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Overview
Laboratory Animal Models of Temporal Lobe Epilepsy

Paul S. Buckmaster, DVM, PhD

Temporal lobe epilepsy is a common human disease that is difficult to treat. The pathogenesis of temporal lobe
epilepsy, which holds many unresolved questions, and opportunities for creating more effective treatments and
preventative strategies are reviewed herein. Laboratory animal models are essential to meet these challenges. How
models are created, how they compare with each other and with the disease in human patients, and how they ad-
vance our understanding of temporal lobe epilepsy are described.

After stroke, epilepsy, a condition characterized by spontane-
ous, recurrent seizures, is the most common neurologic disorder.
Over 3% of the U.S. population living to the age of 80 will be di-
agnosed with a chronic epileptic disorder (66). Seizures are
caused by uncontrolled, excess, and hypersynchronous neuronal
activity, the timing of which is unpredictable. Therefore, common
activities like driving, swimming, or climbing a ladder can be
life-threatening risks for epileptic patients.

The International League Against Epilepsy has classified hu-
man epilepsies by seizure type as self-limited, continuous, or re-
flex, and as focal or generalized (67). Generalized seizures
involve widespread regions of the cerebral cortex. Generalized,
self-limited seizures are exemplified by tonic-clonic seizures,
which begin with tonic extension of the limbs and trunk, evolve
into rhythmic movements (clonus), and terminate spontaneously
within a few minutes. Absence seizures also are generalized and
self limited, characterized by brief episodes (about 10 sec) of star-
ing and unconsciousness that can occur more than 100 times per
day (165). In contrast, focal seizures arise from a focal region of
the cerebral hemisphere, and their manifestations depend on
the brain region(s) involved. A focal seizure in the limb region of
the motor cortex, for example, can induce clonus of the contralat-
eral limb. A focal seizure in the mesial temporal lobe induces
automatisms, which are semi-purposeful coordinated movements.
Most seizures are self limited, but continuous seizures—status
epilepticus—sometimes occur. Reflex seizures are rare and are
precipitated by visual stimuli, somatosensory stimuli, thinking,
reading, or tooth brushing. The precipitating stimulus is specific
for each patient.

The human classification scheme can be used to classify sei-
zures in other species. Self-limited, generalized tonic-clonic sei-
zures and status epilepticus occur in many species. Self-limited
generalized absence seizures (characterized by sudden loss of con-
sciousness associated with bilateral spike-and-wave discharges on
the electroencephalogram) have been identified in Wistar Albino
Glaxo rats (WAG/Rij) (52) and genetic absence epilepsy rats from
Strasbourg (GAERS) (130). Reflex seizures occur in Mongolian
gerbils with inherited epilepsy (122, 202), in which the optimal
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precipitating stimulus is exposure to a novel environment (127).
The International League Against Epilepsy has also classified

epilepsies by cause as familial, idiopathic, or symptomatic. Fa-
milial epilepsies are inherited. Idiopathic epilepsies do not in-
volve underlying structural brain lesions or other signs of
neurologic dysfunction, and presumably have a genetic basis.
Symptomatic epilepsies are caused by a structural lesion in the
brain. Additionally, epilepsies can be associated with specific dis-
eases or encephalopathies, including neurocutaneous disorders,
malformations in brain development, tumors, chromosomal ab-
normalities, metabolic disorders, and infections (67).

More than 100 laboratory animal models of epilepsy have
been reported (55, 75, 120). In this article, human temporal lobe
epilepsy will be described, unresolved questions about its causes
and treatment will be identified, and a review of how laboratory
animal models are prepared and how they advance our under-
standing of temporal lobe epilepsy will be presented.

Temporal Lobe Epilepsy
Temporal lobe epilepsy is the most common type in humans,

and many patients continue to have uncontrolled seizures de-
spite treatment with anti-convulsant medications (68). It is asso-
ciated with a specific structural lesion in the hippocampus,
which may be surgically resected in medically intractable cases.
Investigation of temporal lobe epilepsy is stimulated, in part, by
involvement of the hippocampus, which has a simple organiza-
tion compared with other parts of the cerebral cortex and plays a
role in learning and memory. The role of the hippocampus in
memory formation was shockingly evident historically, after bi-
lateral temporal lobectomy was performed to treat medically re-
fractory epilepsy. Surgery caused the immediate and permanent
loss of a patient’s ability to form new memories, while pre-surgi-
cal memories remained intact (185). Insights gained from study-
ing temporal lobe epilepsy may be applied to other types of
epilepsy and help reveal mechanisms of temporal lobe function.

Patients with temporal lobe epilepsy have approximately 2 to
30 self-limiting, focal seizures per month (68, 79). Seizures are
unpredictable, and why a seizure begins is a persistent question
in epilepsy research. The ability to accurately predict seizure on-
set would be a tremendous advance in helping patients to pre-
pare. Seizures in patients with temporal lobe epilepsy typically
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start with an aura (79, 110), during which the patient is con-
scious. The most common aura is a visceral sensation described
as nausea, pressure, “butterflies,” or epigastric rising (68, 79). It
is followed closely by a focal motor seizure and loss of con-
sciousness, which begins with motor arrest and staring and
evolves to oral-alimentary automatisms (e.g., lip smacking,
chewing, tooth grinding). Focal motor seizures sometimes
progress to generalized tonic-clonic seizures. In either instance,
seizures typically are followed by postictal depression. The
mechanisms that terminate seizures and determine whether
focal seizures will become generalized are of great investiga-
tional interest because, once better defined, they could provide
targets for anti-convulsant therapies.

