes 
a powerful investigative tool, with great potential for studying 

the biochemical effects of disease, as well as a screening method 
for potential pharmacological agents in a wide range of species. 
Indeed, metabolomics has proven to be highly sensitive for this 
type of analysis, since metabolic perturbations often present 
much earlier than either tissue accumulation of toxins or induced 
histopathologic changes.22

Somewhat confusingly, several terms have been coined to de-
scribe the process of combining global analytical tools and pattern 
recognition analysis to defi ne the metabolic status of a tissue or or-
ganism. Although ‘metabolomics’ is probably the most common, 
the terms ‘metabonomics,’ ‘metabolic fi ngerprinting,’ ‘metabolic 
footprinting,’ and ‘metabolic profi ling’ are all in common usage. 
They often are used interchangeably, despite subtle differences 
in their defi nitions, thus making terminology complicated (and 
slightly perplexing) even for those working in the fi eld. Through-
out this paper, the term ‘metabolomics’ will be used and taken to 
mean the combination of analytical tools with pattern recognition 
processes used to defi ne a metabolic phenotype (metabotype) by 
means of a global approach.39 This defi nition places the technique 
alongside those such as genomics and proteomics, which repre-
sent the complete genetic profi le and the complete protein expres-
sion in a cell, tissue, organ or individual organism respectively. 
This paper will focus on the different analytical methods available 

Figure 1. Diagram of the workfl ow for a standard metabolomics-based 
study (after reference 18). 
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to study metabolites and how the metabolomic approach could 
be used in veterinary science, especially its potential for drug dis-
covery and development.

Analytic methodology. A major challenge in metabolomics is to 
address the extremely diverse and complex nature of the subject 
matter.12 Metabolites may range in concentration to the order of 
approximately 109, have mass ranges of the order of approximate-
ly 1500 amu, and have polarity ranges of approximately 1020.1 Un-
surprisingly therefore, no single analytical approach can provide 
universal coverage of the metabolome, and multiple analytical 
techniques and sample preparation strategies are necessary for 
complete analysis. A brief outline of some of the more prevalent 
technologies is given below.

NMR. The primary analytical technique for metabolomic stud-
ies has for many years been nuclear magnetic resonance (NMR) 
spectroscopy. NMR works by the application of strong magnetic 
fi elds and radio-frequency pulses to the nuclei of atoms, exploit-
ing a quantum mechanical property of nuclei known as spin. The 
most commonly used nuclei are those with a spin number of ½, 
including the proton (1H) and 31P, 13C, and 19F. Absorption of ra-
dio-frequency energy allows these nuclei to be promoted from a 
low- to high-energy state; the radio-frequency radiation emitted 
as they relax back to the low-energy state can then be detected. A 
detailed explanation of the principles and practices of the tech-
nique is given in Keeler.30 NMR has a number of advantages 
in that it requires minimal sample preparation (although urine 
samples must usually be buffered) and is a highly reproducible, 
robust, nondestructive technique that allows simultaneous mea-
surement of many kinds of small-molecule metabolites. Recent 
improvements in NMR probes also enable analysis of very small 
sample volumes, for example, mouse cerebral spinal fl uid, which 
may be present in quantities as low as approximately 1 to 3 μl.20

Other NMR-based approaches allow the quantifi cation of me-
tabolite concentrations in intact tissue, either in vivo or ex vivo. 
For example, magnetic resonance spectroscopy (MRS) allows 
noninvasive assessment of metabolite concentrations directly in 
vivo within a specifi c localized region; this technique has previ-
ously led to the generation of proposed mechanisms of disease 
pathology.23 MRS can be complicated by inherently low spectral 
resolution and the presence of broad resonances from rapidly re-
laxing molecules present in vivo (especially lipids). These effects 
can be reduced dramatically by spinning the sample at the so-
called ‘magic angle’ (54.7°). Indeed, using high-resolution magic-
angle–spinning NMR, it is possible to produce spectra from intact 
tissue ex vivo that are comparable to those from tissue extracts 
and to investigate metabolic compartmentalization.3

Although capable of detecting all of the high concentration 
metabolites in a solution, NMR-based approaches have 1 major 
disadvantage: they lack the sensitivity offered by mass spectrom-
etry (MS)-based techniques. Strategies are currently being devel-
oped to improve the sensitivity of NMR spectrometers, including 
the use of stronger magnetic fi elds and cryoprobes (which can 
increase the signal-to-noise ratio 3- to 4-fold by reducing ther-
mal noise) and through the introduction of combined techniques, 
such as liquid chromatography (LC)–NMR. The LC-NMR ap-
proach involves using LC to separate high- and low-concentration 
metabolites before NMR analysis. Sensitivity is thus improved 
by reducing the likelihood of coresonant peaks as well as by al-
lowing the dynamic range of the spectrometer to be tuned for 
each LC peak. The spectra of low-concentration metabolites can 

therefore be collected within an appropriate dynamic range, pre-
venting low-concentration signals from becoming lost in baseline 
noise. One of the newest products in the fi eld of combined NMR 
techniques is that of capillary LC-NMR. Here the high spectral 
resolution of NMR is maintained while its sensitivity is improved 
by increasing the sample concentration through reducing the vol-
ume of solvent or buffer used in the NMR sample.24 Nevertheless, 
it is unlikely that NMR will offer better sensitivity than MS in the 
near future.

Gas chromatography–mass spectrometry. Gas chromatography–
mass spectrometry (GC-MS) is a combined analytical system. 
Compounds are fi rst separated by GC, with eluting compounds 
then being detected via MS, traditionally by using electron-impact 
ionization. GC-MS is increasingly being used for metabolomic in-
vestigations and has proven to be a very useful technique. For in-
stance, low-molecular–weight metabolites in a gaseous phase (for 
example, those in breath) can be sampled and analyzed directly.10 

The main advantages of GC-MS are a) increased sensitivity 
and b) the fact that compound identifi cation is greatly facilitated 
by the availability of extensive, easily searchable databases of 
molecular fragmentation patterns.56 It has also proven to be a 
very robust and reproducible metabolomic technique. Some mod-
ern instruments also allow ‘two-dimensional’ chromatography.51 
Here, a short polar column is used in combination with the main 
analytical column, increasing the resolution of the device. The 
use of time of fl ight- and ion-trap mass spectrometers has also 
increased sensitivity compared with that of quadrupole-based 
instruments.19 For these reasons GC-MS is often seen as the ‘gold 
standard’ in metabolomics.

A disadvantage of GC-MS is that it is only useful for volatile, 
thermally stable compounds or those that can be rendered as such 
by chemical derivatization,35,56 which markedly increases the pro-
cessing and analysis time per sample. In addition, the similar-
ity of molecular fragmentation patterns from structural isomers 
(such as those of sugar diastereomers) can make compound iden-
tification difficult. In such cases, accurate assignment must be 
resolved by using retention time indices of standards (such as 
those available at the Max Planck Institute of Molecular Plant 
Physiology online database [http://www.mpimp-golm.mpg.de/
mms-library/]) in conjunction with spectral analysis.

Liquid chromatography–mass spectrometry. LC-MS is another 
combined system, similar in principle to GC-MS but using a liq-
uid mobile phase rather than gas. This technique is still at an early 
stage in terms of use for metabolomic experiments but shows 
great promise in drug development studies.44 Like GC-MS, LC-
MS is more sensitive than NMR and has the added advantage that, 
because the need for sample volatility is eliminated, high analy-
sis temperatures and derivatization reactions are unnecessary 
(although derivatization can help to improve chromatographic 
resolution).13 This attribute makes LC-MS a potentially universal 
technique. Recent innovations such as ultra-performance liquid 
chromatography have also shortened chromatographic run times 
considerably. 

The disadvantages of LC-MS include the fact that several dif-
ferent ionization techniques are in use and often these differ 
from those used for GC-MS. Typically electrospray (rather than 
electron impact) ionization is used, but several other ionization 
techniques such as atmospheric pressure chemical ionization and 
atmospheric pressure photo ionization, are also in common use. 
As a result, spectral libraries are not so readily available as with 
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electron impact ionization and fragmentation patterns between 
instruments and laboratories can therefore vary signifi cantly. Ad-
ditional problems include ion suppression (matrix effects) and 
poor reproducibility of results. These issues make LC-MS–based 
metabolomics particularly demanding, although there is consid-
erable potential for targeted analysis, especially for large or very 
polar compounds, such as many hormones and lipids, which are 
not easily analyzed by GC-MS. 