Most patients with temporal lobe epilepsy have a history of
brain injury. Age at time of the injury is quite variable, but aver-
ages about 3 years (134). Up to two-thirds of patients have a his-
tory of febrile seizures (70, 79, 207). Although many infants have
febrile seizures, only a small proportion develop epilepsy (4, 156).
Thus, it is unclear why similar febrile seizures result in temporal
lobe epilepsy in some patients, but not in others. One possibility
is that an unidentified factor predisposes patients to febrile sei-
zures and temporal lobe epilepsy. Other precipitating injuries in-
clude head trauma, infections (e.g., bacterial meningitis and
viral encephalitis), status epilepticus, hypoxia/ischemia, birth
trauma, and toxins (45, 79, 136, 161). Many, but not all, precipi-
tating events involve seizures at the time. After recovery from
the initial precipitating injury, patients begin a seizure-free la-
tent period. The duration of the latent period varies from negli-
gible to decades, the average being six to nine years (79, 134).
After the latent period, spontaneous, recurrent seizures develop,
which typically continue throughout life (Fig. 1).

Although some patients with temporal lobe epilepsy have tu-
mors or vascular malformations in the temporal lobe, the most
common lesion, in 70% of patients, is hippocampal sclerosis high-
lighted by a specific pattern of neuronal loss (68). The most vul-
nerable neurons are in the CA1 region and in the hilus of the
dentate gyrus, whereas the least vulnerable neurons are the
granule cells in the dentate gyrus and the CA2 pyramidal cells
(131). Other features include loss of specific classes of inhibitory
interneurons and synaptic reorganization of dentate granule
cells (58, 97, 128, 135, 191, 196, 221). Lesions also develop out-
side of the hippocampus. For example, magnetic resonance imag-
ing (MRI) has revealed brain volume loss, and histologic
examination has revealed neuron loss in subregions of the
amygdala and entorhinal cortex (19, 42, 46, 61, 98, 106, 219).
Nevertheless, the hippocampus is the most consistently severely
affected region (7, 30, 71, 84, 108, 131, 176).

The reason for the high incidence of temporal lobe epilepsy in
humans is unclear, but it is suggested that there are predispos-

ing, species-specific factors. Although epilepsy is common in
dogs, it is not consistent with temporal lobe epilepsy, because
dogs rarely develop hippocampal sclerosis (38). Hippocampal
sclerosis has been described in cats with epilepsy (183). Al-
though epilepsy is not diagnosed in cats as often as in dogs, mild
behavioral seizures that involve automatisms but not obvious
convulsions might not be recognized as epileptic seizures (54).

The relationship of hippocampal sclerosis to seizures has been
debated since 1825 (23). Some evidence suggests that the hip-
pocampal lesion generates seizures. Electroencephalographic re-
cordings indicate that seizures begin in mesial temporal lobe
structures (100, 101), and surgical removal of the affected hip-
pocampus (and other structures of the anteriomesial temporal
lobe) eliminates seizures in 80 to 90% of patients with medically
refractory temporal lobe epilepsy (68). If hippocampal lesions
generate seizures, hippocampal sclerosis should precede devel-
opment of epilepsy. In fact, severe seizure activity, which is one
type of precipitating injury, induces hippocampal sclerosis
within days in rodents (80, 111), monkeys (143), and humans
(81, 161, 199, 207). Since the seizure-free latent period is long,
hippocampal sclerosis is likely to be present during the latent
period and, therefore, may contribute to seizure generation
when epilepsy begins. However, hippocampal sclerosis alone is
insufficient to explain seizures, because patients do not have sei-
zures during the latent period.

This leads to the important question of what happens during
the latent period. Many hypotheses of temporal lobe
epileptogenesis focus on the hippocampal dentate gyrus, which
is thought to serve as a seizure-suppressing filter or gate (53,
124). The dentate gyrus contains dramatic lesions featuring loss
of hilar neurons (131), and it may not function properly. Neu-
ronal loss includes excitatory mossy cells (8, 10, 21, 152) and in-
hibitory interneurons (58, 128, 135, 191, 221). Excitatory dentate
granule cells survive, and normally are inhibited by γ-
aminobutyric acidergic (GABAergic) synaptic input (65, 194).
The loss of interneurons may reduce inhibition of granule cells,
making them hyperexcitable and lowering the seizure threshold
(58, 111).

Another hypothesis contends that the loss of mossy cells re-
sults in axon sprouting and synaptogenesis, inducing an aber-
rant positive-feedback circuit between dentate granule cells that
generates seizures (155) (Fig. 2). Mossy cells are the predomi-
nant neurons in the hilus (1, 36, 119) and concentrate their
glutamatergic axon terminals in the inner molecular layer of the
dentate gyrus where they form excitatory synaptic contacts with
granule cells (39, 180, 216). Mossy cells are exquisitely sensitive
to a wide range of insults (37, 190). When they die, their axon

Figure 1. Time line illustrating the sequence of events in the develop-
ment of temporal lobe epilepsy.