Alternative methods. Although most metabolic studies use 
one or more of the above techniques, specifi c platforms are not 
a prerequisite for metabolomic analysis. In fact, any technique 
capable of generating comprehensive metabolite measurements 
can potentially be used.45 Other analytical methods that have 
been used include fourier transform infrared spectroscopy,27 fou-
rier transform ion cyclotron resonance mass spectrometry, some-
times known as fourier transform mass spectrometry,4 raman 
spectroscopy,14 high-performance liquid chromatography, either 
on its own42 or in conjunction with coulometric array detectors,34 
thin-layer chromatography,36 capillary electrophoresis–mass 
spectrometry,52 and direct-injection mass spectrometry.29

Pattern recognition and data analysis. The analysis of a large 
number of biologic samples by any technique will usually pro-
duce an equally large number of extremely complex datasets, 
often with considerable overlap of analytes. This type of data con-
sists of the measurements of a range of metabolites (variables) for 
a number of individuals (observations). The identifi cation and 
quantifi cation of changes in metabolite concentration across such 
large and complex datasets often proves very diffi cult.

Standard univariate techniques (such as the Student t test) do not 
consider multiple colinearities within the dataset, where the varia-
tion in 1 variable is related to the variation of 1 or more covariables. 
In addition, it is usually impractical to assess the metabolic effect 
of stressors by univariate methods due to the volume of data pro-
duced and the richness of spectral information. Although metabo-
lomic data may involve hundreds, if not thousands, of variables, 
hundreds of independent events are certainly not occurring in the 
biologic system under test.40 Important information is therefore 
more likely to be found within the patterns of correlation between 
variables as opposed to within individual signals. By measuring 
the changes that occur (or do not occur) across many compounds 
and metabolic pathways, a much richer picture of the overall ef-
fects of a disease- or drug-related perturbation on the metabolic 
network is obtained than if the concentrations of only 1 or 2 directly 
affected compounds are measured. In such metabolomic analyses, 
the use of multivariate statistics coupled with sophisticated pat-
tern-recognition techniques have proven to be of value, since they 
consider all of the variables in a dataset simultaneously. A basic 
tenet of these techniques is to calculate a smaller number of latent 
variables. Latent variables are linear combinations of correlated 
variables. They account for the same amount of variation present in 
the larger dataset while reducing dimensionality and minimizing 
loss of information. Popular software used for this type of analysis 
includes SIMCA-P, (Umetrics, Umeå, Sweden), Pirouette (InfoMe-
trix, Bothell, WA), Matlab (The MathWorks, Natick, MA), and R 
(freeware, http://www.r-project.org/). 

The primary multivariate statistical techniques used in metabo-
lomics can be described as either unsupervised or supervised. 
Unsupervised techniques, such as principle component analysis 
(PCA), form the basis for multivariate data analysis. They model 
the intrinsic variation within the dataset and are defi ned as unsu-

pervised techniques because they do not take class membership 
in account. The starting point for these analyses is a data matrix 
with N rows (observations) and K columns (variables). PCA trans-
forms the variables in the dataset into a smaller number of new 
latent variables called principal component (PCs). These PCs are 
combinations of the initial variables but highlight the variance 
within the dataset and remove redundancies. The components 
are orthogonal (uncorrelated) to each other and are calculated in 
order of decreasing contribution to the total variance of the origi-
nal dataset. Most of the information in the dataset is described by 
the fi rst few PCs, thus the reduction in the dimensionality of the 
data. Observations are assigned scores according to their projec-
tion in principal component space. When displayed graphically 
on a scores plot, samples with similar scores, and therefore simi-
larly correlated metabolic changes, will cluster together—away 
from groups with different scores15 (see Figure 2 for an example 
of a scores plot).

To understand what each PC represents in relation to the origi-
nal measurements, the loading or coeffi cient lists for the original 
PCA model (which can also be displayed graphically) must be ex-
amined. They describe the magnitude and direction of the contri-
bution each variable makes to a PC; a large value for a metabolite 
indicates that changes in concentration of that metabolite contrib-
ute strongly to the variation along that PC, whereas a small value 
means that a metabolite has little or nothing to do with variation 
along that PC.

Supervised techniques, such as partial least squares–discrimi-
nation analysis (PLS-DA), use prior knowledge of class member-
ship (for example, control and diseased animals) or regression 
trends to maximize separation between groups or correlate data 
matrices by searching for changes in variables which are corre-
lated with class membership. Since supervised techniques specifi -
cally identify variation associated with group membership, they 
can be used to examine class separation, which would otherwise 
be spread across 3 or more PCs. However, care must be taken to 
ensure data is not overfi tted. Supervised techniques therefore re-
quire some form of crossvalidation to ensure the statistical valid-
ity of results. This verifi cation usually is achieved by dividing the 
dataset into a training set (samples used to build the model) and a 

Figure 2. An example of a partial least squares–discrimination analysis 
(PLS-DA) scores plot based on NMR analysis of liver tissue from rats 
exposed to 1.572 ± 0.132 (μg/g BW/d) of cadmium(II) chloride for 94 
d (open squares) and controls (solid squares) in an ecotoxicology study 
(unpublished data). The ellipse was calculated by using the Hotelling 
T2 test, a multivariate generalization of the Student t test that checks the 
multivariate normality of the dataset. The area within the ellipse cor-
responds to the 95% confi dence region of the model.

http://prime-pdf-watermark.prime-prod.pubfactory.com/ | 2025-02-25



439

test set (samples not used to build the model). The model is built 
using just the training set and used to predict either class mem-
bership (for example, presence of absence of a drug) or the trend 
variable (for example, species type) for the test set. By repeating 
this process a number of times using different subsets of the data-
set for the test and training sets, an indication of the robustness of 
the models built using the dataset can be obtained.15

With GC- and LC-MS data, multivariate techniques are applied 
to a collection of integrated values, with each value correspond-
ing to a chromatographic peak representing a metabolite. In con-
trast, because each metabolite can give rise to multiple peaks in 
an NMR spectrum (and due to the considerable signal overlap of 
peaks typically observed), some form of data reduction prior to 
analysis frequently is applied. A common method for data reduc-
tion in metabolomic studies is to split the spectra into integral 
regions, known as buckets or bins, and then to use these inte-
gral buckets for statistical analysis. Buckets may be of any size 
but are usually set to a default width of 0.04 ppm.57 Alternative 
techniques such as intelligent bucketing can also be used to set 
bucket sizes for groups of spectra.26 All signals in each bucket are 
summed, and each variable then corresponds to the total signal 
intensity observed within each individual bucket. At this stage, 
normalization of the data (for example, to the total signal inten-
sity or to a specifi c metabolite or standard) is used to account for 
any differences in the mass of tissue or biofl uid present between 
samples. This approach has several advantages, not least of which 
is the ability to analyze spectra whose integration may present 
diffi culties due to resonance overlap and line-fi tting diffi culties 
and to potentially reveal the presence of compounds otherwise 
masked through resonance overlap.8 

Much information may still be lost even in a rigorous statistical 
analysis. For this reason, multivariate statistics used in conjunc-
tion with targeted univariate methods are most likely to yield 
the best and most complete results. In addition, computer-based, 
supervised schemes have recently been developed for application 
in metabolomic studies. These include techniques such as neural 
networks and genetic algorithms, which use machine-learning–
based methods for the classifi cation of samples.17,31

The potential of metabolomics in veterinary science. Metabolo-
mics enables noninvasive systems assessment of untoward effects 
induced by candidate compounds, thereby characterizing a broad 
spectrum of biologic responses on an individual-animal basis in 
a relatively rapid-throughput fashion. This characteristic makes 
it an ideal addition to early preclinical safety assessment.46 It is 
a rapidly developing tool in the human health drug discovery 
fi eld and could potentially impact all stages of veterinary drug 
discovery and development. 

Veterinary drug discovery. Endogenous metabolites are the end 
products of gene expression and are the main effectors of cel-
lular signaling in response to changes in a biochemical pathway, 
whether due to disease or a toxic xenobiotic. This theoretically 
means that biochemical pathways can be traced back to identify 
a target (or targets) of a specifi c disease. This in turn could poten-
tially lead to the identifi cation of more druggable endpoints for 
future studies.