Figure 2. Schematic of the recurrent excitation hypothesis of tempo-
ral lobe epilepsy.
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terminals degenerate, leaving vacant postsynaptic sites on the
proximal dendrites of granule cells (155, 162). This deafferenta-
tion triggers or permits granule cell axon reorganization (115).
Granule cells sprout axon collaterals that invade the inner mo-
lecular layer—a region they usually avoid (35, 50)—and form
synapses to fill the vacated synaptic sites. Anatomic evidence
from patients with temporal lobe epilepsy supports the view that
granule cell axons reorganize to form a positive-feedback circuit
(58, 76, 97, 99, 196, 220), and the extent of granule cell axon
sprouting correlates with the extent of hilar neuron loss (9, 133).
It has been proposed that the seizure-free latent period is attrib-
utable to the time it takes for synaptic reorganization to estab-
lish a sufficient degree of recurrent excitation to surpass the
seizure threshold (63). However, if neuron loss in the hilus is
present shortly after the initial precipitating injury, synaptic re-
organization is likely to develop within several months, as it
does in rodent models of temporal lobe epilepsy to be discussed
(137, 145, 163, 215). Therefore, the extensive latent period in
many patients does not correlate with the short time expected
for synaptic reorganization. Nevertheless, it would be useful ex-
perimentally and perhaps therapeutically to develop methods to
block synaptic reorganization following an epileptogenic injury.
Currently, such treatments do not exist to the author’s knowl-
edge. Currently prescribed epilepsy medications are seizure-sup-
pressing anti-convulsants, but they are not anti-epileptogenic. In
other words, they temporarily treat the symptoms by reducing
the probability of seizures, but they do not permanently block or
reverse the development of epilepsy (200, 201). Creating anti-
epileptogenic treatments is an important goal of epilepsy re-
search.

The aforedescribed hypotheses provide a conceptual link be-
tween hippocampal sclerosis and epilepsy. However, they do not
adequately account for the long seizure-free latent period in pa-
tients. Other hypotheses, alone or in combination, also do not
provide a satisfying explanation of the underlying mechanisms
and clinical manifestations of temporal lobe epilepsy. They in-
clude: inhibition of inhibitory neurons (167), excess excitatory
conductance through N-methyl-D-aspartic acid (NMDA)-type
glutamate receptors (148), reduced excitatory synaptic drive to
inhibitory neurons (190), impaired release of GABA (64), altered
GABAA-receptor subunit expression with zinc-induced collapse
of inhibition (40), acquired abnormalities in potassium channel
function (18, 47), and hypersynchrony mediated by inhibitory
neurons (10). Therefore, fundamental questions regarding cause
and pathogenesis persist. Study of brain tissue obtained at sur-
gery or autopsy can be helpful, but is limited in quantity, quality,
and experimental versatility, and control tissue frequently is un-
available. Therefore, laboratory animal models are essential to
help identify causes of temporal lobe epilepsy and translate such
findings into better treatments for patients.

Animal Models of Temporal Lobe Epilepsy
Because temporal lobe epilepsy commonly develops after brain

injury, most models involve use of this factor. Unfortunately, this
raises animal welfare issues because palliative treatment during
experimentation may block the pathophysiologic processes that
are the focus of study. Investigators and laboratory animal veteri-
narians must, therefore, choose and use models wisely and hu-
manely to address experimental questions, while minimizing pain,
distress, and discomfort. Some of the methods used to create mod-

els will be described, because they are important for animal wel-
fare concerns and for encouraging refinement.

Neonatal hyperthermia. Most patients with temporal lobe
epilepsy have history of febrile seizures (79). Hyperthermia has
been used to develop several rat models that can be used to in-
vestigate the long-term effects of febrile seizures (94, 96, 150).
For example, heated air is used to raise the core temperature of
10- to 11- (postnatal) day-old rats to 41°C for 30 min, causing sei-
zures lasting approximately 14 min (12). After treatment, rat
pups are placed on a cool surface for 15 min before being re-
turned to their home cage. Mortality is about 10%. One week
later, the seizure threshold is reduced and the hippocampus is
hyperexcitable (62). Unlike patients with temporal lobe epilepsy,
however, the hippocampus does not display neuron loss and
there is little evidence of granule cell synaptic reorganization
(15). Preliminary results suggest that hyperthermia-treated rats
can develop spontaneous, recurrent seizures (11), but they do not
appear to become epileptic as consistently and reliably as do
other models of temporal lobe epilepsy (Table 1).

Neonatal hypoxia ± ischemia. Neonatal hypoxia/ischemia
is associated with increased risk of developing epilepsy (16),
stimulating development of rat models of neonatal hypoxia (49).
For example, 10- to 12- (postnatal) day-old rats were exposed to
3 to 4% oxygen for 15 to 20 min (104). The treatment reduced
blood oxygen pressure and saturation, causing acidosis and sei-
zures (103). Up to at least 110 days later, the seizure threshold
was reduced (49, 138), and the hippocampus was hyperexcitable
(105), but did not display neuron loss (164). Currently there is no
evidence that spontaneous, recurrent seizures develop. Thus,
like the febrile seizure model, the hypoxia model does not induce
hippocampal sclerosis and is not epileptogenic (Table 1).

More severe treatments involve combined hypoxia with is-
chemia in rats (95). For example, 7-day-old rats were anesthe-
tized with isoflurane, and the right common carotid artery was
ligated prior to return to the dam (217). Two hours later, the
pups were placed in a warm, humidified chamber filled with 8%
oxygen and 92% nitrogen for 2 h. During that time, the pups dis-
played seizure-like behavior; mortality was 20%. Rats treated
with hypoxia plus ischemia developed hippocampal sclerosis,
granule cell synaptic reorganization, and spontaneous seizures
(Table 1). The extent of synaptic reorganization was less than
that found in status epilepticus models and patients with tempo-
ral lobe epilepsy. The seizure-free latent period was longer and
seizure frequency was about 20 times lower than that of status
epilepticus models. Nevertheless, to the author’s knowledge, this
is the only current model of perinatal brain injury that induces

Table 1. Features displayed by various rodent models of temporal lobe
epilepsy

Model Hippocampal Granule cell synaptic Spontaneous
neuron loss reorganization seizures

Neonatal hyperthermia — ± ±
Neonatal hypoxia — — —
Neonatal hypoxia + ischemia + + +
Percussive brain injury + + ±
Tetanus toxin ± ± + (transient)
Kindling — ± —
Over-kindling + + +
Status epilepticus ++ ++ ++

Absence of a feature is indicated by —, presence by +, and strong presence by ++.
Uncertain or conflicting data, or special circumstances are indicated by ±. See
text for details and references.