Metabolomics can also be used to identify specifi c biomarkers, 
or perhaps more usefully, biomarker profi les of disease.21 This 
application may be especially useful in the development of veteri-
nary medicines, because the drug candidate goes into the target 
animal at a much earlier stage than in equivalent human studies 

(earlier drug testing in target animals and culling of animals are the 
main differences between human health and veterinary medicine). 
Research animals must be killed if their organs are to be evaluated 
to assess drug effi cacy or residue levels. This is where a noninva-
sive technique such as metabolomics has the greatest potential. 
Ethically, reducing the need to euthanize animals during the course 
of drug discovery is an important factor contributing to the imple-
mentation of ‘the 3 Rs’ (replacement, reduction, and refi nement) in 
line with current European Union policy on animal testing.25 

Toxicology and pharmacokinetics. The fi nancial cost of develop-
ing any new therapeutic agent is considerable. An effective early 
screen of toxicity is therefore extremely desirable because the 
earlier that a toxic molecule or molecular class can be removed 
from the developmental pipeline, the lower the economic cost.38 
Metabolomics offers the potential for identifying and assessing 
toxic effects during the early stages of drug development, thus 
reducing costs. For this reason it is used widely by pharmaceuti-
cal companies involved in the development of human (but rarely 
veterinary) medicines. 

A metabolomics-based approach is attractive to toxicologists be-
cause it measures the responses of the whole system, unlike classic 
assays which often focus on selected organs. Additionally, samples 
for metabolomic analysis can easily be incorporated into many 
types of traditional toxicology studies and the results integrated 
with routinely measured end points.32 Furthermore, because it 
aims to identify metabolic changes through the measurement of 
all metabolites, rather than just those thought to be of interest, me-
tabolomics (in common with other ‘omics’-based approaches) can 
be used to generate hypotheses. This attribute makes metabolom-
ics useful for studying systems in which the mechanism of toxicity 
is unknown. For interested readers, Robertson45 has reviewed the 
use of metabolomics in toxicology in more detail. 

Noninvasive analysis of body fl uids may be carried out to en-
able monitoring of both effi cacy and toxicity of a given compound 
or group of compounds. Plasma and urine are the main body 
fl uids used. Of these, urine is less invasive to collect and, if using 
metabolism cages, samples can be taken while the animal is left 
unattended, thus removing the need for off-hour sample collec-
tions. In fact, providing they are not contaminated (for example, 
with bacteria), most biological fl uids are suitable for metabolomic 
investigations, including whole blood, milk, and saliva. 

Using metabolomics it is possible to track how the metabolism 
in a cell, tissue, or body fl uid is perturbed after administration of 
a test compound, as well as how it returns to normal after treat-
ment has ceased. A useful example of such a study is given by 
Robosky and colleagues,47 who looked at male rats (Rattus norveg-
icus, Wistar strain) exposed to carbon tetrachloride, a well-known 
hepatotoxin. The results of NMR-based metabolomics were com-
pared with traditional clinical chemistry analysis, and both sets 
of results were found to correlate remarkably well. The work is 
one of many which demonstrate that metabolic measurements 
provide a reliable endpoint for assessing toxicity and that they 
can be potentially included in standard screening programs.

Studying metabolite levels may also be useful in pharmacoki-
netic studies since, in addition to looking for toxic effects or bio-
markers of toxicity, it is also theoretically feasible to use the same 
analytical techniques to follow a particular substance and its 
breakdown products over a period of time to ascertain how they 
accumulate within, and are eliminated from, tissues and organs 
after dosing.
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Clinical applications. Examples of veterinary-based studies in 
the metabolomics literature are, so far, quite rare. The only di-
rectly related work is a general overview of functional genomics 
and systems biology and their relevance to veterinary science63 
and a study by Whitfi eld and colleagues who used metabolomics 
to distinguish canine congenital portosystemic vascular anoma-
lies from acquired hepatopathies.62 In that study, plasma samples 
were collected from 25 dogs (comprising 9 with congenital porto-
systemic vascular anomalies, 6 with acquired hepatopathy, and 10 
with nonhepatic disorders) and analyzed by use of LC-MS. Multi-
variate analysis of the results produced clear segregation among 
all 3 study groups. Disturbances were identifi ed in the plasma, 
bile acid, and phospholipid profi les of dogs with portovascular 
anomalies.62 The study demonstrates the potential of metabolom-
ics as a diagnostic tool for naturally occurring hepatic disease in 
dogs and, potentially, other animals.