Animal models of epilepsy
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substantial hippocampal sclerosis and eventual development of
epilepsy. However, the hypoxia plus ischemia treatment is likely
to cause a clinical syndrome and neuropathologic changes that
extend beyond the temporal lobe and resemble those in patients
with epilepsy and cerebral palsy (91, 114).

Percussive brain injury. Head trauma is the second most
common risk factor for developing temporal lobe epilepsy (79,
213). There are several methods for inducing traumatic brain in-
juries. One type uses fluid percussion to generate injurious me-
chanical force and has been done in cats (92, 195), rabbits (118),
and rats (59). For example, McIntosh and co-workers (140) devel-
oped a lateral fluid-percussion injury model in which a pressur-
ized [approx. 2 atm (1 atm = 101.29 kPa)] pulse (about 20
milliseconds) of saline was injected against cranial dura mater of
anesthetized or recovering rats (56, 140, 195, 204). The injury
caused transient unconsciousness in rats recovering from anes-
thesia and longer-lasting motor and memory deficits (56, 140,
192). Mortality was approximately 10% after a pulse at moder-
ate pressure, but increased with higher impact pressures.

Fluid-percussion injury induces a lesion at the site of impact
in the neocortex. Although the hippocampus is remote from the
impact site, the treatment induces neuron loss, mild degree of
granule cell synaptic reorganization, and lasting hyperexcitabil-
ity in the hippocampus (56, 86, 126, 177, 204). Currently there is
no evidence that an injury inflicted by use of moderate impact
causes spontaneous recurrent seizures. After more severe inju-
ries induced with approximately 3 to 4 atm of impact pressure,
some rats developed spontaneous behavioral seizures (57, 160).
However, it is unclear whether seizures were initiated in the
neocortex or hippocampus, or both. The neocortical lesion was
not typical of that of temporal lobe epilepsy, and it is a confound-
ing factor for experiments investigating the role of the hippoc-
ampus in epileptogenesis.

The most persuasive attributes of the aforementioned injury
models are their link to risk factors for developing temporal lobe
epilepsy, including effects on the hippocampus. However, they all
fall short of mimicking key aspects of human temporal lobe epi-
lepsy. Of at least equal importance, they induce considerable
morbidity and mortality, which makes their use problematic
from an animal welfare perspective.

Tetanus toxin. Loss of inhibitory neurons in patients with
temporal lobe epilepsy (58, 135, 191) may make remaining exci-
tatory neurons more likely to generate seizures. Tetanus toxin
blocks neurotransmitter release, and preferentially affects
GABA (17). Therefore, inhibition was reduced by injecting teta-
nus toxin into the hippocampus of rats (102, 144). They began
having spontaneous seizures about seven days later. Seizure
rate maximized at 10 to 15 days after treatment, then subsided,
none being observed after 31 days. Neuron loss and granule cell
synaptic reorganization in the hippocampus were absent or mi-
nor (3, 146, 147). Tetanus toxin also has been used to induce sei-
zures initiated in the neocortex (28) and the hippocampus of
infant rats (9 to 10 days old) (116). Although the tetanus toxin
model does not induce hippocampal sclerosis or permanent epi-
lepsy, it may be useful for studying the effects of selective loss of
inhibition. Other models of temporal lobe epilepsy involve mul-
tiple, simultaneous changes (Table 1). With multiple variables, it
is difficult to determine which are the most important for gener-
ating seizures. More selective deficits, like those induced by teta-
nus toxin, can be useful for testing specific mechanisms.

Kindling. Kindling entails repeated, mild, electrical stimula-
tion of the amygdala, olfactory regions, hippocampus, or other
brain regions to induce a progressive and permanent seizure re-
sponse (85). For example, Racine (170) stereotaxically implanted
an electrode in the amygdala of anesthetized rats. Unrestrained
rats were then stimulated daily using a 1-sec train of electrical
pulses of 60 Hz and one-millisecond duration. The stimulus in-
tensity was set just high enough so that an afterdischarge was
evoked (i.e., the tissue continued to discharge for a few seconds af-
ter stimulation ceased). At first, there was no behavioral response
to stimulation. With repeated stimulation, afterdischarges length-
ened and rats began displaying seizure behaviors, despite unal-
tered stimulation parameters. There are five cumulative stages
(classes) of seizure development: 1) mouth and facial move-
ments, 2) head nodding, 3) forelimb clonus, 4) rearing, and 5)
rearing and falling. The Racine scale is a common way for inves-
tigators to describe seizure behavior in rodent models of epi-
lepsy.

The number of stimulations required to kindle an animal—so
that, for example, class-4 or class-5 seizures are evoked consis-
tently—depends on several parameters, including the species
used. A wide variety of species has been kindled, including frogs
(151), lizards (172), rodents (85), cats (212), dogs (214), macaques
(210), and baboons (211), and different species kindle at different
rates. Rodents kindle quickly, primates slowly, and carnivores at
intermediate rate. For example, an average of 14 stimulations is
required for amygdala kindling in rats, 25 in cats, and 196 in
rhesus macaques (209).

There also are differences within species. For example, of rat
strains tested, Lewis rats require the most stimulations for
amygdala kindling, Sprague-Dawley and Brown Norway rats re-
quire the fewest, and Wistar, Fischer 344, ACI, and Wistar-Kyoto
rats need an intermediate number (121). Additionally, different
brain regions kindle at different rates. In rats, the amygdala re-
quires an average of 11 stimulations, and the hippocampus re-
quires an average of 27 (170). The long time required to kindle
an animal with single, daily stimulations is undesirable for some
experiments. Consequently, accelerated kindling protocols have
been developed (125). A long-term stimulating electrode is im-
planted in the ventral hippocampus of rats (20). At least one
week later, animals are stimulated by use of a 10-sec train of
one-millisecond pulses at 400 µA and 50 Hz. A total of 72 stimu-
lus trains are delivered every 5 min to kindle rats in just over 6
h.

One advantage of the kindling model is that specific brain re-
gions can be treated more selectively. However, as kindling
progresses, afterdischarges and seizures propagate beyond the
targeted region. Another advantage is that kindled animals can
help resolve one of the major problems in epilepsy experiments:
determining whether a difference between an epileptic and con-
trol group is a cause or an effect of seizures. For example, one
study included a control group, an epileptic group, and a kindled
group (137). The number of spontaneous seizures in epileptic
rats was recorded, and the same number of seizures was evoked
in kindled rats. The kindled rats, therefore, served as a control
for the effect of seizures (without epilepsy). If a difference be-
tween the control and epileptic groups is only a side effect of sei-
zure activity, the kindled group should resemble the epileptic
group.

The kindling model has been used to develop novel hypoth-
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eses. One hypothesis is that temporal lobe epileptogenesis is at-
tributable to excess excitatory conductance through NMDA-type
glutamate receptors on dentate granule cells. The NMDA recep-
tors are glutamate-gated ion channels that are permeable to so-
dium and calcium ions. When activated, NMDA channels
depolarize the cell and trigger calcium-dependent second-mes-
senger signal transduction cascades. Compared with granule
cells from controls, those from kindled rats have NMDA recep-
tors that open more easily and more often (112), which makes
previously subthreshold excitatory inputs capable of triggering
action potentials and perhaps seizure activity (148). However,
NMDA receptor conductance decreases to control values within
a month after kindling stimulations cease (13, 14, 179), whereas
the kindling-induced increase in seizure response is permanent
(85, 212). Therefore, NMDA receptors may be important for in-
duction of kindling, but not for maintenance of the seizure-sensi-
tive state.

Zinc-induced collapse of inhibition is another hypothesis of
temporal lobe epilepsy developed using the kindling model. Zinc
is concentrated in synaptic vesicles of granule cell axons (166).
The hypothesis contends that granule cells change their expres-
sion of GABAA receptors, so that they can be blocked by zinc ions
released by sprouted granule cell axons (29, 40). Unlike GABAA
receptors from control rats, the GABAA receptors on granule
cells from kindled rats, pilocarpine-induced epileptic rats, and
patients with temporal lobe epilepsy are blocked by exogenously
applied zinc (40, 188). However, whether endogenous zinc ions
are released at concentrations sufficient to diffuse to and effec-
tively block GABAA receptors is questionable (107, 149).

Bragin and co-workers (25) hypothesized that kindling ac-
counts for the latent period in patients. They proposed that, after
an initial precipitating injury, hippocampal sclerosis and granule
cell synaptic reorganization form small clusters of pathologically
interconnected neurons that gradually kindle the hippocampus
by generating hypersynchronous bursts of action potentials. If
so, anti-convulsant treatment during the latent period would
prevent development of epilepsy by blocking hypersynchronous
bursts of action potentials. Contrary to this prediction, anti-con-
vulsant drugs administered during the latent period do not pre-
vent or delay the development of epilepsy (168).

In the kindling model, seizures are evoked, and are not spon-
taneous. Animals receive stimulation treatments until they re-
liably display class-4 or class-5 seizures, then kindled animals
are compared with unstimulated controls. Kindled animals do
not have spontaneous seizures, so they are not truly epileptic.
Futhermore, kindled animals do not have hippocampal sclerosis.
Therefore, their relevance to humans with temporal lobe epi-
lepsy is questionable. However, animals can be “over-kindled”
so that they exhibit more features of temporal lobe epilepsy.
Spontaneous seizures develop after many kindling stimulation
treatments, but this requires at least approximately 100 class-
5 seizures in rats (178). After repeated stimulation, rats gradu-
ally display progressive neuron loss and mild degree of synaptic
reorganization in the hippocampus (43, 44), but not to the same
extent as that in status epilepticus models (Table 1) or patients
with temporal lobe epilepsy.

Status epilepticus. Patients with temporal lobe epilepsy fre-
quently have a history of a precipitating injury that involves pro-
longed seizures (79, 136) and sometimes status epilepticus (161).
Status epilepticus is rapidly repeated or continuous seizure ac-

tivity. In animal models, it can be initiated by use of electrical
stimulation or chemical convulsants.

(i) Electrical induction. Electrical stimulation of the hippoc-
ampus, its afferents (139, 187, 189, 208), or the amygdala (141)
has been used to initiate status epilepticus. For example, stimu-
lating electrodes were implanted in the hippocampus of adult
rats (123). One week later, awake rats were stimulated with 1-
millisecond pulses at 400 µA and 50 Hz—a train of stimuli is on
for 10 sec and off for 1 sec—that continued for 90 min. Ninety
percent of treated rats developed self-sustaining status
epilepticus that continued for at least 30 min and longer (6 to 12
h) in some instances. Over 80% of the rats that developed status
epilepticus for at least 6 h sustained neuronal loss, had evidence
of hyperexcitability in the hippocampus, and developed sponta-
neous recurrent seizures after a latent period (129).