It may also be possible to develop biomarkers or metabolic pro-
fi les to detect the effects of illegally administered drugs and/or 
growth promoters (doping) even after the substance itself is no 
longer present.63

Related work has involved the analysis of cadmium toxicity 
in rodents,22 the study of liver tumors in wild fl atfi sh,55 the as-
sessment of sublethal stress in aquatic organisms,58 as well as the 
extensive use of rodent models in the study of human disease.19,28 
For instance, a study by Pears and colleagues used metabolo-
mics to demonstrate that there was a neurotransmitter cycling 
defi cit in cerebral tissue from a mouse model of batten disease (a 
progressive neurologic disorder primarily affecting children).41 
In additon, a combined 1H NMR spectroscopy and mass spec-
trometry-based approach was used in a metabolomic study of 
the PPAR-α null mutant mouse as a model for the metabolic syn-
drome in humans.1

Potential drawbacks. There are limits in using metabolites as 
markers for toxicity and disease. Not least is that their concentra-
tions are often heavily influenced by a variety of other factors 
such as age,50 diurnal and estrus cycles,2,43 gender,43,53 parasite 
load,60 as well as the species and strain background of the animal 
under study.16,43 Strain is of particular importance in veterinary 
medicine because individual strains are often inbred, and vari-
ability among specifi c strains of animals may be substantial. Diet 
is another major factor affecting metabolic phenotypes,54 and 
even environmental stressors such as temperature can play an 
important role.48 

The ability of metabolomic studies to reveal meaningful differ-
ences between samples is useful only if the observed differences 
originate from sample characteristics of interest, rather than from 
unknown or uncontrollable effects.9 The infl uence of external fac-
tors potentially can be signifi cant, and therefore including ad-
equate control groups is crucial to the study design. For example, 
Brindle and colleagues previously reported that 1H NMR analysis 
of human blood sera could rapidly and noninvasively predict 
angiographically defi ned advanced coronary heart disease with 
>90% accuracy and specifi city.5 However, a later study demon-
strated that once potential confounding factors (such as gender 
and drug treatment) were taken into account, accurate predic-
tions between patients with heart disease and those without were 
only 61.3% for men treated with statin drugs and 80.3% for men 
who were not treated.33 Compared with a random correct pre-
diction rate of 50%, the detection rate of heart disease by use of 

metabolomics was thus demonstrated to be poor when compared 
with angiography.

Metabolomics also suffers from the phenomenon of ‘the usual 
suspects.’ This refers to the fact that the levels of a very similar 
group of metabolites have been found to be altered in a wide 
range of unrelated studies.45 It is theorized that this effect may 
be due to the fact that many toxicants, and indeed diseases, often 
affect central hubs of metabolism, such as energy generation.40 
Perturbation at such hubs may then quickly be transferred to oth-
er biochemical pathways. However, because the metabolites in 
the hubs affect many different pathways, it is they that are often 
found to be most important in the resultant analysis. 

Although this effect is not considered to be an artifact of the 
analytical or data-processing methods used, it often masks the 
less obvious effects of a biologic perturbation. For example, Con-
nor and colleagues demonstrated that many of the usual suspects 
often cited as biomarkers of liver and kidney toxicity could in fact 
be explained by diet or food restriction (which are themselves 
frequent indicators of toxicity), with resultant weight loss.7 There-
fore they may in fact be markers of general stress, rather than 
of a specifi c effect. To avoid this problem, many pharmaceutical 
companies now use weight- (in addition to sex-, strain-, and age-) 
matched control animals in drug development studies. These 
controls are ‘pair-fed’ with treated animals so that they achieve a 
similar weight change. Although this practice increases the num-
bers of animals used in the study (with associated costs and ethi-
cal considerations), it enables the changes in metabolic profi les of 
each group to be compared and enables the effects of weight loss 
to be separated out from any underlying toxicity. 

It is also important to bear in mind that, since metabolomics is 
a static technique, it cannot generate data on dynamic processes, 
such as the fl ux rates of specifi c metabolic pathways. This prob-
lem is common to many -omic sciences but can potentially be 
addressed by the use of isotope labeling studies.

In conclusion, metabolomics is a rapidly developing technique 
that already has made great impacts in a wide range of fi elds, in-
cluding many of interest to the veterinary scientist. This approach 
has potential drawbacks which are important to consider (such as 
its sensitivity to external infl uences). However, if studies are care-
fully designed and monitored and the data interpreted with care, 
metabolomics shows considerable potential in veterinary phar-
macology, toxicology, and clinical diagnostics and therapeutics. 
Metabolomics also shows great promise in signifi cantly reducing 
the number of animals used for drug discovery and development 
and related studies.
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