Status epilepticus can be induced by electrically stimulating
the lateral nucleus of the amygdala (158). Adult rats with im-
planted electrodes were stimulated by use of 100-millisecond
pulses at 400 µA and 60 Hz every 0.5 sec for 20 min. If status
epilepticus began—evident by head nodding and/or clonus of the
limbs—stimulation was stopped. If status epilepticus did not be-
gin, stimulation was resumed, and the rat was evaluated for sta-
tus epilepticus 5 min later. This cycle was repeated a second
time, if necessary. The treatment induced neuronal loss in the
hippocampus and granule cell synaptic reorganization; sponta-
neous seizures developed after a latent period in over 85% of the
rats that experienced status epilepticus; however, mortality was
20%.

(ii) Chemical induction. Chemical convulsants such as
pilocarpine (206) and kainic acid (153), can initiate status
epilepticus. Pilocarpine is a muscarinic acetylcholine receptor
agonist. Activation of these receptors has many effects in the
brain, and blocking a class of potassium channels is likely to
contribute to increased neuronal excitability and seizures.
Kainic acid is a glutamate receptor agonist that excites neurons
to produce seizures. It is structurally related to domoic acid,
which is the toxin responsible for shellfish poisoning. Ingestion
of domoic acid causes seizures (sometimes status epilepticus)
and hippocampal sclerosis, and survivors develop memory im-
pairment and temporal lobe epilepsy (45, 199).

The pilocarpine-induced status epilepticus rat model may be
the most widely used model of temporal lobe epilepsy. Initially,
peripheral cholinergic side effects are blocked by administration
of atropine methylbromide (5 mg/kg of body weight, i.p.). Twenty
minutes later, pilocarpine is administered (380 mg/kg, i.p.) to
evoke status epilepticus. Behavioral seizure activity typically be-
gins in 10 to 30 min. After a period of status epilepticus, seizures
are suppressed by use of an anticonvulsant (for example, two to
four diazepam treatments, each 10 mg/kg, i.p., at 2- to 3-h inter-
vals as needed). It is critical that status epilepticus be of suffi-
cient duration (approx. 2 h) to induce a brain injury that will
result in the temporal lobe epilepsy phenotype. If status
epilepticus is blocked or curtailed prematurely, neuronal loss is
prevented and synaptic reorganization and epilepsy fail to de-
velop (27, 80, 117, 197). To help rats recover, supportive care
should be provided (subcutaneous fluids, monitor and control
body temperature, as needed). Body weight decreases after sta-
tus epilepticus, but recovers to pretreatment value in approxi-
mately one week (206). The aforementioned protocol has been
used extensively in 32- to 63-day-old male Harlan Sprague-

Animal models of epilepsy
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Dawley rats, with 67% developing status epilepticus and surviv-
ing, 11% developing fatal status epilepticus, and 21% not devel-
oping status epilepticus. Published protocols indicate that 15 to
40% of treated rats fail to develop status epilepticus (51, 80, 83,

111, 145, 162). If induction rates are low, expect some non-re-
sponders and factor them into the experimental design instead
of increasing the convulsant dose, thereby increasing mortality.
Non-responder rats can also be considered for a drug-treated

Figure 3. Photomicrographs of the hippocampus of an age-matched, vehicle-treated control (A, C, E) and an epileptic rat 40 days after pilocarpine-
induced status epilepticus (B, D, F). (A and B) Nissl-stained sections reveal the dentate gyrus (DG) and the major subfields of Ammon’s horn (CA1,
CA2, and CA3). The hilus of the dentate gyrus (h) contains many large, scattered neurons in the control, but not in the epileptic rat. (C and D) Timm
staining labels axon terminals that concentrate zinc. Granule cell axon terminals are black. The hilus and a layer in (CA3) are black because that is
where granule cell axons normally project. The boxed regions are shown at higher magnification in (E and F). Black Timm staining extends from the
hilus (h) into the granule cell layer (g) and inner molecular layer (m) in the epileptic but not in the control rat. Bars: (A-D) = 500 µm; (E and F) = 50 µm.
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control group. After status epilepticus, treated rats display hip-
pocampal neuron loss, especially in the hilus of the dentate gy-
rus, and they develop granule cell synaptic reorganization (34,
88, 159, 203) (Fig. 3). After an average latent period of approxi-
mately 26 days, over 90% of post-status epilepticus rats display
spontaneous, recurrent seizures of Racine class 3 or greater,
which continue for life.

There are variations in the pilocarpine-treatment protocol. For
example, methylscopolamine (1 to 2 mg/kg, i.p.) can be used to
antagonize the peripheral cholinergic side effects of pilocarpine.
It is important to choose an antagonist that is effective in the pe-
riphery, but does not cross the blood-brain barrier easily, or it
will block the intended seizure activity. Some protocols call for
pretreatment with terbutaline (1 to 2 mg/kg, i.p.), an α2-adrener-
gic agonist and bronchodilator that is thought to help with respi-
ration. Various anticonvulsants can be used to suppress seizure
activity after 2 h of status epilepticus. Benzodiazepines and/or
barbiturates (e.g., 50 mg of pentobarbital/kg, i.p.) have been used
as anticonvulsants. Failure to suppress seizures will result in
high mortality after pilocarpine treatment.

Another variation of pilocarpine use is pretreatment with
lithium. When lithium (3 mEq/kg, s.c.) is administered 24 h ear-
lier, only a small dose of pilocarpine (30 mg/kg) is needed to
evoke status epilepticus (51). Some protocols call for administra-
tion of a convulsant directly into the hippocampus or into the lat-
eral cerebral ventricle. Pilocarpine and kainic acid can be
injected directly into the hippocampus (24, 82, 154, 155). Intrac-
erebral injections tend to induce a more focal lesion, longer sei-
zure-free latent periods, and lower seizure frequencies than do
systemic treatments.

Early protocols for systemic treatment with kainic acid called
for administration of a single high dose (12 to 18 mg/kg, s.c., i.v.,
or i.p.). Mortality was high, and a low and variable proportion of
rats developed spontaneous, recurrent seizures. To address these
issues, a multiple low-dose protocol was developed, which per-
mits individual dosing on the basis of how each animal responds
(93). Kainate (5 mg/kg, i.p.) is administered to rats every hour,
and seizure activity is scored according to the Racine scale. Injec-
tions are delayed or discontinued if a rat becomes unusually in-
active or excessively active (continual circling, pacing, or
jumping). Treatment ceases after three continuous hours with at
least one class-4 or class-5 seizure per hour, and the cumulative
kainate dose is 20 to 50 mg/kg. This approach reduced mortality
to 15% and increased production of epileptic rats to over 95% of
those surviving status epilepticus. A multiple low-dose protocol
for pilocarpine treatment produces results similar to those of the
aforementioned single high-dose pilocarpine-treatment (83).

Advantages of status epilepticus models include robust devel-
opment of hippocampal sclerosis and granule cell synaptic reor-
ganization, a latent period, and permanent epilepsy once it is
established (Table 1). The latent period is important experimen-
tally, because it provides a window of opportunity to test anti-
epileptogenic treatments (31). It also presents a pre-epileptic
state that can help distinguish between causes and effects of
chronic epileptic seizures (111). Most importantly, status
epilepticus models have advanced understanding of human tem-
poral lobe epilepsy. For example, Nadler and co-workers (154)
were the first to recognize that rats treated with kainic acid dis-
play a pattern of neuron loss similar to that of hippocampal scle-
rosis found in human patients. They reported synaptic

reorganization of granule cells, and proposed the recurrent exci-
tation hypothesis (155, 198) (Fig. 2). Prompted by these findings
in kainate-treated rats, other investigators evaluated hippocam-
pal tissue from patients with temporal lobe epilepsy and found
the same sort of abnormal rewiring of granule cells (58, 97, 196).

Nevertheless, status epilepticus models have limitations, as
noted for other epilepsy models. The pattern of neuronal loss is
not identical to that found in human patients, in that the loss in
animal models is more symmetric. Systemic treatment, focal
stimulation, and intracerebral injection induce a substantial de-
gree of bilateral neuron loss, in part because of the extensive
commissural connectivity of the hippocampus in rodents com-
pared with primates (2). Compared with primate status
epilepticus models (143) and patients (7, 30, 42, 71, 84, 131, 176,
219), rodent status epilepticus models also tend to have more
neuron loss in regions outside of the hippocampus. The olfactory
cortex is one of the largest regions of extrahippocampal damage
in rodent status epilepticus models (26, 48, 51, 80, 141, 158, 184,
193, 205). It is highly developed in rodents and may play a dis-
proportionate role in epileptogenesis of rodent models. Further-
more, the loss of CA1 pyramidal cells is less consistent in rodent
models. To address this deficiency, a model combining ischemia
and kainate-treatment was developed, and treated rats dis-
played substantial neuron loss in CA1, CA3, and the hilus (77).
Additional differences include short latent period and older age
at which the initial precipitating injury is sustained in models
compared with patients. The severity of status epilepticus as a
precipitating injury in models might contribute to their short la-
tent period and more extensive extrahippocampal neuron loss.

Species, Strain, Sex, and Age Affects
Results of Epileptogenic Treatments

Variability in the mortality and the proportion of animals that
develop status epilepticus and chronic epilepsy can be attributed
in part to sex, strain, and age differences. For example, estradiol
increases susceptibility to kainate-induced seizures (157); thus,
female rats will respond to kainite treatment, in part, on the ba-
sis of their estrous cycle. There also are strain-specific differ-
ences in kainate sensitivity. After systemic kainite treatment,
adult (70- to 90-day-old) male Wistar-Furth and Fisher 344 rats,
both inbred strains, display more sensitivity and more reliable
behavioral seizure responses than do the outbred rat strains,
Sprague-Dawley and Long Evans Hooded (87). Aged rats (24
months old) are less vulnerable to kainate-induced excitotoxicity
than are 3- to 20-month-old rats (109). Juvenile rats (35 to 40
days old) are more sensitive and display more consistent behav-
ioral seizures after kainite treatment than do adult rats (70 to 90
days old) (87). When young rats (up to approx. 25 days old) are
subjected to the same pilocarpine or kainite treatment protocols
as adults, they develop acute seizures, but their hippocampal
neurons survive and synaptic reorganization and spontaneous
recurrent seizures fail to develop (90, 169, 218). However, after
lithium-pilocarpine combination treatment, some rats as young
as 20 to 21 days old develop epilepsy (175), and some of these do
so without hippocampal neuron loss or granule cell synaptic re-
organization (171). In response to electrically induced status
epilepticus, 100% of 35-day-old rats become epileptic, but only
11% of 21-day-old rats develop epilepsy (175). These findings in-
dicate that using 35- to 60-day-old rats for status epilepticus
models will reduce mortality and improve consistency.

Animal models of epilepsy
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Chemically induced status epilepticus in mice is associated with
profound strain differences. For example, mouse strains differ in
their seizure thresholds. Thus, electroconvulsive stimulation
evokes seizures more easily in DBA/2J than in C57BL/6J mice (74,
78). There also are strain-dependent differences in seizure sensi-
tivity to chemical convulsants (69, 73, 113, 132, 142, 174). Mature
(9- to 10-week-old) DBA/2J mice are more vulnerable than are
CBL/6J mice to induction of behavioral seizures after systemic
kainite treatment (72). Although kainic acid at sufficient doses
evokes seizures in all tested strains, there are strain differences in
neuronal loss. The DBA/2J, FVB/N, and 129/SvEMS mice (like
rats) have extensive hippocampal neuron loss and synaptic reor-
ganization after kainate-induced status epilepticus, whereas
C57BL/6, BALB/c, C3H, ICR, 129/SvJ, and SJL are resistant to
neuronal loss (142, 181, 182). These strain differences are particu-
larly problematic because C57BL/6 and 129/SvJ mice are com-
monly used as stock for gene-targeting experiments. To induce
neuronal loss by use of kainic acid in resistant strains, focal injec-
tion into the hippocampus is preferable to systemic treatment (5).
Alternatively, pilocarpine instead of kainic acid can be used sys-
temically (41). After pilocarpine-induced status epilepticus,
C57BL/6 mice sustain neuron loss and develop synaptic reorgani-
zation and spontaneous, recurrent seizures (186).

There may also be vendor-specific differences within strains.
For example, pilocarpine-induced status epilepticus results in
high mortality in C57BL/6 mice from The Jackson Laboratories
but, for reasons that are unclear, not in C57BL/6 mice from
Charles River Laboratory (22). These few examples illustrate
that selection of epilepsy models must be done with care to ob-
tain useful results while minimizing the impact on animal sub-
jects. Laboratory animal veterinarians can provide important
advice to investigators in this regard.

Primate Models of Temporal Lobe
Epilepsy

Because of their small neocortex, rodents lack a well-defined
temporal lobe, but have the homologous structures. Neurons in
the hippocampus and nearby entorhinal cortex of rodents and
primates are similar in many respects, but there also are differ-
ences in neuronal anatomy and function that are potentially im-
portant for temporal lobe epilepsy (6, 32, 33). This raises questions
about the suitability of rodents for modeling some aspects of hu-
man temporal lobe epilepsy. To address this issue, nonhuman pri-
mate models of temporal lobe epilepsy have been developed.

An alumina gel injection model of temporal lobe epilepsy was
developed in rhesus macaques (173). Young adults were anesthe-
tized, and 0.1 to 0.2 ml of alumina gel was injected stereotaxi-
cally into one to three sites in a temporal lobe. After 12 to 14
days, animals given injections in the hippocampus developed se-
vere, spontaneous seizures that required euthanasia. After 2 to 3
weeks, animals given injections in the entorhinal cortex devel-
oped less severe seizures. After injection in the amygdala, spon-
taneous behavioral seizures developed even more slowly, over 3
to 6 weeks, and remained mild over a long period. All affected
animals developed behavioral, electrographic seizures and
pathologic features (hippocampal neuron loss and granule cell
synaptic reorganization), similar to those in patients with tem-
poral lobe epilepsy.

A status epilepticus model of temporal lobe epilepsy has been
developed in infant (6 to 7 months old) pigtailed macaque mon-

keys (89). A chronic, stereotaxic guide-tube cranial platform (60)
was used to give unilateral intracerebral injections of the GABAA
receptor antagonist bicuculline at each of three sites in the
entorhinal cortex of awake animals. The infusions caused acute
status epilepticus, consisting of facial twitching, chewing move-
ments, drooling, unresponsiveness, tremors, rhythmic eye move-
ments, erratic heart rate, vomiting, pallor, and contralateral head
turning. After 1 h, status epilepticus was terminated by adminis-
tration of diazepam. The MRI and histologic findings obtained 4 to
10 months later resembled those of patients with unilateral tem-
poral lobe epilepsy. The hippocampus was shrunken, neuron loss
occurred, and granule cell synaptic reorganization developed.
However, none of five treated animals developed spontaneous re-
current seizures through 10 months. Whether they would have
developed epilepsy eventually is not clear.

Conclusion and Future Directions
There is no doubt that temporal lobe epilepsy is a devastating

human disease compounded by many unresolved questions about
cause, pathogenesis, and treatment. To investigate injuries that
initiate temporal lobe epileptogenesis, neonatal hyperthermia,
neonatal hypoxia ± ischemia, and percussive brain injury models
are useful. Status epilepticus models are useful to address ques-
tions about hippocampal sclerosis, the latent period, and the
chronic epileptic state, and to test anti-epileptogenic and anti-con-
vulsant treatments. The kindling model provides insights into an
epileptogenic process. More selective and specific treatment, like
that induced by tetanus toxin, is useful for dissecting out the com-
plex, multiple effects of epileptogenic injuries. Studies in nonhu-
man primates may be useful in learning why the human
hippocampus is predisposed to epileptic injuries and in identifying
epileptogenic factors that develop during the long latent period.

Because epilepsy research requires an intact nervous system,
animal models will remain an essential component toward bet-
ter understanding and treatment. As illustrated here, currently
available models mimic, to variable degrees, the biological fea-
tures of human epilepsy, but they also entail induction of sub-
stantial neurologic deficits. Although careful selection of the
appropriate model, species, strain, sex, and age can reduce con-
temporary impacts on animals, development of more refined
models is clearly an important scientific and humane priority of
epilepsy research.
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